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Abstract
This document is a survey of the main European fundamental

trigonometric tables printed in the 15th and 16th centuries. After
a review of the work done before the 15th century in Greece, India
and the Arab world, the starting points in Europe are examined. The
seminal work of Regiomontanus is carefully studied and the lineage
of all later works is established.
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1 Introduction

The purpose of this survey is to sort out the many fundamental European
purely (i.e., non astronomical) trigonometric tables published in the 15th
and 16th centuries, and specifically to clarify their relationships.1 I am
concerned here almost exclusively with tables of sines, tangents and secants,
and not with more specialized trigonometric tables that might be used as
auxiliary tables.

Although a study with a similar scope has been published by Glowatzki
and Göttsche in 1990,2 I feel that it is necessary to review the tables in the
light of their ready access, and to see whether their understanding can be
improved. I believe that my study brings new information and corrects
some earlier mistakes.

This new examination is also made in the context of the LOCOMAT
project,3 where a number of historical tables have been reconstructed (com-
putationally and typographically) and analyzed, enabling a better assess-
ment of their accuracy and lineage. However, it must be stressed that
the absolute accuracy of the historical tables under consideration here is
less important than their relationships and the process that led to their
computation or organization.

In the following sections, I first give a short review of the history of
purely trigonometric tables before the 15th century, and follow their de-
velopment through Greece, India, the Arab world, and finally Western
Europe. I am then considering the work of four great innovators, Johannes
von Gmunden, Giovanni Bianchini, Georg von Peuerbach and Johannes
Regiomontanus. The latter was the one who greatly expanded the world
of trigonometric tables, and set the background for almost all future work
until the end of the 16th century. I am therefore examining what are Re-
giomontanus’s seminal tables, and then journey through a century of tables,
from Regiomontanus’s Tabulæ directionum profectionumque of 1490 to Rheti-

1There is a vast literature on numerical tables, and I am directing the reader to a num-
ber of general surveys, such as [Hutton (1785)], [De Morgan (1842)], [De Morgan (1851)],
[Glaisher (1873)], [Davis (1933), pp. 1-40], [Campbell-Kelly et al. (2003)], etc. This docu-
ment also mentions many people, and I am not always directing to specific biographical
information for each of them. Valuable informations can in particular be found in the
notices of [Hockey (2014)], in particular on Al-Battāni, Abū al-Wafā

c

, Al-Khwārizmı̄,
Al-Zarqālı̄, Apian, Bürgi, Clavius, Copernicus, Engel, Fine, Gemma Frisius, Lansberge,
Magini, Maurolico, Peucer, Peuerbach, Regiomontanus, Reinhold, Rheticus, and many
others.

2[Glowatzki and Göttsche (1990)]
3https://locomat.loria.fr, see [Roegel (2012)].
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cus’s Opus palatinum of 1596, which was itself the start of a new era, but
the end of this survey. In this journey, I am in particular examining the
genealogy of the tables. In other words, I am trying to find out who copied
on whom, and I am also trying to shed a new light on the computations
that were made, whenever possible.

Finally, this survey is also a companion document to a number of mod-
ern reconstructions, that is, reconstructions usually giving the exact values,
but also trying to reproduce the original layout of the tables, so as to
make their comparison straightforward. These reconstructions are those
of Regiomontanus’s table of tangents (1490),4 Engel’s table of sines (1490,
but here reproduced from the 1504 edition),5 Peuerbach’s arctangent ta-
ble (1516),6 the tables of sines of Fine (1530),7 Apian (1533),8 Regiomon-
tanus (1541),9 Rheticus (1542)10 and again Fine (1550),11 and eventually
the trigonometric tables of Rheticus (1551),12 Reinhold (1554),13 Maurolico
(1558),14 Viète (1579),15 Fincke (1583),16 Lansberge (1591),17 Rheticus & Otho
(1596)18 and Pitiscus (1613).19

2 Before the 15th century

I give here a quick and rough sketch of the history of trigonometric tables
before the 15th century, so as to serve as a background for the development
of trigonometry in the 15th and 16th centuries. More detailed (although
sometimes incorrect or dated) surveys can be found in the works of Braun-

4[Regiomontanus (1490)]
5[Regiomontanus (1490), Regiomontanus (1504)]
6[von Peuerbach (1516)]
7[Fine (1530)]
8[Apian (1533)]
9[von Peuerbach and Regiomontanus (1541)]

10[Copernicus (1542)]
11[Fine (1550)]
12[Rheticus (1551)]
13[Reinhold (1554)]
14[Maurolico (1558)]
15[Viète (1579)]
16[Fincke (1583)]
17[van Lansberge (1591)]
18[Rheticus and Otho (1596)]
19[Pitiscus (1613)]
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mühl,20 Tropfke,21 Bond,22 Zeller23 and more recently of Brummelen.24

More general works on the history of mathematics may also sometimes be
of interest, for instance those of Montucla,25 Kästner,26 Zeuthen,27 Katz28,
Boyer/Merzbach29 or Scriba/Schreiber,30 but they may at times be inaccu-
rate.

2.1 Greek chord tables

Trigonometry started with triangles inscribed in circles of some radius R.
This radius was typically taken to be 60, but other values were also used.
Within such a circle, some quantities can then be defined. In particular
chords are segments subtended by an arc (figure 1) and there is a simple
relationship between chords in a circle of radius R (which I denote ChdR

or often merely Chd) and sines (which I assume to be defined in a unit
circle). We have ChdR α = 2R sin(α/2). In the case of sine tables, R was
later called the sinus totus. This radius was not made equal to unity before
Abū al-Wafā

c

in the 10th century (see § 2.3).31

We know that Hipparchus (c.190-c.120 BC) and Menelaus of Alexandria
(c.70-c.140) wrote treatises on chords, but these works are unfortunately
lost.32 It is not known if they contained tables of chords. But we know
that the use of tables in Greek mathematics apparently takes its roots in
Babylonian sources.33

In 1974, Toomer suggested that Hipparchus may have had a table of

20[von Braunmühl (1900, 1903)]
21[Tropfke (1902-1903), v. 2, pp. 189-221, and 296-306]
22[Bond (1921)]
23[Zeller (1944)]
24See [van Brummelen (2009)] and [van Brummelen (2021)].
25[Montucla (1758)]
26[Kästner (1796)]
27[Zeuthen (1903)]
28[Katz et al. (2007)]
29[Merzbach and Boyer (2010)]
30[Scriba and Schreiber (2015)]
31In the sequel, sines will often be defined in non-unit circles, and I will use Sin for

this purpose, often leaving the radius implicit. We have of course SinR α = R sinα. Some
authors call this Sin the R-sine, but I will always use “sine” alone, as the context should
be unambiguous. I will also use other variants such as Tan, Sec, etc., when needed.

32[Bond (1921), pp. 297-298]
33[Sidoli (2014), p. 13]
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Figure 1: Chords and sines. AB is the chord of α and BC is its sine, for a
radius R. We have ChdR α = 2R sin(α/2) and BC = SinR α.

chords with a circle of radius R = 3438 and at intervals of 7.5
◦,34 and that

this radius was then copied by Indian mathematicians, but this is still
debated, by Toomer himself,35 as well as by Klintberg in 2005 who believes
that Hipparchus may have had instead a chord table with R = 3600.36 On
the other hand, Duke, also in 2005, and using the analysis of two eclipse
trios, concurs with Toomer’s original suggestion.37

Later, Ptolemy (2nd century AD) gathered the earlier works and cov-
ered the computation and use of chords in the first book of the Almagest.
His table gives the chords for every 30

′ of the quadrant, using a circle of
diameter 120 (figure 2).38

The way Ptolemy computed his table of chords was to find first the
sides of the inscribed regular triangle, quadrilateral, pentagon, hexagon
and decagon in a circle divided in 60 parts, that is, of radius 60.39 This gave

34[Toomer (1974), p. 7] See [van Brummelen (2009), pp. 41-45] for a recent discussion on
this topic.

35[Ptolemaeus (1984), p. 215]
36[Klintberg (2005)]
37[Duke (2005)]
38See [Ptolemaeus (1813-1816), v. 1, pp. 38-45], [Ptolemaeus (1898-1903), v. 1, pp. 48-63],

[Ptolemaeus (1984), pp. 57-60].
39Besides Toomer’s edition of the Almagest [Ptolemaeus (1984), pp. 57-60], see [Neuge-

bauer (1975), pp. 21-24], [Pedersen (2011), ch. 3], [Bond (1921), pp. 301-303], [Clagett (1957),
pp. 200-205], [Kneale (1965)], [Glowatzki and Göttsche (1976)], [Thurston (1996), pp. 235-
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him the chords of 36
◦, 60

◦, 72
◦, 90

◦, 108
◦, 120

◦, and 144
◦.

Using the theorem known as Ptolemy’s theorem (a relation between
the four sides and two diagonals of a cyclic quadrilateral), Ptolemy was
able to compute the chord of the difference of two arcs, when the chords of
these arcs are known, and also the chord of their sum. He also was able to
compute the chord of the half arc from that of the arc. Eventually, Ptolemy
computed the chords of 0.75

◦ and of 1.5
◦.

Then Ptolemy used an interpolation to find the chord of 1
◦:

Chd 1
◦
= 1

p
2
′
50

′′

This means that the chord of 1
◦ is a bit more than one part, given that

the radius is equal to 60 parts. Of course, Chd 180
◦
= 2R = 120.

The above value for Chd 1
◦ is correct, since we actually have Chd 1

◦
=

2 ⋅ 60 ⋅ sin 0.5
◦
= 1.047184 . . . ≈ 1 + 2/60 + 50/60

2. This value will also be
written 1; 2, 50, following a convention used by many authors.40

After the computation of Chd 1
◦, Ptolemy obtained Chd 0.5

◦ and even-
tually all the other values in his table of chords. Glowatzki and Göttsche
recomputed Ptolemy’s table using the procedure he described in the Al-
magest.41

The beginning of Ptolemy’s table of chords as given by Halma is shown
in figure 2.

In the following excerpt of Ptolemy’s table

236], [van Brummelen (2009), pp. 70-77], [Buscherini and Panaino (2010)], [Otero (2020)]
and especially [van Brummelen (1993), pp. 46-73] for an extensive analysis of Ptolemy’s
chord table and its underlying mathematics.

40Throughout this document, I will count decimal places beyond this radius, and
not including it, so that the value of Chd 1

◦ given here will be considered given to two
(sexagesimal) places and not three.

41See [Glowatzki and Göttsche (1976)]. Glowatzki and Göttsche give the listings of the
PL/I programs they used.
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the values of Chd 0
◦
30

′, Chd 1
◦ and Chd 1

◦
30

′ are given, together with dif-
ferences. These differences are given in thirtieth of the actual differences,
so that 31

′
25

′′ becomes 31
′
25
′′

30
=

2×31′25′′

60
=

62
′
50
′′

60
= 62

′′
50

′′′
= 1

′
2
′′
50

′′′.
In Greek (right hand side), letters are used for numbers, in particular

ο for 0, α for 1, β for 2, ι for 10, κ for 20, λ for 30, ν for 50, ιε for 15, κε for
25, λα for 31, λδ for 34, etc. Note however that Halma uses ς ′′ for 30

′, when
actually Ptolemy used a symbol for the half degree.42

As the chords are twice the sines of the half angles, Ptolemy’s table
would make it very easy to obtain the sines at intervals of 15

′.

2.2 Indian tables

The history of mathematics in India is complex and a lot of details are shady
or lost.43 As far as trigonometry is concerned, some elements of Greek chord
tables were probably taken to India, but they were then converted to sines.44

It seems that it was for practical reasons that Indian astronomers replaced
the chords (jyā) by the sines, that is by half-chords (jyā-ardha, eventually
shortened to jyā), with various values of the radius R of the base circle.45

This move from chords to sines may seem to be a detail, but it had in
fact far-reaching consequences, connecting trigonometric functions with
right triangles and therefore to the Pythagorean theorem.

However, even though a transmission from Greece to India is com-
pelling, there is no certainty about the origins of the calculations, and
whether the values were borrowed from Greek sources or computed inde-
pendently.46

In any case, once the sine (jyā) had been defined for radius R, we had

jyā(θ) = R sin θ = Sin θ.

Among the oldest sine tables, Neugebauer and Pingree mention the
Paitāmahasiddhānta, possibly of the 1st century AD, which had a table based

42[Ptolemaeus (1898-1903), v. 1, p. 48]
43For summaries of the history of mathematics and astronomy in India and exten-

sive discussions on trigonometry or tables, see [Srinivasiengar (1967)], [Pingree (1978)],
[Bag (1979)], [Katz et al. (2007)], [Plofker (2009)], [González-Velasco (2011), pp. 25-34],
[van Brummelen (2009), pp. 94-134], [Puttaswamy (2012), pp. 108-116], [Divakaran (2018)],
[Montelle and Plofker (2018)] (especially page 57) and [Ramasubramanian (2019)].

44[van Brummelen (2009), p. 99]
45[van Brummelen (2009), p. 96]
46[van Brummelen (2009), p. 99]
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Figure 2: The beginning of Ptolemy’s table of chords as retranscribed by
Halma in 1813 [Ptolemaeus (1813-1816)]. The part on the right shows
the numerical values as represented by Greek letters. The left part is the
modern translation. One should take note that the layout of the table in the
Greek manuscripts differs from that displayed here and half-degrees are
marked with a special symbol [Ptolemaeus (1898-1903), v. 1, p. 48].
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on R = 3438.47

As mentioned above, Toomer has suggested that this radius 3438, which
is 60 ⋅ 360 divided by an approximation of 2π, was actually borrowed from
Hipparchus,48 but this claim may now be questioned. In any case, the
simultaneous choice in India of a radius of 3438 and a measure of the
circumference of 360 ⋅ 60

′ means that the radius was actually measured
in the same units as the circumference, thus anticipating the concept of
radians.49

The Sūrya Siddhānta, a Sanskrit treatise on Indian astronomy, which in
its original version goes back to the 4th century, may also have been one
of the earliest texts giving a table of sine. The version now known of this
work which had been heavily amended gives a table of sines with the same
R = 3438 and for every multiple of 3

◦
45

′.50 This interval of 3
◦
45

′ may go
back to an interval of 7

◦
30

′ for chords.51

Around 499 AD, Āryabhat.a’s Āryabhat. ı̄ya also used R = 3438 and had
tables of sines (Sinx) and versines (or versed sines, utkramajyā, R − Cosx)
for every x multiple of 3

◦
45

′.52

Then in the sixth century AD, Varāhamihira (c505-c587) gave a table
of sines with R = 120 again for every multiple of 3

◦
45

′.53 Neugebauer and
Pingree write that this table uses a terminology derived from that of the
Paitāmahasiddhānta mentioned above. In any case, Varāhamihira’s table
may be much older than the 6th century as his work, the Pañca-siddhāntikā
is a summary of five earlier siddhāntas. And since, as observed by Bag,54 we
have the chord of 7

◦
30

′ in a circle of radius R = 60 which is equal to the sine
of 3

◦
45

′ in a circle of radius R = 120, and that therefore a table of chords
can right away become a table of sines in a circle twice as large, it may be
that Varāhamihira’s table goes back to a table of chords with R = 60.

In his Brāhma-sphut.a-siddhānta, Brahmagupta (c598-668)55 computed a

47[Neugebauer and Pingree (1970-1971), part 2, p. 37]
48See [Toomer (1974), p. 6] and [Divakaran (2018), p. 198].
49[Neugebauer (1956)]
50[Burgess (1860), pp. 58-60]
51[van Brummelen (2009), p. 97]
52See [Clark (1930), p. 19], [Srinivasiengar (1967), pp. 40-54], [Filliozat (1988)], and

[Mazars (1974)].
53See [Neugebauer and Pingree (1970-1971), part 2, pp. 37-38] and [Plofker (2009), p. 51]
54[Bag (1969), p. 84]
55[Bhattacharyya (2011)]
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table of sines but with the radius 3270 for every multiple of 3
◦
45

′.56 Gupta
suggested that this peculiar value of R is rounded from 21600/6.6, where
6.6/2 is an approximation of

√
10.57

Bag58 gave a comparative view of the main early Indian tables of sines
and examined how Varāhamihira and others may have computed their
values.

Brahmagupta has also used the value R = 150 in his Khan. d. akhādyaka
(665).59 This value was then used again by Al-Khwārizmı̄.

2.3 Arabic tables

I merely sketch here the main milestones in the developement of trigono-
metric tables between the 8th and 13th centuries, before their wider trans-
mission to Western Europe.60

At the end of the 8th century, during the first years of the Abbasid
Caliphate (750-1258), men of learning were gathered in Baghdad and they
translated into Arabic the works of the Hindus and the Greeks.61 In partic-
ular, excerpts of Brahmagupta’s Brāhma-sphut.a-siddhānta were brought to
the calif Al-Mansur (714-775) by a scholar named Kaṅka62 and a translation
was made.

The Persian mathematician and astronomer Al-Khwārizmı̄ (c780-850)
wrote a revised edition of this translation, the Zı̄j al-Sindhind.63 The word zı̄j
is a generic name used for tabular astronomical works in Arabic and Persian,
and it is derived from a Persian word meaning “cord” or “string”, the tables
with their columns and lines bearing some similarity with strings.64

The Indian word jyā for the chord was translated to jib and was later
probably incorrectly translated in the Latin sinus, based on the similar

56[Plofker (2009), p. 81, 157]
57[Gupta (1978)]
58[Bag (1969)]
59See [Chatterjee (1970), p. 206], [Gupta (1978)], [Pingree (1996), p. 43], and [Pin-

gree (2003)].
60For more extensive descriptions of Arabic mathematics and astronomy, see in par-

ticular the surveys of [von Braunmühl (1900, 1903), v. 1, pp. 42-86] and [Rashed and
Morelon (1996)]. Heydari-Malayeri’s short survey may also be of interest [Heydari-
Malayeri (2007)]. On trigonometric tables in the Islamic world, see [Berggren (1986),
p. 144] and [van Brummelen (2009), pp. 135-222].

61[Bond (1921), p. 307]
62[Bag (1969), p. 84]
63See [Kennedy (1956), pp. 148-154], [Pingree (1996), p. 41] and [van Dalen (1996)].
64[Heydari-Malayeri (2007)]
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unvocalized Arabic word jaib meaning “cavity”.65

For the Zı̄j al-Sindhind Al-Khwārizmı̄ computed c820 a table of sines. In
fact, according to McCarthy and Byrne, Al-Khwārizmı̄’s treatise contained
two sine tables.66 The main table used the radius R = 60 and a step of 1

◦,67

and was likely based on Ptolemy’s table of chords,68 but Al-Khwārizmı̄
also used another simpler table with R = 150,69 that is Brahmagupta’s
radius from the Khan. d. akhādyaka.70 This simpler table only contained the
sines at intervals of 15

◦ and was especially known from a commentary
by Al-Biruni.71 In particular, McCarthy and Byrne convincingly discard
Hogendijk’s suggestion72 of a possible candidate for a full R = 150 sine
table that could be attributed to Al-Khwārizmı̄.73

Al-Khwārizmı̄’s main table survives in Adelard of Bath (c1080-1152)’s
Latin translation (1126) of Maslama al-Majriti (c950-c1007)’s late 10th cen-
tury Cordova edition of the original table. It was reproduced by Suter in
1914.74 The table with R = 150 is not found in Adelard of Bath’s translation,
but its radius R = 150 made it to the tables of Toledo.

Al-Khwārizmı̄ also had a table of shadows with a gnomon of 12,75

following the Hindu custom.76 The shadows seem to have been viewed as
apart from the cosines and they were gathered in the same category only
by the Europeans in the 15th century.77

Al-Khwārizmı̄’s Zı̄j al-Sindhind was brought to Al-Andalus, the Muslim-
ruled area of the Iberian Peninsula, sometime between 821 and 852, that
is only a short time after its conception. The Umayyad dynasty, after their
replacement by the Abbasid dynasty in 750, had reestablished itself there,
first as an emirate, then as a caliphate.

During the 9th century, Ptolemy’s Almagest was also translated in

65See [Folkerts (2006), pp. 75-76], [Goldstein (2019), p. 132] and [Filliozat (1988), p. 261]
66[McCarthy and Byrne (2003), p. 247]
67[Neugebauer (1962), p. 104]
68[McCarthy and Byrne (2003), pp. 265-266]
69See [Neugebauer (1962), p. 104] and [Chabás Bergón and Goldstein (2012), p. 19].
70[Pingree (1996), p. 43]
71[McCarthy and Byrne (2003), p. 246]
72[Hogendijk (1991)]
73[McCarthy and Byrne (2003), pp. 264-265]
74[Suter (1914), tab. 58 and 58a]
75[Suter (1914), tab. 60]
76[Bond (1921), p. 307]
77[Bond (1921), p. 308]. See also [Moussa (2010)] who considers the process by which

the tangent and cotangent functions became more abstract, especially with Abū al-Wafā

c

.
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Arabic, so that his table of chords was then also known in Arabic.78

Around the year 860 the Iranian astronomer al-Marwazi (al-Hasib)
(766-after 869) borrowed Ptolemy’s table of chords and gave the sines
for every 15 minutes.79 He also constructed the first systematic table of
tangents/cotangents80 (from 0

◦
30

′ to 89
◦ at intervals of 30

′ and to three
places81), although the tangent function had been tabulated before with-
out being identified as such.82 From then on, the tangent could have a
place comparable to that of the sine. But in the West, tangents were only
rediscovered in the 15th century by Bianchini and Regiomontanus.

It is interesting to note that a table equivalent to a table of tangents
has appeared elsewhere before al-Hasib’s table, namely in China. Indian
mathematics had actually been exported to China and such a table was
constructed there in the 8th century in the form of a shadow-list, but this
table was a false start for Chinese trigonometry.83

In the S. ābi Zı̄j,84 the Syrian astronomer Al-Battāni (Albategnius) (c858-
929) put forward the advantages of sines. His table gave the sines forR = 60

and for every half-degree and to two sexagesimal places.85 Al-Battāni also
computed a table of cotangents (table of shadows) for every degree.86

But the first original arabic constructions of sine tables were the works
of Abū al-Wafā

c
and Ibn Yūnus.87

The Persian mathematician and astronomer Abū al-Wafā

c

(940-998)
gave a better method for the computation of trigonometric tables and his
sine table for R = 60 has a step of 15

′ and the values were computed on
four sexagesimal places.88 It should be observed, however, as already
mentioned, that Ptolemy’s table itself already gave the means to construct a

78See [Glowatzki and Göttsche (1976), pp. 12-13] and [Folkerts (2006), p. 76].
79[Debarnot (1996), p. 524]
80[Joseph (2011), p. 497]
81[Debarnot (1996), p. 512]. These “three places” probably include the radius.
82[Debarnot (1996), p. 509]
83See [Cullen (1982)], [Gupta (1987), p. 241], [Qu Anjing (2002)] and [Divakaran (2018),

p. 209]. A recent summary of Indian and Islamic trigonometry in China is given in [van
Brummelen (2021), pp. 185-191].

84See [Al-Battāni (1899-1907)] and [Kennedy (1956), pp. 154-156].
85[Al-Battāni (1899-1907), vol 2, pp. 55-56]
86[Al-Battāni (1899-1907), vol 2, p. 60]
87[Debarnot (1996), p. 524]
88This is what Folkerts writes [Folkerts (2006), p. 76], but it may mean four places

including the integer part, which would then mean three sexagesimal places with our
conventions.
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table of sines at intervals of 15
′, since the sine of 15

′ is half the chord of 30
′.

As an indication of Abū al-Wafā

c

’s work, let us mention that he found89

Sin 30
′
= 0; 31, 24, 55, 54, 55.

The correct value is

Sin 30
′
= 0; 31, 24, 55, 54, 0, 12, . . . ,

that is

Sin 30
′
= 0 + 31/60 + 24/60

2
+ 55/60

3
+ 54/60

4
+ 0/60

5
+ 12/60

6
+⋯

Abū al-Wafā

c

was also the first to take the radius as unity. He con-
structed a table of tangents and cotangents with the radius 1, but it was
still subdivided sexagesimally.90 He seems also to have been the one who
introduced the secant and cosecant.91

Ibn Yūnus (950-1009), astronomer of Cairo, wrote the Hakemite tables.
He also recomputed a table of sines. According to Debarnot, Ibn Yūnus’s
table of sines is more directly based on the Almagest92 than that of Abū
al-Wafā

c

. Ibn Yūnus gave the sines for every minute, for R = 60 and to
four sexagesimal places. An excerpt of that table is shown by Berggren and
King.93

Ibn Yūnus obtained Sin 1
◦
= 1; 2, 49, 43, 4,94 while the correct value is

Sin 1
◦
= 1; 2, 49, 43, 11, 14, 44, . . .

As observed by Glowatzki and Göttsche, the values of Ibn Yūnus’s
table were obtained by interpolation.95 Ibn Yūnus very likely computed the
sines at intervals of 10

′ and filled the intermediate values by interpolation.96

For instance, he gives97
Sin 28

◦
10

′
= 28; 19, 20, 11, 0 which is a rather good

89[Debarnot (1996), p. 527]
90[Bond (1921), p. 311]
91[Joseph (2011), p. 497]
92[Debarnot (1996), p. 524]
93See [Berggren (1986), p. 150], [Berggren (2016), p. 181] and [King (1975), p. 43].
94See [Debarnot (1996), p. 525] and [Schoy (1923), pp. 382-383].
95[Glowatzki and Göttsche (1990), p. 9]
96Note however that [Debarnot (1996), p. 524] misleadingly states that Ibn Yūnus gave

his sines only every 10
′.

97[Schoy (1923), p. 394]
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approximation (the correct value is Sin 28
◦
10

′
= 28; 19, 20, 12, 0), but the

values for Sin 28
◦
1
′, Sin 28

◦
2
′, etc., Sin 28

◦
9
′, are all less accurate, with the

least accurate being that for Sin 28
◦
5
′.

A table with such a small interval would not be available in Western
Europe before the work of Regiomontanus in 1462 (see § 3.4). Incidentally,
Regiomontanus’s table was also obtained by interpolation, albeit certainly
using a more elaborate scheme.

At about the same time as Ibn Yūnus, the Iranian scholar Al-Biruni (973-
c1050) had obtained the very accurate value Sin 1

◦
= 1; 2, 49, 43, 11, 14.98

His table99 gives the sines at intervals of 15
′ and uses R = 1.

In 1031, the Córdoban caliphate came to an end, the state was divided in
a number of smaller kingdoms, and it is during the period 1031 to 1085 that
Andalusian science flourished.100 In particular, around 1070 or 1080 a group
of astronomers in Toledo, including Al-Zarqālı̄ (c1028-1087) and perhaps
also S. ācid al-Andalusı̄ (1029-1070),101 put together the “Toledan tables.”102

The tables of Toledo were closely based on those of Al-Khwārizmı̄103 and Al-
Battāni104 which had been available in Al-Andalus since the 10th century.105

Al-Zarqālı̄ is often credited as the author of these tables, but this is not sure
and he may also not be the author of their canons.106

The original Arabic Toledan tables are no longer extant, but they are
known through many Latin editions from the 12th century onward and
they had an important influence on Western European astronomy.107 The
tables may have been organized (rather than translated) in Latin by Gerard
of Cremona who died in 1187.108

The Toledan tables contained a sine table with R = 150 (from 1
◦ to 180

◦

for every degree and with two sexagesimal places)109 (see figures 3 and 4

98[Schoy (1923), p. 386]
99[Schoy (1923), p. 396]

100[Samsó Moya (2020)]
101[Richter-Bernburg (1987)]
102See [Pingree (1996), p. 46], [Chabás Bergón (2019), pp. 47-75], and [Samsó Moya (2020)].
103[Suter (1914)]
104[Toomer (1968)]
105[van Brummelen (2018), p. 547]
106See [Busard (1971a), p. 74]. The canons of the tables were published by Curtze in

1900 [Curtze (1900), p. 337].
107[Zinner (1936), Toomer (1968), Pedersen (2002)]
108[Zinner (1936), p. 747]
109See [Zinner (1936), table 25, p. 749], [Toomer (1968), table 12, pp. 27-28], [Peder-

sen (2002), pp. 946-952], [Millás Vallicrosa (1950), pp. 62-63] and [Kennedy (1956), p. 128].
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for Latin editions) and another sine table with R = 60 (for every half degree
of the quadrant and with two sexagesimal places)110 (see figures 5 and 6 for
Latin editions).

As mentioned above, the radius 150 of this table111 (but not the values)
possibly goes back to Al-Khwārizmı̄’s table, and consequently to Brah-
magupta’s Khan. d. akhādyaka. However, as observed by van Dalen,112 the
idiosyncrasies of the table indicate that it was likely derived from a ta-
ble with R = 60 (probably by Al-Battāni113) by multiplying the values by
2.5 and McCarthy and Byrne114 believe that Al-Zarqālı̄ was the one who
made this transformation, perhaps in the hope of restoring a table which
he thought to be that of Al-Khwārizmı̄.115

The second sine table in the Toledan tables, with R = 60, originates nei-
ther in Al-Khwārizmı̄’s treatise (because Al-Khwārizmı̄’s table only gives
the sines at intervals of one degree), nor in Al-Battāni’s treatise (because of
distinctive discrepancies).116 It may possibly be based on Ptolemy’s table
of chords.

The table of shadows of the Toledan tables (see figures 7 and 8) is the
same as that in Al-Khwārizmı̄ and Al-Battāni’s tables.117

In the 12th century, the Christians, assisted by Jewish scholars, trans-
lated many Arabic works. In particular, Gerard of Cremona (c1114-1187)
translated in Latin the canons of the tables of Toledo and, as mentioned
above, Adelard of Bath made Al-Khwārizmı̄’s astronomical tables accessi-
ble to the Latins.

Around 1272, the Alfonsine tables were constructed in Toledo under the
guidance of King Alfonso X of Castile (1221-1284).118 They were the last
major astronomical work by Spanish astronomers before the Renaissance.119

The canons of these Castilian Alfonsine tables are still extant in a unique

110See [Zinner (1936), table 135, p. 757], [Toomer (1968), table 13, p. 29] and [Peder-
sen (2002), pp. 954-959].

111[Toomer (1968), table 12, pp. 27-28]
112[van Dalen (1996), p. 206]
113[McCarthy and Byrne (2003), p. 266]
114[McCarthy and Byrne (2003), pp. 252-253]
115[McCarthy and Byrne (2003), p. 264]
116[McCarthy and Byrne (2003), p. 265] Pedersen, however, attributes this table to Al-

Battāni [Pedersen (2002), p. 954].
117[Toomer (1968), table 15, p. 32]
118See [Dreyer (1920)], [Poulle (1988)], [Chabás Bergón (2002)], [Chabás Bergón and

Goldstein (2003)], [Swerdlow (2004)] and [Chabás Bergón (2019), pp. 125-132].
119[Heydari-Malayeri (2007), p. 10]
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manuscript, but the original tables are not. These Alfonsine tables arrived
in Paris in the early 14th century and they spread in a modified form in
Latin,120 becoming the Parisian Alfonsine tables. These tables were only
superseded in the 16th century by the Prutenic tables based on Copernicus’s
theory.

More accurate trigonometric tables were constructed in the Arabic world
after those of Al-Khwārizmı̄ and Al-Battāni. Chabás and Goldstein mention
for instance a 14th century manuscript giving a table of sines for 2700
arguments, at 1

′ intervals,121 so presumably up to 45
◦ and giving sines and

cosines.
And during the next century in Samarkand (now in Uzbekistan), Ulugh

Beg (1394-1449) also computed a table of sines for intervals of one minute.122

And finally, let’s mention that at the beginning of the 15th century, the
Persian mathematician Al-Kāshı̄ (c1380-1429) was able to obtain

Sin 1
◦
= 1; 2, 49, 43, 11, 14, 44, 16, 19, 16

(correct value: Sin 1
◦
= 1; 2, 49, 43, 11, 14, 44, 16, 26, 18, . . .) by solving nu-

merically the equation sin 3x = 3 sinx − 4 sin
3
x for x = 1

◦.123

120See [Goldstein and Chabás Bergón (2004), p. 455] and [Chabás Bergón (2019), pp. 237-
276].

121[Chabás Bergón and Goldstein (2012), p. 20]
122See [Bond (1921), p. 304], [Schoy (1923), pp. 398-399], [Archibald (1949), p. 31], and

[Gloden (1950), p. 10]. For the development of table literature in Indian and Arabic mathe-
matics, especially after Ulugh Beg’s tables, see for instance the surveys of [Ghori (1985)]
and [Plofker (2009)]. Gloden’s text just cited, as well as a number of others, should be
taken cautiously, as they contain many approximations.

123[Aaboe (1954)]
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Figure 3: The beginning of the table of sines to R = 150 in a Latin edition of
the tables of Toledo (BNF Ms. Latin 16211, f◦26v).
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Figure 4: The beginning of the table of sines to R = 150 in a Latin edition of
the tables of Toledo (BNF Ms. Latin 16655, f◦24v).
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Figure 5: The beginning of the table of sines to R = 60 in a Latin edition of
the tables of Toledo (BNF Ms. Latin 16211, f◦28r).
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Figure 6: The beginning of the table of sines to R = 60 in a Latin edition of
the tables of Toledo (BNF Ms. Latin 16655, f◦27v).
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Figure 7: The table of shadows in a Latin edition of the tables of Toledo
(BNF Ms. Latin 16211, f◦24v).
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Figure 8: The table of shadows in a Latin edition of the tables of Toledo
(BNF Ms. Latin 16655, f◦24v).
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3 The starting point in Western Europe:
from von Gmunden to Regiomontanus

In the 13th and 14th centuries, many writings appeared based on the canons
of the Toledan tables, in particular the canons of John of Lignères (1322).
These canons borrowed the details of the computation of the sines from the
canons of the Toledan tables, but they also gave a sine table for R = 60 and
for every half degree, as well as a table of shadows.124

Moreover, in 1175 Gerard of Cremona (c1114-87) translated Ptolemy’s
Almagest from the Arabic in Latin.125 Hence, tables of sines and of chords
were available to those willing to pick them up.

Several relatively independent works appeared in the following cen-
turies, of which a few can be mentioned. For instance, in 1220, Leonardo of
Pisa (c1170-c1250), known as Fibonacci, published his Practica Geometriæ
where he gave a table of chords with a radius of 21 perticæ and a circum-
ference of 132 perticæ (figure 9).126 The pertica is a Roman length unit equal
to 10 Roman feet or about 2.96 m. The ratio 132/21 corresponds to the ap-
proximation 22/7 for π. In Leonardo of Pisa’s table, the arcs are measured
with the circumference (first column), so that 90 degrees correspond to 33
perticae. In that case, the chord should have been 21

√
2 = 29.69 . . . but it is

given as 29. For 180 degrees (66 perticae), the chord is 42, corresponding to
twice the radius.

In that same century, Campanus of Novara (c1220-1296) also supposedly
constructed a table of tangents for each degree.127

In the 14th century, we should also note the work of Levi Ben Gershon
(Gersonides) (1288-1344) who in 1342 independently constructed a table of
sines for intervals of 15

′ with a radiusR = 60 and two sexagesimal places.128

And in the fist quarter of the 15th century, Jean Fusoris (c1365-1436) has
independently recomputed tables of sines and chords, also at intervals of
15

′, with a radius R = 60 and with three to six sexagesimal places.129

But the real starting point of new trigonometric computations in Europe
were the investigations of Johannes von Gmunden and Giovanni Bianchini,

124See [Curtze (1900), pp. 411-412] and [Glowatzki and Göttsche (1990), pp. 73-79].
125See [Haskins (1924)] and [Glowatzki and Göttsche (1976), p. 15].
126See [Boncompagni (1862), p. 96] and [Hughes (2008), p. 355].
127[Bond (1921)]
128See [Goldstein (1974), pp. 153-155], [Goldstein (1985), pp. 134-140], and [Gold-

stein (2019), p. 133].
129See [Gassendi (1654), pp. 340-342] and [Poulle (1963), pp. 75-80].
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Figure 9: Leonardo of Pisa’s table of chords (1220) [Boncompagni (1862),
p. 96].
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which seem to have taken place independently at about the same time.

3.1 Johannes von Gmunden (c1384-1442)

Johannes von Gmunden (c1384-1442) founded the study of astronomy
and trigonometry in Vienna in the early 1400s.130 He had obtained his
Master degree at the University in 1406. Johannes von Gmunden gave
lectures on the construction of astronomical instruments and computed
astronomical tables.131 A few years before his death, he bequeathed his
books to the University and thereby founded its first library.132 Because
very few of Johannes von Gmunden’s works have been printed, he has
been overshadowed by Georg Peuerbach and Regiomontanus.133

In 1437, he wrote a treatise De sinibus, chordis et arcubus.134 He described
the computation of sines using the Arabic (in fact Indian) methods with
the sines of multiples of 15 degrees, as well as the computation of chords
using the methods given by Ptolemy in the Almagest. In particular, he
described the computation of the sine of the half-angle α/2, as well as of
the complementary angle 90

◦ − α, from the sine of α. The formulas are
given without proof, like in the canons of the Toledan tables and in John of
Lignères’s canons.135 This enabled von Gmunden to compute the sines for
every multiple of 3

◦
45

′ for R = 150 and R = 60.
Johannes von Gmunden’s treatise is accompanied by several tables

which, according to Glowatzki and Göttsche, were only computed in 1437
or later.136

In the first part, a table of sines with R = 150 is given for each degree,
and for minutes and seconds of the unit of the sinus totus. It is attributed

130For summaries of Johannes von Gmunden’s life and works, see [von Khauz (1755),
pp. 27-32], [Aschbach (1865), pp. 455-467], [Klug (1943)], [Vogel (1973a)], [Grössing (1983),
pp. 73-78], [Firneis (1988)], [Kaiser (1988)], [Shank (1997)], [Grössing (2002)], [Fol-
kerts (2006)], [van Brummelen (2009), pp. 248-249], and [Simek and Klein (2012)]. For a
survey of his tables, see [Porres de Mateo (2003)] and [Chabás Bergón (2019), pp. 321-336].
See also [Durand (1952), pp. 54-56], and [Duhem (1959), pp. 349-367], especially for the
scientific context in Vienna. Gessner mentions von Gmunden very briefly [Gessner and
Simmler (1574), p. 375].

131[Schmeidler (1977), p. 315]
132[von Khauz (1755), p. 29]
133[Sperl (1971a)]
134This treatise was published in [Busard (1971a)]. See also [Kaiser (1988), pp. 91-96]

and [Folkerts (2006), p. 71].
135See [Busard (1971a), p. 78] and [Folkerts (2006), p. 81].
136[Glowatzki and Göttsche (1990), pp. 79-92]
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to Al-Zarqālı̄ and must come from the Toledan tables. I assume it does not
originate in John of Lignères’s canons as these canons only give the sines
every 15 degrees for that sinus totus.137

Another table of sines, attributed to Ptolemy, with a sinus totus of 60, is
also given for each degree. This table may be the Toledan table restricted
to degrees, or it may be the table borrowed from Ptolemy’s Almagest, but
restricted to degrees. The two original tables are reproduced by Glowatzki
and Göttsche.138

In the second part, Johannes von Gmunden gives tables of chords and
sines for every half-degree from 0

◦ to 180
◦, with a radius (sinus totus) of 60.

The two original tables are also reproduced by Glowatzki and Göttsche.139

Incidentally, Klug writes incorrectly140 that Johannes von Gmunden was
the first to compute a table of sines at intervals of 30

′.
The first of the tables in the second part is the table given by Ptolemy.141

The second table may be the result of Johannes von Gmunden’s computa-
tion, as it goes slightly beyond the table found in the Toledan tables. As a
matter of fact, the sines are given to three sexagesimal places,142 but the last
place is always 0 (actually not shown at all) or 30. It may be derived from
another table.

Glowatzki and Göttsche143 drew the attention of a number of incorrect
statements on Johannes von Gmunden’s tables, in particular by von Braun-
mühl.144 The latter, and later Bond145 and Zeller146 for instance incorrectly
stated that Gmunden had a table with radius 600000.147 Cantor and Ene-
ström also made the mistake.148 Some typos of Busard’s transcription149 are
also corrected by Glowatzki and Göttsche.150

137See [Bond (1920), p. 319] and [Curtze (1900)].
138[Glowatzki and Göttsche (1990), p. 81]
139[Glowatzki and Göttsche (1990), pp. 85 and 89]
140[Klug (1943), p.57]
141[Ptolemaeus (1984), pp. 57-60]
142In figure 13, the number of places of sexagesimal tables is shown as 60; 60

n, the first
60 being the value of R, and n being the number of additional sexagesimal places.

143[Glowatzki and Göttsche (1990), p. 92]
144[von Braunmühl (1900, 1903), v. 1, pp. 110-111]
145[Bond (1921), p. 320]
146[Zeller (1944), p. 16]
147[Glowatzki and Göttsche (1990), p. 72]
148[Eneström (1913-1914)].
149[Busard (1971a)]
150[Glowatzki and Göttsche (1990), p. 92]
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Johannes von Gmunden’s treatise was heavily used and Peuerbach
borrowed much from it. Eventually, Peuerbach’s own treatise made its way
into Regiomontanus’s works and was printed in 1541.151

Although Johannes von Gmunden’s treatise did not contain any signifi-
cant novelty, it brought the impetus for a new computation of sine tables,152

which would find its completion in Pitiscus’ Thesaurus mathematicus in
1613.153

3.2 Giovanni Bianchini (c1410-c1469)

Giovanni Bianchini was a merchant and businessman, probably born in
Bologna or Florence around 1410. He later went to Ferrara, but also visited
other cities. He became interested in astronomical calculations at an early
age.154 His scientific works were written between 1440 and 1460 and he is
in particular the author of one of the few treatises of algebra written in the
fifteenth century in Latin.155 He corresponded with Regiomontanus during
the latter’s stay in Italy.156

Rosińska was the first to describe Bianchini’s purely trigonometric ta-
bles, which consist in two decimal and two sexagesimal tables.157 Earlier
writers such as Boffito158 and Birkenmajer159 mentioned some of Bianchini’s
trigonometric tables, but did not describe them in detail.

Bianchini’s table of sines for R = 60 ⋅ 10
3 appears in his Tabulae primi

mobilis and was reproduced and transcribed by Glowatzki and Göttsche.160

151[Folkerts (2006), p. 87]
152[Busard (1971a), p. 76]
153[Pitiscus (1613)]
154See [Barotti (1792), vol. 1, p. 119-132], [Birkenmajer (1911)], [Federici Vescovini (1968)],

[Goldstein and Chabás Bergón (2004)] and [Chabás Bergón and Goldstein (2009), p. 13].
For a survey of Bianchini’s tables, see [van Brummelen (2018)] and [Chabás Bergón (2019),
pp. 337-364]. See also [Gruyer (1897), v. 2, pp. 428-430] for some background on his
astronomical tables. Gessner mentions Bianchini very briefly [Gessner and Simmler (1574),
p. 346].

155[Rosińska (1994a), Rosińska (1997-1998)]
156See [von Murr (1786), vol. 1, p. 74-205], [Curtze (1902)] and [Gerl (1989)].
157See [Rosińska (1981a)], [Rosińska (1981b)], [Rosińska (1987)], and [Rosińska (2006)].

A more complete summary of Bianchini’s trigonometric tables was recently given by
Chabás [Chabás Bergón (2016)].

158[Boffito (1908)]
159[Birkenmajer (1911), p. 273]
160See [Chabás Bergón and Goldstein (2012), p. 20] and [Chabás Bergón (2019), p. 361].
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They also reproduced his table of cotangents.161 For both tables, Bianchini
appears to have been the first to use a step of 10

′ and also the first to use
a partly decimal radius R = 60 ⋅ 10

3.162 However, as mentioned earlier, in
Cairo and in the 10th century, Ibn Yūnus had computed a table of sines at
intervals of 1

′.
Bianchini’s table of cotangents uses R = 12000

163 and this table may
have been adapted from, or inspired by, a tabula umbræ found in the tables
of Toledo, but with R = 12 ⋅ 60.164 The table of shadows of the Toledan
tables is itself the same as that in Al-Khwārizmı̄ and Al-Battāni.165

Bianchini must have computed his tables of sines ab novo, at least in part,
perhaps interpolating from the Toledan tables. Glowatzki and Göttsche166

observed that Bianchini computed a number of values in his table of shad-
ows by interpolation, and not from his table of sines, thereby resulting in
some inaccuracies.

Bianchini also computed decimal tables, that is tables not involving 60
and only based on powers of 10. These tables are found in the set of eight
trigonometric tables named Tabulae magistrales.167 Some of these tables give
the values of trigonometric functions multiplied by certain astronomical
factors (for instance the cosine of the obliquity of the ecliptic), but two of
the tables are decimal tables (R = 10000) for the tangent and cosecant.168

Among this set of tables, the Tabula magistralis quarta169 gives the tan-
gents at 10

′ intervals and with R = 10
4.

This table may have been the incentive for Regiomontanus to construct
his own table of tangents in his Tabulæ directionum profectionumque,170 for
every degree and with R = 10

5 (figure 15). He did not, however, use
Bianchini’s values, but computed his tangents using his large sexagesimal

161[Glowatzki and Göttsche (1990), pp. 95-114]
162[Glowatzki and Göttsche (1990), p. 94]
163[Chabás Bergón (2019), p. 361]
164See for instance BNF, Manuscrit Latin 16655, f◦31r, here reproduced in figure 8.
165[Toomer (1968), table 15, p. 32]
166[Glowatzki and Göttsche (1990), p. 105]
167See [Rosińska (1984), pp. 476-477] and [Chabás Bergón (2019), p. 349].
168In 1981, [Rosińska (1981a)] wrote mistakenly that the tangents are given with R = 10

3.
This error was repeated by Rosińska in 1987 [Rosińska (1987)] and 2002 [Rosińska (2002),
p. 12], by Chabás and Goldstein [Chabás Bergón and Goldstein (2009), p. 20] and Brumme-
len in 2009 [van Brummelen (2009), p. 262], but it was corrected by Chabás in 2016 [Chabás
Bergón (2016)].

169[Chabás Bergón (2019), p. 351]
170[Regiomontanus (1490)]
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table of sines.
Another of Bianchini’s tables, the Tabula magistralis quinta171 gives the

cosecants at 10
′ intervals and with R = 10

4.
Rosińska assumed that Bianchini’s extant decimal tables were derived

from a decimal table of sines for R = 10
4, and this would make sense.

Unfortunately, such a table is no longer extant.172 This table for R = 10
4

may itself have been computed from Bianchini’s sine table found in his
Tabulae primi mobilis.

Bianchini’s work did not stay confined in Italy but circulated until
Krakow, as described by Walsh.173

3.3 Georg von Peuerbach (1423-1461)

Georg Aunpekh, known as Georg von Peuerbach (1423-1461), was an
Austrian mathematician and astronomer.174 He was born in Peuerbach,
Austria. In 1446 he registered at the University of Vienna and between
1448 and 1451, he travelled to Italy. There he met Nicholas of Cusa (1401-
1464) who had been papal legate in Germany since 1446 and cardinal since
1448. In Ferrara, Peuerbach may also have met Giovanni Bianchini.175 The
latter wanted to obtain positions for Peuerbach in Bologna or Padua, but
Peuerbach did not accept them.176 He then returned to Vienna.

Peuerbach was first influenced by Johannes von Gmunden who had

171[Chabás Bergón (2019), p. 351]
172As mentioned above, Rosińska actually wrote that the decimal table of tangents used

R = 10
3 and therefore also posited a sine table with that radius.

173[Walsh (1996), pp. 289-291]
174For summaries of Peuerbach’s life and works, see in particular [Gassendi (1654),

pp. 335-373], [von Khauz (1755), pp. 33-57], [Montucla (1758), v. 1, pp. 443-
445], [Martin (1764), pp. 157-158], [Aschbach (1865), pp. 479-493], [Gallois (1890a),
pp. 1-11], [Thorndike (1929), ch. 8], [Sperl (1971b)], [Vogel (1973b)], [Rose (1975)],
[Hellman and Swerdlow (1978)], [Grössing (1983), pp. 79-116], [Shank (1997)],
[Samhaber (2000)], [Grössing (2002)], [Kaunzner (2006)], [van Brummelen (2009),
pp. 249-252], [Malpangotto (2020), pp. 19-34], and [Horst (2019)]. Several other
references not cited here are given in the Geschichtsquellen des deutschen Mittelalters
(https://www.geschichtsquellen.de/autor/749). One of the first biographical
notices on Peuerbach was that of Tannstetter, when he published Peuerbach’s table of
eclipses [von Peuerbach and Regiomontanus (1514)]. Gessner, on the other hand, only
briefly mentions Peuerbach [Gessner and Simmler (1574), p. 231]. For the scientific context
in Vienna, see [Durand (1952)] and [Duhem (1959), pp. 349-367].

175See [Hellman and Swerdlow (1978), p. 473], [Grössing (1983), p. 80] and [Malpan-
gotto (2020), p. 24].

176See [von Khauz (1755), p. 38] and [Hellman and Swerdlow (1978), p. 473].
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died in 1442. He can thus be considered as Gmunden’s spiritual student. It
seems unlikely that he knew him, but he certainly studied his works.177

In 1454, after his return from Italy, Peuerbach completed a Theoricae No-
vae Planetarum which actually started as lectures on the theory of planetary
motion. This work was published in 1473178 by Regiomontanus (1436-1476),
Peuerbach’s student and successor, who had certainly attended these lec-
tures.179 The Theoricae Novae Planetarum became a standard textbook of
planetary theory for the next century.180 It contains solid sphere representa-
tions of Ptolemaic planetary models, and this work was of great importance
until the solid sphere hypothesis was disproved by Tycho Brahe at the end
of the 16th century.181

Peuerbach was acquainted with Cardinal Bessarion (1403-1472) who
was then papal legate in Germany. In 1460, Bessarion spent more than one
year in Vienna182 in order to gain imperial support for the war against the
Turks and during this stay he became friends with Peuerbach. Bessarion,
a Greek, wanted to produce a new translation of the Almagest, because
he considered Trebizond’s work to be flawed. George of Trebizond (c1395-
c1472) was of Greek origin and has translated many works from Antiquity
in Latin. In particular in 1451 he composed a Commentary on the Almagest,
which has never been printed.183 Bessarion had himself considered trans-
lating the Almagest from the Greek, but his duties didn’t let him the time
to.184

Bessarion asked Peuerbach (who did not know Greek) to write an Epito-
me (summary) of Ptolemy’s Almagest.185 He also wanted him to accompany
him to Italy for further investigations on the Almagest. Peuerbach certainly
wanted to take Regiomontanus with him to Italy, but Peuerbach died in

177[Vogel (1973a), p. 120]
178See [Malpangotto (2020), pp. 116-119 & 678-679]. Many sources give the date of

publication as 1472, but I follow Malpangotto here. Note that Khauß wrote that the
Theoricae were published in 1460 [von Khauz (1755), p. 46].

179[Shank (1996), p. 124]
180[Schmeidler (1977), p. 315]
181[Hellman and Swerdlow (1978), p. 475]
182[Malpangotto (2020), p. 33]
183[Glowatzki and Göttsche (1976), p. 16]
184Meskens writes that Bessarion had started the translation, but doesn’t give any sub-

stantial proof of this statement [Meskens (2010), p. 136]. Meskens’s statement may rest on
[Glowatzki and Göttsche (1976), p. 17].

185See [Malpangotto (2020), p. 20] and [Shank (2002), p. 183].

32



1461 before the journey began.186 By that time, Peuerbach had written six
chapters of his Epitome, and not based on the Greek text.187 Regiomontanus,
who learned Greek, added the seven missing chapters to Peuerbach’s work
after Peuerbach’s death. This Epitome was only printed in 1496 and was
very influential, in particular on Copernicus.188

Together with Johannes von Gmunden, Peuerbach and Regiomontanus
were in fact the most important members of the first Viennese mathematical
school of the 15th century.189 Peuerbach’s work on the Epitome led him
to work on reforming Ptolemy’s astronomy. Gassendi later wrote that
Peuerbach resurrected an almost dying astronomy and that without him,
we would have neither Copernicus nor Brahe.190 Or, as others have put it,
Peuerbach and his pupil Regiomontanus191 woke up the study of astronomy
and built the necessary tables.192 And Hellman and Swerdlow wrote that
the “Epitome is the true discovery of ancient mathematical astronomy in
the Renaissance because it gave astronomers an understanding of Ptolemy
that they had not previously been able to achieve.”193

But as Thorndike notes, “it very likely never occurred to Peurbach that
his name would go down to posterity as the reviver of the mathematics
of classical antiquity or as the reformer of the mathematics of his own
time.”194

For his work in trigonometry, Peuerbach was both influenced by Jo-
hannes von Gmunden and by Giovanni Bianchini. In particular, Peuer-
bach’s treatise on sines and chords,195 printed in 1541, contains literal
excerpts of Johannes von Gmunden’s treatise.196 And Peuerbach copied
Bianchini’s sine table with R = 60000 and a step of 10

′.197

186[von Khauz (1755), p. 42]
187Peuerbach actually followed closely the Almagestum minor, a textbook from the late

thirteenth century [Hellman and Swerdlow (1978), p. 477]. Bendefy incorrectly stated that
Peuerbach’s Epitome was translated from the Greek [Bendefy (1980), p. 244].

188[Rosen (1975a), p. 349]
189[Grössing (1983), p. 146]
190[Gassendi (1658), p. 518]
191[Folkerts (1977), Kaunzner (1980), Zinner (1968)]
192[Gerhardt (1877), p. 87]
193[Hellman and Swerdlow (1978), p. 477]
194[Thorndike (1929), p. 143]
195[von Peuerbach and Regiomontanus (1541)]
196[Busard (1971a), p. 75]
197This table is reproduced by Glowatzki and Göttsche [Glowatzki and Göttsche (1990),

pp. 116-123]. They draw the attention to incorrect statements by [Cantor (1900), p. 182]
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Figure 10: The first page of Peuerbach’s table of arctangents (1516) [von
Peuerbach (1516)] (e-rara).
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A table with R = 60000 is again found in the 1490 edition of Regiomon-
tanus’s Tabulæ directionum profectionumque,198 but it happens to be a table
derived from Regiomontanus’s large sexagesimal table, and not Peuer-
bach’s table. Moreover, the 1490 table gives the sines at intervals of 1

′.
Around 1450, Peuerbach took R = 600000 and a step of 10

′ and went
beyond what Johannes von Gmunden and Bianchini had done. But this
table with R = 600000 is no longer extant.199 We know of its existence
because Peuerbach mentioned it in the Propositio prima of his Quadratum
geometricum (or Canones gnomonis200) written in 1455 and published in
1516.201 And another work of Peuerbach confirms that the step of the table
was 10

′.
Gassendi202 also mentions a table of sines by Peuerbach with R =

6000000 and a step of 10
′, and that this table had been extended to a step

of 1
′ by Regiomontanus, but this is probably a typo, no such table with

R = 6000000 being known of Peuerbach.203

Peuerbach was the one who provided the impetus for the replacement of
Ptolemy’s chords with the sines from Arabic mathematics, and Regiomon-
tanus computed tables of sines for every minute of arc for radiuses of
6000000 and 10000000 units.

Among Peuerbach’s other works is also his Quadratum geometricum204

already mentioned, written in 1455 and published in 1516. This work
describes the geometrical square, an instrument for measuring heights. A
similar instrument was also described by Oronce Fine in his De re et praxi
geometrica published in 1556.

Peuerbach’s treatise contains what is basically a table of arctangents
(figure 10). Peuerbach wrote that he used his now lost table withR = 600000
for the computation of the table. The possible values of the tangents range

and [Zinner (1968), p. 36], [Zinner (1990), p. 23] about the radius of the table.
198[Regiomontanus (1490)]
199See [Glowatzki and Göttsche (1990), pp. iii and 115]. Earlier, Hellman and Swerdlow

had mentioned a manuscript table with R = 600000, but this is in fact a table with
R = 60000 [Hellman and Swerdlow (1978), p. 478]. Brummelen also seems to mention this
no longer extant table [van Brummelen (2009), p. 249].

200[Hellman and Swerdlow (1978), p. 477]
201[von Peuerbach (1516)]
202See [Gassendi (1658), p. 520] and [von Khauz (1755), p. 54].
203This incorrect statement is also found in [Martin (1764), p. 158] (and in [Lublink and

Meijer (1763), pp. 183-198] which must have the same source), and it was more recently
repeated by [Bendefy (1980), p. 245].

204[von Peuerbach (1516)]. See [Roegel (2021a)] for a modern reconstruction.
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from 0 to 1200 and, for an entry x, Peuerbach’s table actually gives the value
arctan(x/1200) in degrees. For instance, for x = 1200, Peuerbach’s table
gives 45

◦. For x = 500, Peuerbach’s table gives arctan(5/12) = 22
◦
37

′
12

′′.
The value 1200 used in this table may have been influenced by the radius
12000 in Bianchini’s table of cotangents.205

This table of arctangents was reprinted by Gemma Frisius206 in 1545
and a similar table was given by Magini in 1592.207

3.4 Johannes Regiomontanus (1436-1476)

Regiomontanus, or rather Hans Müller, was probably born in 1436 in
Königsberg, near Bamberg in Germany (figure 11).208 He had latinized his
name as Johannes de Monte Regio and it was only half a century after his
death in 1476 that he became known as Regiomontanus.209

He established trigonometry as an independant field, separate from
astronomy, in Western Europe, although the Persian al-Tūsı̄ had already
written a purely trigonometric treatise in the 13th century. Regiomontanus
was the most famous Western mathematician of his time.210

205[Glowatzki and Göttsche (1990), pp. 124-125]
206[Gemma Frisius (1545)]
207[Magini (1592)]
208[Schmeidler (1977), p. 315]. Some authors, for instance recently [Meskens (2010)], have

incorrectly confused this Königsberg with the modern Kaliningrad.
209According to some sources, the name Regiomontanus was coined by Philip

Melanchthon. It does indeed appear in his De capta Constantinopoli, Anno 1453 (1556).
However, the earliest appearance I found of “Regiomontanus” (or rather Regiomon-
tano) is that in Marcus Beneventanus’s Apologeticum opusculum (1521). For summaries
of Regiomontanus’s life and works, see mainly [Zinner (1968)], which can be supple-
mented by [Gassendi (1654), pp. 335-373], [Doppelmayr (1730)], [Montucla (1758), v. 1,
pp. 445-453], [Martin (1764), pp. 146-157], [Aschbach (1865), pp. 537-557], [Ziegler (1874)],
[Günther (1885)], [Gallois (1890a), pp. 1-11], [Thorndike (1929), ch. 8], [Vogel (1973b)],
[Rosen (1975a)], [Rose (1975)], [Hamann (1978)], [Hamann (1980)], [Grössing (1983),
pp. 117-126], [Glowatzki and Göttsche (1990), p. 1-8], [Mett (1996)], [Grössing (2002)],
[Malpangotto (2008)], [van Brummelen (2009), pp. 251-263], and [van Brummelen (2021),
pp. 2-5]. One of the first biographical notices on Regiomontanus was that of Tannstetter,
when he published Peuerbach’s table of eclipses and Regiomontanus’s table of the first
mobile [von Peuerbach and Regiomontanus (1514)]. There are also many smaller arti-
cles of interest, some more specialized, some more introductory, such as [Shank (2017)],
[Horst (2019)], [Götz (2003)], etc., but which are not all cited here. Gessner also mentions
Regiomontanus [Gessner and Simmler (1574), p. 397]. And many sources on Peuerbach,
not cited in the previous list, contain some information on Regiomontanus. For the
scientific context in Vienna, see [Durand (1952)] and [Duhem (1959), pp. 349-367].

210[Glowatzki and Göttsche (1990), p. i]
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Figure 11: Regiomontanus’s probable birthplace in Königsberg, Bavaria.
(photographs by the author)

After having studied in Leipzig, he came to Vienna around 1450 and
became a friend and pupil of Georg von Peuerbach. In 1457, this is where
he took his Master’s degree and was appointed to the faculty, hence a
colleague of Peuerbach.211

Peuerbach was supposed to go to Italy with Cardinal Bessarion who
had asked him to write an Epitome (summary) of Ptolemy’s Almagest. But
after Peuerbach’s death in 1461, it was Regiomontanus who accompanied
him to Italy.212 Regiomontanus completed the Epitome, probably in 1462.213

He also studied Greek and it was during the time of the completion of the
Epitome that Regiomontanus studied the copy he had made of Trebizond’s
translation of the Almagest.214

In Italy, Regiomontanus also became associated with Giovanni Bian-
chini. Part of their correspondence still survives.215 Durand writes that

211See [Rosen (1975a), p. 348] and [Schmeidler (1977), p. 316].
212See [Rose (1975), pp. 90-117], [Schmeidler (1977), p. 316], [Grössing (1980)],

[Mett (1989)] and [Moos (2020)]. On Regiomontanus’s knowledge of Latin and Greek, see
[Ben-Tov (2009), pp. 195-196] and [Jensen (1996), p. 65] who theorizes that Regiomontanus
may not have mastered Latin as well as the Italian scholars.

213See [Zinner (1990), p. 52] and [Shank (1996), p. 125]. It was however only printed in
1496.

214[Zinner (1990), p. 59]
215See [von Murr (1786), vol. 1, p. 74-205], [Curtze (1902)] and [Gerl (1989)]. See
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“Regiomontanus envisaged an exchange of problems and answers to be
based on friendly emulation, but the older Italian was speedily scared away
by the precocity of the enthusiastic German.”216

It was during this time that Regiomontanus constructed his Tabula primi
mobilis which was only published in 1514.217 This table gives the values
of arcsin(sinx sin y) for 0 ≤ x, y ≤ 90

◦ and is useful for solving problems in
spherical trigonometry. The table was computed using Regiomontanus’s
sine table with R = 6 ⋅ 10

6.218 Glowatzki and Göttsche gave a survey of
similar tables or variants published until the 19th century.219

Regiomontanus returned from Italy around 1465,220 he went to Pozsony
(Pressburg, Bratislava) in 1467, at the invitation of Matthias Corvinus (1443-
1490), King of Hungary,221 of whom he became an astronomical adviser.
Some time later, he was called to Buda.222

It was during this time in Hungary that Regiomontanus worked with
the Polish astronomer Marcin Bylica (c1433-1493)223 whom Regiomontanus
met in Rome. Together they computed some tables, in particular Regiomon-
tanus’s Tabulæ directionum profectionumque.224

In 1471 Regiomontanus moved to Nuremberg. There he set up a printing
press for the purpose of publishing the most important classical scientific
works,225 as well as some of his own works.226 The first work to be pub-
lished was Peuerbach’s Theoricae Novae Planetarum. In 1475 Regiomontanus

also [Swerdlow (1990)].
216[Durand (1943), p. 13]
217See [Mett (1996), pp. 96-97], [Swerdlow (1999), p. 1], [van Brummelen (2009), p. 263],

and [Chabás Bergón (2019), pp. 378-379].
218[Glowatzki and Göttsche (1990), p. 199]
219[Glowatzki and Göttsche (1990), pp. 197-207]
220[Hayton (2010), p. 33]
221[Schmeidler (1977), p. 317]
222[Orbán (2015), p. 118]
223[Domonkos (1968), Vargha and Both (1987), Hayton (2007), Hayton (2010), Or-

bán (2015)]
224There are several editions of the Tabulæ directionum profectionumque, in particular in

1490, 1504, 1550, 1552, 1559, 1584 and 1606. A French edition was published by Henrion
in 1626 [Henrion (1626)]. For the collaboration between Bylica and Regiomontanus,
see [Hayton (2007), p. 188] and [Chabás Bergón (2019), pp. 380-387]. On the relations
between the astronomical schools of Vienna and Cracow, see [Markowski (1978), p. 268].
Bylica sent works from Peuerbach and Regiomontanus to the University of Cracow. See
also [Walsh (1996)] and [Bendefy (1980)] on Regiomontanus’s stay in Hungary.

225[Folkerts (1996), pp. 91-92]
226[Schmeidler (1977), p. 318]
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returned to Rome at the invitation of Pope Sixtus IV in order to work on a
reform of the Julian calendar, and this is where he died in 1476, probably
from the plague. During all these years, Regiomontanus worked on a
critique of Trebizond’s translation of the Almagest, his Theonis Alexandrini
Defensio in sex voluminibus contra Georgium Trapezuntium, a work which was
probably only completed in the 1470s and still remains only in manuscript
form.227

It seems that Regiomontanus started around 1460 to compute sines with
a large radius in order to produce a table withR = 6⋅10

6 for his De triangulis
(1462?) (figure 22). This table was certainly inspired by Peuerbach’s table
with R = 600000, although Hallam claimed228 that Regiomontanus was
ignorant of that table. Glowatzki and Göttsche229 give Regiomontanus’s
description of the computations, the Compositio tabularum sinuum rectorum,
as well as a German translation. Regiomontanus’s description is contained
in the 1541 edition of Peuerbach’s treatise on sines.230 In section 4 below I
analyze how Regiomontanus may have computed his table.

Around 1468, Regiomontanus composed another table with a radius
of 10000000. Both the sexagesimal and the decimal tables were given at
intervals of 1

′. These tables were first printed in 1541 (figures 23 and 24).231

They were however not the first tables with such intervals, and they came
after those of Ibn Yūnus and Ulugh Beg (see § 2.3).

Regiomontanus’s table of sines with R = 10
7 was accessible in Cracow

at the end of the 15th century232 and was undoubtly one of the sources of
Copernicus’s trigonometric tables.

The move from a sexagesimal division to a decimal division, initiated
by Bianchini, but greatly developped by Regiomontanus, made it much
simpler to use the tables. With the new decimal radius, there is therefore
no longer any need to mix the bases 10 and 60, as was the case in the older
tables.

Regiomontanus’s Tabulæ directionum profectionumque from 1467 and pub-
lished in 1490 also contained a table of tangents (figure 15) which was
probably inspired by Bianchini’s table of tangents.233 Cardano consid-

227See [Shank (2007)] for some excerpts.
228[Hallam (1837), p. 259]
229[Glowatzki and Göttsche (1990), pp. 11-24]
230[von Peuerbach and Regiomontanus (1541)]
231[von Peuerbach and Regiomontanus (1541), Roegel (2021b)]
232See [Rosińska (1984), pp. 503-504] and [Rosińska (1987), pp. 421-422].
233[van Brummelen (2018)]
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ered that Regiomontanus’s entire Tabulæ directionum profectionumque was
largely drawn from Bianchini.234 Folkerts,235 however, considered that
Regiomontanus’s table of tangents was influenced by Al-Battāni. In fact,
Regiomontanus’s table of tangents was certainly computed using his large
sexagesimal table as I shall show later. A modern reconstruction of this
table of tangents is given separately.236

The Tabulæ directionum profectionumque also contains a table of sines with
R = 60000 and at 1

′ intervals (figure 16). But contrary to what Bond,237 De-
lambre,238 or more recently Folkerts,239 Zinner,240 North,241 Brummelen,242

Husson,243 and Chabás and Goldstein wrote,244 this table is neither by Re-
giomontanus nor borrowed from Bianchini. It was appended to Regiomon-
tanus’s book, probably by Johannes Engel (or Johannes Angelus) (1453-
1512),245 and was derived from Regiomontanus’s table with R = 6000000.
Moreover, as observed by Glowatzki and Göttsche, the appended table was
never used by Regiomontanus.246 A modern reconstruction of Engel’s table
is given separately.247

In fact, most of Regiomontanus’s writings were only published after
his death. His main work on trigonometry, De triangulis omnimodis, was
completed about 1464 but only printed in 1533, without any table.248 It is
the first systematic such treatise published in Europe and it was probably
used by Copernicus. However, as observed by Stamm,249 it is unlikely that
Copernicus had access to Regiomontanus’s treatise in manuscript form and
he probably only saw the 1533 edition in the 1530s.

234[Thorndike (1929), p. 148]
235[Folkerts (1977), p. 235]
236[Roegel (2021c)]
237[Bond (1921), p. 321]
238[Delambre (1819), p. 365]
239See [Folkerts (1977), p. 234], [Folkerts (1995), p. 224] and [Folkerts et al. (2016), p. 136].
240See [Zinner (1968), p. 345] and [Zinner (1990), p. 236].
241[North (2008), p. 275]
242[van Brummelen (2009), p. 262]
243[Husson (2014), p. 116]
244[Chabás Bergón and Goldstein (2012), p. 20]
245[Glowatzki and Göttsche (1990), p. 48] On Johannes Engel, see [Dobrzycki and Kre-

mer (1996)].
246[Glowatzki and Göttsche (1990), p. iii]
247[Roegel (2021d)]
248[Regiomontanus (1533)], edited om [Regiomontanus (1967)].
249[Stamm (1933)]
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Delambre was critical of Regiomontanus and wrote that except for his
observations and trigonometrical work, Regiomontanus had hardly the
time to do more than show his good intentions.250 Delambre stresses that
Regiomontanus was less advanced as a calculator than Ibn Yūnus and Abū
al-Wafā

c

. However, this opinion may need to be revised in the light of my
analysis of the construction of his tables.

Braunmühl251 considered that Regiomontanus’s work on triangles was
influential, even if it didn’t contain anything original.

And as observed by Glowatzki and Göttsche,252 the tables computed
by Regiomontanus are very modern and could still be used now, only the
decimal point would have to be shifted.

Thorndike thought that Peuerbach and Regiomontanus’s importance
had perhaps been overestimated, among other things because Regiomon-
tanus was more than a mathematician. He was a mathematical publisher,
and he came at just the right time.253

250[Delambre (1819), p. 365]
251[von Braunmühl (1900, 1903), v. 1, pp. 124-133]
252[Glowatzki and Göttsche (1990), p. i]
253[Thorndike (1929), p. 150]
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4 Regiomontanus’s seminal tables

We can now pause and summarize the situation of Regiomontanus’s tables
at the end of the 15th century. There are four different trigonometric tables
usually associated with Regiomontanus: a large table of sines with radius
6000000, another one with radius 10

7, a table of tangents with R = 10
5

and a smaller table of sines with R = 60000, but of which Regiomontanus
is actually not the author. Most of the tables published during the 16th
century are ultimately based on the table for R = 10

7.
I also include in this section some tables which are not directly from Re-

giomontanus, for instance the tables of secants, but which are nevertheless
based on Regiomontanus’s other tables.

The following tables by Regiomontanus have been reconstructed in
separate documents:

• the table of tangents, as published in 1490 (figure 15)254;

• the table of sines with R = 6 ⋅ 10
6, as published in 1541 (figure 23)255;

• the table of sines with R = 10
7, as published in 1541 (figure 24).256

4.1 Fundamental tables

When Regiomontanus set out to construct his new sine tables, he was
certainly influenced by Peuerbach’s work, and in particular by Peuerbach’s
sine table with R = 600000 and at intervals of 10

′.257 This table is no longer
extant, but it is likely that Regiomontanus used it as an inspiration for his
further work.258

It seems that it was around 1460 that Regiomontanus first computed
sines of values at 45

′ intervals with R = 6 ⋅ 10
8 (figure 12), perhaps even

before Peuerbach’s death.259 This was to be the fundamental table from
254[Regiomontanus (1490)]
255[von Peuerbach and Regiomontanus (1541)]
256[von Peuerbach and Regiomontanus (1541)]
257There have been some incorrect statements about the tables constructed by Regiomon-

tanus and a table with R = 600000 is sometimes attributed to him, for instance by Günther
in 1885 [Günther (1885), p. 573].

258In a long chapter, Glowatzki and Göttsche try to find the forerunners of Regiomon-
tanus’s large sexagesimal table and which may have influenced him [Glowatzki and
Göttsche (1990), pp. 72-125].

259[Glowatzki and Göttsche (1990), pp. 10, 16, 22]
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which a more complete table for R = 6 ⋅ 10
6 could be computed.260 This

auxiliary table is only partially extant.
Once he had his pivots, Regiomontanus computed the sines at intervals

of 15
′, dividing the sines at intervals of 45

′ obtained earlier in three parts in
such a way that the sines vary smoothly.261 Then Regiomontanus trisected
each interval, again by ensuring that the differences vary smoothly. This
gave him the sines at intervals of 5

′.262 The same procedure was again
applied to obtain the sines at intervals of 1

′.263

For the table with R = 10
7, Regiomontanus possibly also first computed

a number of pivot values with R = 10
9, but these pivots have not been kept.

4.2 Sine table with R = 6000000

Regiomontanus’s first large complete sine table was for a radius of 6000000
and was probably computed around 1462 in Rome.264 It gives the sines for
every minute. Figure 22 shows an excerpt of a manuscript of that table.
This table is based on the computations made with R = 6 ⋅ 10

8 as described
in the previous sections.

After Regiomontanus’s death, Regiomontanus’s table was long kept in
manuscript form. It was only published in 1541 with Peuerbach’s Tractatus
super propositiones Ptolemæ etc.,265 and together with the table for R = 10

7

(figures 23 and 24). These two tables were then again published in 1561 in
Regiomontanus’s De triangulis.266 Glowatzki and Göttsche gave a facsimile
of the 1541 sexagesimal table and listed its errors.267

Regiomontanus’s sine table appears rather accurate, although it is prob-
ably slightly less accurate than the table for R = 10

7. Sampling only the
values for whole degrees, there are 25 last-place errors and one typo (for

260However, as observed by Glowatzki and Göttsche, an error in the computation
of sin 45

′ caused other (small) errors, in particular in the interpolation leading to
sin 1

◦ [Glowatzki and Göttsche (1990), pp. 26-27].
261[Glowatzki and Göttsche (1990), p. 23]
262[Glowatzki and Göttsche (1990), p. 23]
263[van Brummelen (2009), p. 263] gives Regiomontanus’s implied value of Sin 1

◦, but
does not describe the actual interpolation process. See also [van Brummelen (2021), pp. 18-
21], who hints at a procedure below 15

′ but without detailing it. Kästner gives also only a
cursory description [Kästner (1796), pp. 540-560].

264See [Glowatzki and Göttsche (1990), p. 71] and [Mett (1996), p. 65].
265[von Peuerbach and Regiomontanus (1541)]
266[Regiomontanus (1561)]
267[Glowatzki and Göttsche (1990), pp. 28-47]
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Figure 12: The list of pivots for Regiomontanus’s large sexagesimal ta-
ble [von Peuerbach and Regiomontanus (1541)] (source: Dresden).
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40
◦, 3856796 which should be 3856726). Of the last-place errors, all are of

one unit, and one (80
◦) is of two units. I have given separately a modern

reconstruction of this table with the exact values which can be used for
comparison with Regiomontanus’s table.268 And in § 5, I am giving a more
detailed analysis of Regiomontanus’s errors and computation procedure.

In Regiomontanus’s table, the column of differences does not give the
actual difference ∆, but the difference per second, in other words ∆/60.
These differences are given to one decimal place which is separated by a
space.269 For instance, the first difference is ∆ = 1745 and it is given as 29 1,
because 1745/60 = 29.08 . . .. But this value can also be read 291, in which
case it is the sixth of the actual difference.

These differences follow a layout similar to those in Bianchini’s table
with R = 60 ⋅ 10

3, so that it is possible that Regiomontanus borrowed this
layout.270

4.3 Sine table with R = 10000000

Regiomontanus’s second large sine table was for a radius of 10
7 and was

completed in 1468.271 It came shortly after the smaller decimal table of
tangents which was computed in 1467.

This large decimal table is probably not the first decimal table of sines,
although Folkerts claimed so.272 It has been assumed that Bianchini had a
decimal table of sines, probably with a radius R = 10

4 (see § 3.2), but this
table is no longer extant.

Regiomontanus’s table is also not based on his large sexagesimal ta-
ble.273 Regiomontanus may have computed a number of pivot values,
perhaps with R = 10

9, or he may have reused the sexagesimal pivots by
multiplying them by 10/6. In any case, these pivots have not been kept.
Then, Regiomontanus must have proceeded by interpolation as in the
sexagesimal table.

Like in the previous table, sines are given for every minute. This table
was also published in 1541 and 1561 together with the sexagesimal table
(figures 23 and 24). Glowatzki and Göttsche gave a facsimile of the entire

268[Roegel (2021b)]
269[Glowatzki and Göttsche (1990), p. 27]
270[Glowatzki and Göttsche (1990), p. 94]
271See [Folkerts (1977), p. 234] and [Mett (1996), p. 96].
272[Folkerts et al. (2016), p. 136]
273[Glowatzki and Göttsche (1990), p. 126]
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1541 edition of the table, and listed its typos.274

The differences are expressed like in Regiomontanus’s sexagesimal
table and the first difference is for instance ∆ = 2909 and it is given as 48 5,
corresponding to ∆/60 = 48.48 . . .

I have given separately a modern reconstruction of this table.275

It is interesting to note that Regiomontanus’s table is slightly more
accurate than the previous one with R = 6 ⋅ 10

6.276 Sampling only the
sines for whole degrees, we can for instance see that there are only seven
incorrect values, one of which (for 25

◦) being an obvious typo (4226583
which should be 4226183), and the other six values being only off by one
unit of the last place. This suggests of course that the decimal table was not
merely obtained from the sexagesimal table, but must have been obtained
either from the pivots of the sexagesimal table, or from newly computed
pivots, as described above.

4.4 Sine table with R = 60000

The Tabulæ directionum profectionumque published in 1490 contains a 30
pages long sine table with R = 60000 giving the sines for every minute
(figure 16),277 but this table was certainly computed by Johannes Engel for
that edition (see § 6.1), and not by Regiomontanus.

4.5 Table of tangents

Regiomontanus’s Tabulæ directionum profectionumque,278 from 1467 and
printed in 1490, also contained a short table of tangents, which he called
tabula fecunda (figure 15).279 The name “tangent” was as a matter of fact
only introduced in 1583 by Fincke.280

Regiomontanus’s table is only one page long and gives the tangents
for every degree, and for a radius of 100000. The tangents were computed
from the 1462 table of sines (with R = 6000000), by first dropping two digits
and rounding the values, and then by mere division.281 This procedure

274[Glowatzki and Göttsche (1990), pp. 127-147]
275[Roegel (2021b)]
276[Glowatzki and Göttsche (1990), p. 147]
277[Regiomontanus (1490)]
278[Regiomontanus (1490)]
279[Chabás Bergón (2019), p. 383]
280[Fincke (1583)]
281[Glowatzki and Göttsche (1990), p. 183]
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actually gives exactly Regiomontanus’s values, except for the angles 43
◦,

73
◦, 85

◦ and 89
◦. In these four cases, Regiomontanus very likely got the

computations wrong, or these are typos. Incidentally, the same procedure
fails miserably when using the decimal table of sines, and it is almost
impossible to obtain the values of the table of tangents with this starting
point.

Regiomontanus’s table was not the first table of tangents, as tangents
had already been used in eastern Islam, as mentioned above (see § 2.3).

Regiomontanus’s table was reproduced in subsequent editions of his
Tabulæ directionum profectionumque, by Gemma Frisius in 1545 (but as cotan-
gents)282 (also with Peuerbach’s 1516 quadratum table283), by Gaurico in
1557,284 by Maurolico in 1558 (at least partially, and he called it umbra ver-
sa),285 by Schreckenfuchs in 1569,286 and in subsequent editions of these
works.287

Gaurico’s table (1557)288 only goes up to 50
◦, and is attributed to Cam-

panus. But neither Glowatzki and Göttsche,289 nor von Braunmühl,290 nor
Zinner291 were able to understand this attribution.

Curiously, Gaurico also gives a sine table with the heading tabula fecunda
and also only up to 50

◦.
And finally, mention should be made of Bendefy who mistakenly wrote

in 1980 that Regiomontanus had constructed a table of tangents for a radius
R = 10

7 and for every minute, and that it was only Reinhold who published
it in 1554.292

282See [Gemma Frisius (1545)]. It was also reprinted in 1557.
283[von Peuerbach (1516)]
284[Gaurico (1557)]
285[Maurolico (1558)]
286See [Glowatzki and Göttsche (1990), p. 180] and [Schreckenfuchs (1569), p. 153].
287[Glowatzki and Göttsche (1990), pp. 180-181]
288[Gaurico (1557)]
289[Glowatzki and Göttsche (1990), pp. 180-181]
290[von Braunmühl (1900, 1903), v. 1, p. 101]
291[Zinner (1968), p. 148]
292[Bendefy (1980), p. 248] Bendefy’s statement seems based on Barna Szénássy’s history

of Hungarian mathematics (A magyarországi matematika története, 1970), but I was not able
to check this source. Bendefy also cites Zinner’s article on Regiomontanus in Hungary,
published in Hungarian, and which does not seem to contain such a statement (Ernő Zin-
ner, Regiomontanus Magyarországon, Matematikai és Természettudományi Értesítő, volume
55, 1936?, pp. 280-288).
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4.6 Secant tables

Regiomontanus did not compute tables of secants, but the first tables of
secants are based on his tables of sines. This is the case of Copernicus’s
table of secants, which might have been computed around 1530. Bianchini
had computed a table of cosecants (§ 3.2). But I am not aware of earlier
such tables, although, as mentioned before (§ 2.3), Abū al-Wafā

c

introduced
the notion of secant in Baghdad in the 10th century.

The tables of secants published by Rheticus in 1551 [Rheticus (1551)]
and by Maurolico in 1558 [Maurolico (1558)] also ultimately derive from
Regiomontanus.293

It was Viète294 who in 1579 was the first to compute a table of secants
with an interval of 1

′ albeit with a variable radius between R = 10
5 and

R = 10
9.

And the first table of secants with an interval of 1
′ and R = 10

7 was
published by Fincke in 1583.295 Fincke was actually the one who named
it secant. His secants were certainly computed from his tangents, which
themselves go back to Regiomontanus, via Reinhold.296

293[Glowatzki and Göttsche (1990), p. 193] Incidentally, there have also been surprising
statements, such as the one of Davis [Davis (1933), p. 21] who wrote that the first table
of secants was that of Maurolico, and that Lansberge was wrong in ascribing this fact to
Rheticus, when in fact Lansberge was right, and still is if one ignores manuscript tables.

294[Viète (1579)]
295[Fincke (1583)]
296See [Reinhold (1554)] and [Glowatzki and Göttsche (1990), p. 193].

48



5 An analysis of Regiomontanus’s great tables

One of my purposes has been to find out how Regiomontanus computed
his two large tables of sines. We know rather well how he computed the
sines at intervals of 45

′, but we know little beyond that, and no one seems
to have investigated this matter so far, not even Glowatzki and Göttsche.297

The first step in such an investigation is to clear the tables of the noise
they contain, namely of the typos, both in the printed versions and in the
manuscripts. Although I have not consulted manuscripts of Regiomon-
tanus’s table, I believe that it is possible to come very close to what Re-
giomontanus has actually computed.

5.1 Typos, accuracy and statistics

5.1.1 General principles

I have gone over each of the 2 × 5401 values of the sines (from 0
◦ to 90

◦ by
steps of 1

′) in the 1541 printing, trying to detect obvious typos. This work
has been done independently of that of Glowatzki and Göttsche who had
already reported a number of typos.298 I have consequently made two tables
where I corrected a number of typos, such as wrong digits in the left figures,
swapped figures, or swapped lines. In the resulting tables, I carefully
examined all the cases where Regiomontanus’s tables were in error by more
than 2 units of the last place. Every such case which appeared isolated was
removed. The justification for correcting these seemingly small errors was
that they would have been very easy to detect by computing differences
between consecutive terms, and that almost always these anomalies were
isolated, and could not have been Regiomontanus’s real values, at least
not his intended values. These decisions may be objectionable, but I have
only corrected errors which are easy to detect by anybody working on
tables. I did not correct any more fundamental issue. And these corrections
are necessary in order to get a better understanding of the underlying
computations.

5.1.2 Corrections to the tables

Apart from the very conspicuous typos already reported by Glowatzki
and Göttsche (mostly not repeated here), I made the following smaller

297[Glowatzki and Göttsche (1990)]
298[Glowatzki and Göttsche (1990), p. 46-47 and 145-147]
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corrections to the sexagesimal table:

values values
angle table corrected angle table corrected

1
◦
29
′ 155315 155317 45

◦
42
′ 4294154 4294156

1
◦
44
′ 181486 181487 49

◦
34
′ 4566965 4566968

2
◦
38
′ 275668 275665 51

◦
35
′ 4701078 4701077

4
◦
58
′ 519454 519456 57

◦
21
′ 5051893 5051891

5
◦

1
′ 524674 524673 61

◦
26
′ 5269565 5269567

6
◦
38
′ 693009 693088 66

◦
33
′ 5504447 5504445

7
◦
52
′ 821219 821211 70

◦
2
′ 5639347 5639349

12
◦

4
′ 1254295 1254297 70

◦
37
′ 5659910 5659916

17
◦
33
′ 1809221 1809228 73

◦
50
′ 5762737 5762735

18
◦
28
′ 1900518 1900516 74

◦
51
′ 5791465 5791470

18
◦
40
′ 1920372 1920370 76

◦
51
′ 5842661 5842667

19
◦
29
′ 2001193 2001195 77

◦
17
′ 5852821 5852823

19
◦
50
′ 2035718 2035710 79

◦
58
′ 5908230 5908238

21
◦
43
′ 2220109 2220102 81

◦
10
′ 5928833 5928835

41
◦
59
′ 4013488 4013486 81

◦
29
′ 5933835 5933837

42
◦
24
′ 4045818 4045814 82

◦
46
′ 5952258 5952250

42
◦
53
′ 4083045 4083046 86

◦
17
′ 5987385 5987382

44
◦

1
′ 4169203 4169206 86

◦
46
′ 5990440 5990450

45
◦

9
′ 4253736 4253734 87

◦
56
′ 5996094 5996097

Note that my corrections do not always replace the 1541 printed values
by the exact ones, but by the values I believe should have been printed.
For instance, for 6

◦
38

′, Glowatzki and Göttsche replaced 693009 by 693090,
which does make sense as a typo. However, the value 693090 does not
make much sense in its context (i.e., the surrounding values) and I believe
that there was an error before that, and that Regiomontanus should have
obtained 693088, which is the value I gave in my table. In this case, I believe
that Regiomontanus accidently obtained the correct value 693090, and that
the printer got it wrong by setting 693009.

The only values with a deviation of 3 units of the last place are those
from 6

◦
50

′ to 6
◦
53

′. I believe that the pivot 6
◦
50

′ was erroneously computed
and should probably have been 713889 (with an error of 1). This has
probably caused the sines of 6

◦
51

′ to 6
◦
53

′ to be also wrong by 3 units. I
have however not fixed these deviations and these errors remain in the
cleaned table, as they are not mere typos. But the truth is that these errors
would not escape a close scrutiny by differencing.

The above table also contains corrections for a number of deviations
of 2 units, when these were clearly isolated (1◦29

′, 1
◦
44

′, 6
◦
38

′, 17
◦
33

′,
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41
◦
59

′, 42
◦
53

′, 45
◦
42

′, 49
◦
34

′, 51
◦
35

′, 57
◦
21

′, 70
◦
2
′, 73

◦
50

′, 77
◦
17

′, 81
◦
10

′, 81
◦
29

′,
82

◦
46

′).
I also corrected some suspicious transitions, where the error switched

from 1 to −1 or from −1 to 1. These errors would have been very easy
to detect by differencing and concern 5

◦
1
′, 7

◦
52

′, 18
◦
28

′, 18
◦
40

′, 66
◦
33

′, and
79

◦
58

′.
In the case of the decimal table, I also made a number of corrections,

including

values values
angle table corrected angle table corrected

4
◦
19
′ 752688 752687 39

◦
50
′ 6405569 6405566

13
◦
14
′ 2289163 2289171 40

◦
21
′ 6474556 6474550

13
◦
28
′ 2328799 2328796 54

◦
15
′ 8115746 8115740

17
◦
14
′ 2962630 2962639 54

◦
29
′ 8139469 8139466

19
◦
39
′ 3362739 3362735 58

◦
43
′ 8546096 8546099

20
◦
24
′ 3485724 3485720 59

◦
59
′ 8658793 8658799

35
◦
21
′ 5785691 5785697 60

◦
17
′ 8684873 8684875

37
◦
42
′ 6115272 6115271 61

◦
15
′ 8767267 8767269

38
◦
20
′ 6202350 6202356 61

◦
50
′ 8815783 8815781

38
◦
53
′ 6277368 6277367 87

◦
32
′ 9981731 9990734

39
◦
24
′ 6347309 6347306

Among these corrections, the small ones for 37
◦
42

′ and 38
◦
53

′ have
been made because their deviations appeared to be isolated. And like in
the sexagesimal table, I have also corrected some suspicious transitions,
where the error switched from 1 to −1 or from −1 to 1. These errors
concern the values 4

◦
19

′, 13
◦
14

′, 60
◦
17

′, 61
◦
15

′, and 61
◦
50

′. Some of these
corrections may appear larger than these small transitions, but that may be
because there may have been both printer typos and earlier errors, and that
I first corrected the large errors, for instance for 13

◦
14

′ whose sine value in
Regiomontanus’s manuscript may have been 2289173, but which still can’t
have been the right one.

Some of these typos/errors were reported by Glowatzki and Göttsche,
but not all of them, and, as I explained above, Glowatzki and Göttsche
reported other errors which I have corrected, but not included in the above
tables.299 Moreover, my corrections do not always coincide with theirs, as I
have tried to replace the incorrectly printed values by those that Regiomon-
tanus has presumably computed, and not by the exact sines. I believe

299The errors which have not been reported can easily be found either by a careful
comparison of my cleaned tables with Regiomontanus’s tables, or by checking the tables
given by Glowatzki and Göttsche.
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however that all the typos reported by Glowatzki and Göttsche have been
taken care of in my versions.

Eventually, we end up with two tables which must be very close to
Regiomontanus’s calculations, and which have been cleared of probably
almost all typos, both in the printed versions and in the manuscripts. What
I mean by this is that Regiomontanus would have found all these errors
by mere differencing and that the resulting cleaned tables provide a better
start for the analysis of Regiomontanus’s actual computations.

These tables are provided separately300 as text files for others to analyze,
should they wish to.

5.1.3 The sexagesimal pivots

The cleaned tables now make it possible to have a closer look at computa-
tional errors and in particular at the accuracy of the pivots. It first appears
that the sexagesimal table contains about 2223 errors of one unit or more,
and none of more than 3 units. This does agree with the count given by
Glowatzki and Göttsche who came up with 2232, but with slightly different
corrections. I am of course writing “about,” because in some cases I made
adjustments which may or may not be correct. The same remark applies to
the decimal table.

The pivots at 45
′ intervals (for R = 6 ⋅ 10

8) for the sexagesimal table
appear very accurate. There are only 17 values which are not correct, and
among them all are off by one unit of the last place, except those for 45

′,
27

◦, 57
◦
75

′, and 59
◦
25

′. In the case of 57
◦
75

′, there is an obvious typo, and
the original value may have been correct. The value for 45

′ may also be a
typo. In any case, none of these small errors have any serious impact on
the values in the sexagesimal table.

Consequently, the 45
′ pivots in the sexagesimal table (for R = 6 ⋅ 10

6) are
mostly correct. In fact, they should even all be correct. But there are three
exceptions. The 6

◦
45

′ pivot is correctly given in the table for R = 6.10
8, but

there is a different value in the final table. The neighboring values would
make things worse if I gave the correct value to Sin 6

◦
45

′, so that I suspect
that Regiomontanus made an error when copying his own (correct) value
of Sin 6

◦
45

′. The same observations apply to Sin 8
◦
15

′ and Sin 44
◦
15

′. These
three sines are off by one in the sexagesimal table.

As far as the other pivots are concerned, two 15
′ pivots are off by 2 and

78 are off by 1. 345 5
′ pivots are off by 1, and 11 by 2 or 3.

300See the files roegel2021regio6.txt and roegel2021regio10.txt.
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5.1.4 The decimal pivots

The decimal table contains about 1841 errors or one unit or more. Again,
this is very close to Glowatzki and Göttsche’s count which is 1833, but
with slightly different corrections. There are also three 45

′ pivots which are
incorrect, but not the same ones as for the sexagesimal table. 22 15

′ pivots
are off by 1, and none by 2. 282 5

′ pivots are off by 1, and one is off by 2.
It does therefore appear that the decimal table is somewhat more accu-

rate than the sexagesimal table, but not by an order of magnitude.

5.1.5 Some general statistics

We can also observe that in the sexagesimal table the longest sequence
without errors is of length 52 and starting at 56

◦
4
′: once the typos are

corrected, all the sines from 56
◦
4
′ to 56

◦
55

′ are correct. The longest sequence
with a constant error of one unit of the last place (in the same direction) is
of length 30 and starts at 3

◦
52

′. The longest sequence with a constant error
of two units is of length 6.

Similar results are obtained with the decimal table and the longest
sequence without errors is of length 50, starting at 27

◦
45

′.
The average errors are −0.10 for the sexagesimal table and 0.12 for the

decimal table, but it is difficult to analyze errors in more depth without
taking into account the structure of the computations, namely the two
trisections and the possibly final linear interpolation.

We can now try to answer a number of questions on the computation of
the pivots:

• For instance, assuming two 45
′ pivots are correct, how often are the

15
′ pivots correct?

The answer to this question is surprising, because there is a clear
difference between the sexagesimal and decimal tables. In the first
case, 70 15

′ pivots (for 114 ranges out of 120) are incorrect, but in
the second case only 17 are incorrect (also for 114 ranges). The 15

′

pivots of the decimal table appear clearly more accurate than in the
sexagesimal table.

An example of incorrect 15
′ pivot in the sexagesimal table is that of

45
◦
15

′, where the sines of 45
◦ and 45

◦
45

′ are correct.

One should actually distinguish the cases where the two twin/double
15

′ pivots (in a 45
′ interval) are wrong, and the cases where only one of
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them is wrong. Surprisingly, there are 24 cases of wrong twin pivots
in the sexagesimal table, and none in the decimal table.

Morevover, in the decimal table, 13 out of 17 wrong (non twin) 15
′

pivots concern the second 15
′ pivots. Things are more even in the

sexagesimal table, where 13 out of 22 wrong (non twin) 15
′ pivots

concern the second 15
′ pivots.

An example of incorrect 15
′ pivot in the decimal table is that of 32

◦,
where 31

◦
30

′ and 32
◦
15

′ are correct.

• And assuming two 15
′ pivots are correct, how often are the 5

′ pivots
correct?

We find that for the sexagesimal table, 119 5
′ pivots are incorrect (for

231 ranges out of 360) when the 15
′ pivots are correct, and that there

are 30 incorrect twin pivots.

For the decimal table, 217 5
′ pivots are incorrect (for 318 ranges out of

360), including 52 twin pivots. Under this perspective, the sexagesi-
mal table appears more accurate than the decimal table.

An example of an incorrect 5
′ pivot in the sexagesimal table is that of

75
◦
5
′.

• Finally, how often are the 5
′ interpolations correct?

Again, we restrict ourselves to the cases where the two pivots are
correct, as such a restriction is still representative.301 What is the most
common outcome? Is it 0, 0, 0, 0, 0, 0? In other words, if two adjacent
5
′ pivots are correct, are the four intermediate values also usually

correct?

The number of ranges to consider (where the two 5
′ pivots are correct)

is similar in both tables: 576 ranges for the sexagesimal table and 604
ranges for the decimal table. Is the outcome the same? First, given
that the table has been checked by differences, the only values which
can appear between the two end 0s are 0 and ±1. There are therefore
3
4
= 81 different possible sequences, but the most common sequence

is (0, 0, 0, 0, 0) with 277 cases in the sexagesimal table and 258 cases
in the decimal table. Again, under this perspective, the sexagesimal
table is in fact slightly more accurate than the decimal one.

301We could also consider the computation of 5
′ pivots from incorrect 15

′ pivots, for
instance by shifting these pivots, but I don’t think we would reach significantly different
results.
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5.2 A tentative analysis of Regiomontanus’s construction

The procedure used by Regiomontanus to construct his large tables is
a bit vague, but I believe that it can be clarified. As far as I know, no
attempt has been made so far to explain this process. As mentioned above,
Regiomontanus basically describes a subtabulation process, where from
sine values at 45

′ intervals he obtains values for every 15
′, then for every 5

′,
and finally for every minute. Regiomontanus explicitely speaks of making
the differences increase regularly, and it should be clear that the differences
between values played a key role in this computation. It is also clear that
what Regiomontanus has done was to interpolate values, more than merely
to compute accurately thousands of sines.

Reading Regiomontanus’s description, one can not avoid thinking of
the works of Bürgi302 and Briggs303 and wonder if, perhaps, Regiomontanus
had not anticipated them. I believe in fact that his computations were in-
deed forerunners of what Bürgi and Briggs did, a century or a century and
a half later. Both Bürgi and Briggs analyzed how finite differences could be
used not merely to find new values by adding differences, but also to sub-
tabulate, and find intermediate values from larger differences. For instance,
Briggs computed the logarithms of various integers as interpolations of
logarithms given at larger intervals. Among the techniques he describes is
the quinquisection, where he is able to divide an interval in five parts and
obtain the intermediate logarithms.

5.2.1 The general setting

Here, I want briefly to test this hypothesis, which may be expanded later in
the future. To be as general as possible, I will consider a sequence of sines
v0, v1, v2, . . . , for angles a0, a1, a2, . . . , where ai+1 − ai is a constant interval,
for instance 45

′. vi = Sin(ai), with some radius R, which I will take here as
6 ⋅ 10

8, but which could be different.
These values are used to define the finite differences ∆

1
0 = v1 − v0,

∆
1
1 = v2 − v1, . . . , ∆

2
0 = ∆

1
1 −∆

1
0, ∆

2
1 = ∆

1
2 −∆

1
1, . . . , ∆

3
0 = ∆

2
1 −∆

2
0, etc.

What Regiomontanus sought to do was to find the sines v1/3, v2/3, etc., of
the intermediate angles a1/3, a2/3, a4/3, etc. In other words, he was working
on a trisection. For instance, if a0 = 3

◦, a1 = 3
◦
45

′, etc., then a1/3 = 3
◦
15

′ and
v1/3 = Sin 3

◦
15

′.
The subtabulated differences are δ10 = v1/3 − v0, δ20 = δ

1
1/3 − δ

1
0 , and so on.

302[Roegel (2016a)]
303[Roegel (2010a)]
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I believe that during the first stage of his procedure, Regiomontanus tried
to compute the smaller differences, that is the differences for intervals of
15

′, from the differences for intervals of 45
′. In other words, I believe that he

tried to compute δ10 and δ
2
0 , and these two values would then be sufficient

to compute v1/3 and v2/3.
I invite those who are unconvinced by this suggestion to consider for

instance the trisection of the 45
′ interval between Sin 20

◦ and Sin 20
◦
45

′. The
radius could be taken as R = 10

5, and the sines to start with would then
be 34202, 35429, 36650, 37865, etc. Merely manipulating these numbers
without great thought leads to two approximations of the subtabulated first
differences, namely 410 and 407. We would have three 410 differences and
three 407 differences. This is of course not satisfactorily, it is not an even
decrease, and looking at the second differences, we find 0,0,−3,0,0. This
can be improved by starting with the first subtabulated difference 410 and
spreading the −3 over five values, hence taking −0.6 instead of −3 for the
second difference. We have here a very simple means to obtain the second
differences. Adding up these differences, we end up with 36653 instead of
36650. It is not perfect, but it is not that bad. Since the second difference
was correctly spred, we may want to improve the first difference 410, but
it will actually be difficult to reach a better result with this radius. Such
experiments are useful to convince oneself that it is practically unfeasible
to get the differences to vary evenly merely by fiddling with the numbers,
and at the same time they pave the way for the discovery of a relationship
between certain values. And these are the key issues here.

The first key is to notice that the second differences are practically
proportional to the sines. This had actually been discovered long before
Regiomontanus, for instance in India by Āryabhat.a in the 6th century304

And Wagner and Hunziker recently suggested305 that there was perhaps
a transmission from India to Bürgi, although I am rather doubtful about
such an assertion. In the above simplified example, one would readily find
that the second differences are all equal to −6, at least around 20

◦, and if
this operation is done for other values, one can’t be far from discovering
that the second differences are proportional to the sines.

I will therefore assume that Regiomontanus first noticed that ∆
2
0 ≈

v1
C45

where C45 is some constant, and that this is true on the entire sine table. I
am also guessing that Regiomontanus knew that the constant depends on

304See [Hayashi (1997)], [Bressoud (2002)], [Raju (2007), p. 132], [Lefort (2007)]
and [Gupta (2008)] for some references (among many others) describing Āryabhat.a’s
computation of sines and how the second differences are used.

305[Wagner and Hunziker (2019)]
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the size of the interval, hence my subscript. For intervals of 45
′, we have

C45 ≈ −5836. The exact expression behind this value matters little here,306

but what is important is that by playing with differences, any serious
table computer would eventually find out that there is some constant ratio
involved, and perhaps think of using it backwards. By computing a few
exact values of sines at 15

′ intervals, Regiomontanus may have found
that another constant is involved:307

δ
2
0 ≈

v1/3
C15

and that C15 ≈ −52525.
Regiomontanus may or may not have noticed that C15/C45 ≈ 9. But he
must certainly have noticed that the third differences ∆

3 vary only very
slowly and that their variations can be neglected on small ranges.

At this stage, Regiomontanus could have had a means to compute δ20
using an approximation of v1/3. Of course, v1/3 is what we are looking for,
but we can easily get an approximation of v1/3 such as

v1/3 ≈ v0 +
v1 − v0

3

and this is in fact sufficient to get a good approximation of δ20 .
What now remains is to obtain an approximation of δ10 . An obvious

approximation is
∆

1
0

3
but Regiomontanus needed a better one.

The second key here is to see or guess that the second differences are
involved in the approximations of the first differences. In any case, one
may want to test whether

δ
1
0 ≈

∆
1
0

3
+ αδ

2
0

for some value of α. Although the constancy of δ2 makes this actually
obvious,308 it is also possible to observe experimentally that α = −1, and
thus that

δ
1
0 ≈

∆
1
0

3
− δ

2
0

Again, in the simplified example given above, where the first differences
are 1227, 1221, and 1215, and where the second differences are all about −6,

306See [Roegel (2010b), § 2.4] for the computation of the exact values of ∆ sinx. The value
5836 is actually about 1/ sin

2
∆x, that is 1/ sin

2
45
′.

307This constant is given by 1/ sin
2

15
′
≈ 52525.

308The three first differences are then x− δ2, x, and x+ δ2, and the average first difference
is necessarily the median first difference.
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it should not be difficult to notice that the first first difference is equal to the
average first difference minus the second difference, 37865−34202

3
+ 6 = 1227,

or that the second (middle) first difference is also the mean first difference.
If these two observations are made, namely 1) the link between the

second differences and the sines, and 2) the dependency of the subtabulated
first differences on the subtabulated second differences, then it is possible
to derive the values v1/3 and v2/3.

5.2.2 An example

Let me show how to put this in practice on a small example. Let’s for
instance interpolate the sines between 39

◦ and 39
◦
45

′. I will assume that all
of Regiomontanus’s values at 45

′ intervals were exact, which, as mentioned
above, is true except in a few instances.309 So, Regiomontanus must have
had

Sin 39
◦

= 377592235

Sin 39
◦
45

′
= 383663401

Using the approximation v1/3 ≈ 379615957 (the exact value is 379623197)
we obtain

δ
2
0 ≈ −

379615957

52525
= −7227

∆
1
0 = 383663401 − 377592235 = 6071166

δ
1
0 ≈

6071166

3
+ 7227 = 2030949

δ
1
1 ≈ δ

1
0 + δ

2
0 = 2023722

v1/3 = Sin 39
◦
+ 2030949 = 379623184

v2/3 = v1/3 + 2023722 = 381646906

and in fact Regiomontanus’s table with R = 6 ⋅ 10
6 does have the values

3796232 and 3816469 which would have been obtained from the above
computation.

This procedure does unfortunately not work on all 45
′ intervals, and

Regiomontanus’s pivots sometimes differ from those obtained with this
procedure, although the difference never exceeds one unit of the last place.
This does not prove that Regiomontanus did not use such a procedure, but

309The two values I am using are in fact given in [von Peuerbach and Regiomon-
tanus (1541)].
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it may be that some computations were lacking uniformity, and also that
some errors were introduced in the computations. I also believe that the
two guard digits, viz. those added when computing with R = 6 ⋅ 10

8, were
used throughout the interpolation, and not merely for the pivotal values.

The same procedure used to obtain the sines at 15
′ intervals can be

used to obtain the sines at 5
′ intervals. The only difference is that δ20 in-

volves a new constant, which may have been guessed or computed by
Regiomontanus, namely

δ
2
0 ≈ −

v1/3
52525 × 9

If for instance we want to compute Sin 39
◦
5
′, we find

δ
2
0 ≈ −

378269218

52525 × 9
= −800

δ
1
0 ≈

2030949

3
+ 800 = 677783

δ
1
1 ≈ 676983

v1/3 ≈ 378270018

v2/3 ≈ 378947001

and these two values v1/3 and v2/3, when rounded to R = 6 ⋅ 10
6, are exactly

the values given by Regiomontanus for the sines of 39
◦
5
′ and 39

◦
10

′. But
again, I must stress that although this procedure works on this example, it
does (slightly) fail to give Regiomontanus’s values on others.

Anyway, if Regiomontanus proceeded along these lines, he now has
obtained the sines for all multiples of 5

′, using relatively simple techniques.
In fact, the computations involved here (except those for the pivots) are
more a matter of being clever than of being hard working.

What now remains is to divide the 5
′ intervals in five parts. This is what

Briggs called a quinquisection.
The same procedure could be applied here as for the trisection, but we

would have
δ
2
0 ≈ −

v1/5
52525 × 9 × 25

and310

δ
1
0 ≈

∆
1
0

5
− 2δ

2
0

310This is in fact also pretty obvious, because like in the case of the trisection, we have a
sequence of values of which the median is necessarily equal to the average, and the first
first difference is obtained by subtracting twice the second difference from the median
value.
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When applying this procedure (which is left as an exercise) to the inter-
val from 39

◦ to 39
◦
5
′, one obtains

Sin 39
◦
1
′
= 377727856

Sin 39
◦
2
′
= 377863445

Sin 39
◦
3
′
= 377999034

Sin 39
◦
4
′
= 378134623

and Regiomontanus’s table has 3777278, 3778634, 3779990 and 3781345, that
is two values differ by one unit of the last place.

This suggests that Regiomontanus may perhaps not have used such an
interpolation. If one performs a mere linear interpolation, with δ1 = 135557,
we end up with the values 377727792, 377863349, 377998906 and 378134463,
also with two differing values.

But if instead we interpolate with only one guard digit, that is between
37759224 and 37827002 and with δ

1
= 13556, we end up with the values

37772780, 37786336, 37799892 and 37813448, where only one value differs
from that of Regiomontanus.

And if the guard digits are entirely discarded, we have an interpolation
between 3775922 and 3782700, δ1 = 1356, and we end up with the values
3777278, 3778634, 3779990 and 3781346, and again only one value differs
from that of Regiomontanus.

Finally, if we interpolate with only one guard digit, but with δ1 = 13557,
then we end up with exactly Regiomontanus’s values. This does not prove
that Regiomontanus did such an interpolation in every case, but it does at
least make it plausible that he proceeded that way in some cases.

5.3 Conclusion

Looking at Regiomontanus’s tables, it is pretty clear that he had the means
to compute the 45

′ pivots correctly. The 15
′ and 5

′ pivots are relatively
accurate, but less than the 45

′ pivots. In the previous section, I have given a
procedure which may be close to the one used by Regiomontanus to find
his pivots.

For the 15
′ pivots, we have seen earlier that Regiomontanus’s sexages-

imal table has 70 pivot errors. Now, if we use my algorithm using finite
differences, we end up with 42 errors on the all the 15

′ pivots. However, if
we compare my pivot values with those of Regiomontanus, there appears
to be about 85 differences. Regiomontanus’s values do not perfectly agree
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with those of my algorithm for the first trisection, although the differences
do not exceed one unit of the last place. This agreement can not be sig-
nificantly improved even with a different constant C15. It is still possible
that Regiomontanus made use of an algorithm close to the one I sketched,
but perhaps he did not always use two guard digits, in addition of having
made a few computation errors here and there.

I also believe that the last step was a linear interpolation, but that
glitches came into play and that the computations were not done totally
uniformly and rigorously.

To sum up, and in the absence of other convincing theories, I believe
that it is plausible that Regiomontanus applied two trisections, computed
the first subtabulated first and second differences in each range, derived the
missing values, and interpolated linearly in the 5

′ intervals, perhaps using
only one guard digit, and eventually rounding all values to R = 6 ⋅ 10

6. The
same procedure could have been applied with the decimal table.

I believe that Regiomontanus’s tables contain the germs of several in-
novations, and that it was the quality of workmanship underlying these
tables which is the true reason why they endured so long. They did contain
errors and typos, but they provided a solid foundation for others to build
upon, and only Bürgi, Briggs and a few others were able to develop similar
skills to renew the computation of tables.
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6 After Regiomontanus

Most of the trigonometric tables printed in the 16th century actually use
values or computations inherited from Regiomontanus’s tables311 (see fig-
ures 13 and 14). Rheticus (1514-1574) was the only one to compute really
new values which were eventually published in 1596 by Otho312 and in
1613 by Pitiscus.313 Bürgi also computed sines anew, but his table was not
published and was not used by others.

Among all these tables, Glowatzki and Göttsche distinguished those
which retain the radius R = 10

7 and those for which R = 10
5.314 But

we should also consider separately the few sexagesimal tables based on
Regiomontanus’s tables, namely those of Engel, Fine, Schreckenfuchs and
Bressieu.

The tables with radius 10
7 include those of Rheticus (1542 and 1551),315

Reinhold (1554),316 Eisenmenger (1562),317 Viète (1579),318 Fincke (1583),319

Clavius (1586),320 Lansberge (1591),321 Magini (1592),322 Blundeville (1594),323

and Ceulen (1596).324 Glowatzki and Göttsche also considered the 17th
century tables of Sems/Dou (1600, 1612, 1616 and 1620), Stevin (1608 and
1628), Roomen (1609), Crüger (1612), Napier (1614, 1616 and 1620), Blebel
(1616 and 1629), Ursinus (1618), Alsted (1620, 1630 and 1649), Muller (1621)
and Tonski (1640 and 1645),325 which all go back to Regiomontanus, but
which are outside the limited scope of this survey. The fact that all these
tables use Regiomontanus’s values is asserted by several checks, including
on the typographical and last digit errors stemming from Regiomontanus,
but also on mere layout considerations. Many table makers did actually not

311[Glowatzki and Göttsche (1990), p. i]
312[Rheticus and Otho (1596)]
313[Pitiscus (1613)]
314[Glowatzki and Göttsche (1990), p. 148]
315[Copernicus (1542)] and [Rheticus (1551)].
316[Reinhold (1554)]
317[Eisenmenger (1562)]
318[Viète (1579)]
319[Fincke (1583)]
320[Clavius (1586)]
321[van Lansberge (1591)]
322[Magini (1592)]
323[Blundeville (1594)]
324[Ceulen (1596)]
325[Glowatzki and Göttsche (1990), pp. 161-168]
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Ptolemy

manuscript tables

printed tables

Tables of Toledo

C

C

?
?

I

I

I

?

?

II

?

I

C

C

11

C

C

C

C

C

C

C

10

C

C

C

17

1

C

2

4

6

8

15

18

19

16

9

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

3

5

7

13

C

C

C

12

14

Apian sin (1533)
(1495-1552) 1′ 105

Apian sin (1534)
(1495-1552) 1′ 105

Apian sin (1541)
(1495-1552) 1′ 105

Bassantin sin (1557)
(c1504-1568) 1′ 105

Bianchini tan
(1410-1469) 10′ 104

Bianchini csc
(1410-1469) 10′ 104

Bianchini sin,cos
(1410-1469) 10′ 60 · 103

Bianchini cot
(1410-1469) 10′ 12000

Bianchini sin
(1410-1469) 10′ 104

Blundeville sin,sec,tan (1594)
(c1522-c1606) 1′ 107

Bressieu sin (1581)
(c1546-1617) 1′ 60; 602

Bressieu tan,sec (1581)
(c1546-1617) 1′ 60; 602

Bürgi (m) sin (1587)
(1552-1632) 1′ 60; 604

Ceulen sin,sec,tan (1596)
(1540-1610) 1′ 107

Clavius sin,sec,tan (1586)
(1538-1612) 1′ 107

Clavius sin (1593)
(1538-1612) 1′ 107

Copernicus (m) sec (1530?)
(1473-1543) 1◦ 104

Copernicus sin (1543)
(1473-1543) 10′ 105

Rheticus sin (1542)
(1514-1574) 1′ 107

Eisenmenger sin (1562)
(1534-1585) 1′ 107

Fale sin (1593)
1′ 105

Fincke sin (1583)
(1561-1656) 1′ 107

Fincke sec (1583)
(1561-1656) 1′ 107

Fincke tan (1583)
(1561-1656) 1′ 107

Fine sin (1530)
(1494-1555) 1′ 60; 602

Fine sin (1542)
(1494-1555) 1′ 60; 602

Fine sin (1550)
(1494-1555) 1′ 60; 602

Gallucci sin (1588)
(1538-1621) 1′ 60000

Gaurico sin (1524)
(1475-1558) 10′ 105

Giuntini sin (1581)
(1523-1590) 1′ 105

J. v. Gmunden sin (1437)
(c1384-1442) 30′ 60; 603

Lansberge sin,sec,tan (1591)
(1561-1632) 1′ 107

Magini sin/cos,sec/csc,tan/cot (1592)
(1555-1617) 1′ 107

Maurolico sin,sec,tan (1558)
(1494-1575) 1◦ 105

Padovani sin (1582)
(c1512-?) 1′ 105

Peucer sin (1579)
(1525-1602) 1′ 105

Peuerbach sin
(1423-1461) 10′ 60000Peuerbach sin (1450?)

(1423-1461) 10′ 600000
Peuerbach atan (1455)
(1423-1461) 1/1200 ; 603

Peuerbach atan (1516)
(1423-1461) 1/1200 ; 603

Regiomontanus sin (1462)
(1436-1476) 1′ 6 · 106 Regiomontanus sin (1468)

(1436-1476) 1′ 107

Regiomontanus tan (1490,1504,. . . )
(1436-1476) 1◦ 105

Engel? sin (1490)
(1455-1512) 1′ 60000

Regiomontanus sin (1541,1561)
(1436-1476) 1′ 6 · 106

Regiomontanus sin (1541,1561)
(1436-1476) 1′ 107

Regiomontanus tan (1467)
(1436-1476) 1◦ 105

Reinhold sin (1554)
(1511-1553) 1′ 107

Reinhold tan (1554)
(1511-1553) 1′ 107

Rheticus sec/csc,tan/cot (1551)
(1514-1574) 10′ 107

Rheticus sin/cos (1551)
(1514-1574) 10′ 107

Rheticus/Otho sin/cos,sec/csc,tan/cot (1596)
(1514-1574) 10′′ 1010

Rheticus/Otho csc/cot (1596)
(1514-1574) 10′′ 107

Rheticus (m) sin/cos (1570?)
(1514-1574) 10′′ 1015

Rheticus (m) sin/cos,sec/csc,tan/cot (1560?)
(1514-1574) 10′′ 107

Gemma Frisius cot (1545)
(1508-1555) 1◦ 105

Gemma Frisius atan (1545)
(1508-1555) 1/1200 ; 603

Schreckenfuchs tan (1569)
(1511-1579) 1◦ 105

Schreckenfuchs sin (1569)
(1511-1579) 15′ 60000

Schreckenfuchs sin (1569)
(1511-1579) 15′ 60; 603

Viète sin/cos,tan/cot,sec/csc (1579)
(1540-1603) 1′ 105—109

Witekind sin (1576)
(1522-1603) 1′ 105

Figure 13: The interrelationships between the main 15th and 16th century
fundamental trigonometric tables. Corner squares (⬜) indicate no longer
extant tables, unfilled corner circles (◯) indicate new computations, and
filled corner circles (⬤) indicate computations based on earlier tables.
Tables marked “(m)” in the lower part are manuscript tables. See figure 14
for details on the links.
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C means entirely copied from, or printed at a later date.
I inspired or influenced by.
? probable link.
1 Regiomontanus (tan, 1467) obtained by computation from the 1462 table.
2 Engel (1490) obtained from the 1462 table by truncation (and not rounding) (no computation).
3 Gaurico (1524): table obtained from Engel by multiplication by 10/6.
4 Fine (1530): computed from Regiomontanus’s table with R = 6000000.
5 Copernicus (c1530): computed from Regiomontanus’s table with R = 10

7.
6 Apian (1533): obtained from Regiomontanus (10

7) by mere truncation, without rounding.
7 Copernicus (1543): probably obtained from a combination of Regiomontanus’s tables.
8 Rheticus (1551) (tan, sec): computed from Regiomontanus (or Rheticus 1542).
9 Reinhold (1554): tangents computed from the sines.

10 Maurolico (1558): computed from Regiomontanus.
11 Rheticus (c1560): computed from Regiomontanus.
12 Schreckenfuchs (1569): one table computed from the 1541/1561 table.
13 Viète (1579): computed from Regiomontanus.
14 Bressieu (1581) (tan, sec): from Regiomontanus and interpolation.
15 Fincke (1583): sines based on Reinhold’s sines, but with slight adaptations.
16 Fincke (1583): tangents based on Reinhold, but with corrections.
17 Fincke (1583): secants computed from Fincke’s tangents.
18 Rheticus (1596): 10

7 table was probably excerpted from an earlier table from c1560.
19 Rheticus (1596): 10

10 table obtained from a 10
15 table.

Figure 14: The interrelationships between the main 15th and 16th century
fundamental trigonometric tables (cont’d, see figure 13). The number of
places of sexagesimal tables is shown as 60; 60

n, the first 60 being the value
of R, and n being the number of additional sexagesimal places. Note that
in Rheticus’s 1551 table, the sines were copied from Regiomontanus (or
Rheticus 1542); in Reinhold’s table (1554), the sines were copied from Re-
giomontanus (or Rheticus 1551); in Schreckenfuchs’s table (1569), one table
was copied from Engel (in an edition of the Tabulæ directionum profectionum-
que) and another was copied from the 1490 table of tangents (or another
edition of the Tabulæ directionum profectionumque); in Bressieu (1581), the
sines were copied from Fine (1530 or 1550).
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bother checking the values using the differences, and Clavius in 1586 was
apparently the first to get rid of the typographical errors of earlier tables.
Note however that Glowatzki and Göttsche do not always give the direct
predecessor of a table, and do seldom consider the layouts of the tables as
an indication for their source.

Among the tables with radius 10
5 are the tables of Bassantin (1557),326

Witekind (1576),327 Peucer (1579)328, Giuntini (1581)329, Padovani (1582)330

and Fale (1593)331 which were taken directly or indirectly from Apian
(1533),332 which itself goes back to Regiomontanus’s table of 1468, merely
by dropping two digits and no rounding.333

Engel’s table with R = 60000 (figure 16) is derived from Regiomon-
tanus’s large sexagesimal table and was used by Schreckenfuchs in 1569
(see § 6.14).

Immediately following the table of sines for radius 60000 published
in 1524,334 there is an additional table of sines with radius 100000 and for
every 10

′ (figure 17). As mentioned by Delambre,335 this table was added
by Gaurico (see § 6.2).

Fine’s tables from 1530 and 1550 are not mentioned by Glowatzki and
Göttsche.336 Fine’s table published in 1530 and reprinted in 1550 gives the
sines for a radius R = 60, at intervals of 1

′ and to two sexagesimal places.
Fine’s tables are the only fully sexagesimal tables based on Regiomon-

tanus’s tables, apart from those of Schreckenfuchs published in 1569 and of
Bressieu published in 1581.

Mention should also be made of Bürgi’s sexagesimal sine table from
c1587, which seems to be a totally independent and very accurate recompu-
tation of sines, paralleling to some extent Rheticus’s efforts that led to the
Opus palatinum (1596) and the Thesaurus mathematicus (1613).

To sum up, the main new computations based on Regiomontanus’s
values are the following, which are detailed in the subsequent sections:

326See [Bassantin (1557)] and [Glowatzki and Göttsche (1990), p. 176].
327See [Witekind (1576)] and [Glowatzki and Göttsche (1990), p. 176]
328See [Peucer (1579)] and [Glowatzki and Göttsche (1990), p. 177].
329[Giuntini (1581)]
330[Padovani (1582)]
331See [Fale (1593)] and [Glowatzki and Göttsche (1990), p. 177].
332[Apian (1533)]
333[Glowatzki and Göttsche (1990), p. 169]
334[Regiomontanus (1524)]
335[Delambre (1819), p. 292]
336[Glowatzki and Göttsche (1990)]
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• in 1551, Rheticus published his computations of tangents and secants
at intervals of 10

′;337

• in 1554, Reinhold published his computations of tangents at intervals
of 1

′ (and 10
′′ for the last degree);338

• in 1579, Viète published his computations of tangents and secants at
intervals of 1

′;339

• in 1583, Fincke published his computations of secants at intervals of
1
′.340

In the following sections, I go into more detail for each of these tables
copied from Regiomontanus’s tables, or based on them. This list tries to
be as complete as possible, but it is possible that some lesser known work
containing a sine table or a more complete canon still escaped my attention.

6.1 Engel (1490)

Johannes Engel (or Johannes Angelus) (1453-1512) was an astronomer and
astrologer from Aichach, near Augsburg. He published many almanachs
and astronomical tables.341

The 1490 edition of Regiomontanus’s Tabulæ directionum profectionum-
que342 contains corrections by Johannes Engel and in particular a 30 pages
long sine table with R = 60000 giving the sines for every minute (fig-
ure 16).343

Folkerts344 assumed that this table had been computed before 1463-1464,
but in fact the table was certainly added by Johannes Engel who obtained
it by truncating (not rounding) Regiomontanus’s table for R = 6 ⋅ 10

6.345

Here is a sample of Regiomontanus’s values (R) and Engel’s values (E):

337[Rheticus (1551)]
338[Reinhold (1554)]
339[Viète (1579)]
340[Fincke (1583)]
341On Johannes Engel, see [Knobloch (1983)] and [Dobrzycki and Kremer (1996)]. He is

also mentioned by Gessner [Gessner and Simmler (1574), p. 336].
342[Regiomontanus (1490)]
343Not all editions seem to contain this sine table, and it is for instance absent from the

copy at ULB Darmstadt (Inc II 357).
344[Folkerts (1977), p. 234]
345[Glowatzki and Göttsche (1990), pp. 48-49]
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Angle R E
60

◦
0
′ 5196152 51961

60
◦
1
′ 5197024 51970

60
◦
2
′ 5197896 51978

60
◦
3
′ 5198768 51987

60
◦
4
′ 5199639 51996

60
◦
5
′ 5200510 52005

60
◦
6
′ 5201380 52013

60
◦
7
′ 5202350 52022

60
◦
8
′ 5203119 52031

In this sample, we can also see that Engel introduced an additional error
for 60

◦
7
′.

Moreover, Regiomontanus’s table contains a column of differences,
whose values can be interpreted as the sixths of the differences of the sines.
For instance, (5197024 − 5196152)/6 = 145.333 . . . and that column starts
with 145. Engel’s table contains exactly the same value 145, although it is
basically meaningless in that reduced table.

By analyzing the correspondence of Regiomontanus with Bianchini
and others, Glowatzki and Göttsche have also shown that Regiomontanus
actually did not himself use the table R = 60000 printed in 1490, and
whenever he used this radius, he drew the values by dropping two digits
from his large table and rounding the value.346 This is an additional proof
for the fact that the table for R = 60000 actually did not exist before it
was prepared for printing in 1490. Instead, Glowatzki and Göttsche347

assume that Regiomontanus had made a table with R = 60000 for himself,
but different from the printed one. Such a table may have been held
at the Seitenstetten Abbey until 1924, but it was then sold and had not
been located by the authors. If this table surfaces again, one should check
whether its values are truncated or rounded.

Engel’s table (figure 16) is found again in the 1504 edition,348 where
the title of the work explicitely mentions this sine table. It is also found
in later editions of the Tabulæ directionum profectionumque, where it is often
attributed to Regiomontanus. My modern reconstruction349 is based on the
1504 edition which has less idiosyncrasies than the 1490 version.

346[Glowatzki and Göttsche (1990), pp. 65-71]
347[Glowatzki and Göttsche (1990), p. 71]
348[Regiomontanus (1504)]
349[Roegel (2021d)]
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Engel’s table was used by Gaurico in 1524 (see below, § 6.2), in 1569 by
Schreckenfuchs (§ 6.14) and reprinted in 1588 by Gallucci (§ 6.24).

6.2 Gaurico (1524)

Luca Gaurico (in Latin, Lucas Gauricus, in French Luc Gauric) (1475-1558)
was an Italian astrologer, astronomer, and mathematician.350

In 1524, as an appendix to Regiomontanus’s Tabulæ directionum profec-
tionumque,351 Gaurico published a table of sines with R = 100000 and at
intervals of 10

′ (figure 17). This table was reprinted in 1557,352 together with
Regiomontanus’s table of tangents but the latter only up to 50

◦.
It is tempting to consider that Gaurico took his sines from a manuscript

of Regiomontanus’s table for R = 10
7 and truncated or rounded the values

(this was also suggested by Glowatzki and Göttsche353), but this is actually
not the case. Gaurico’s values differ both from the truncated values and
from the rounded ones of the 10

7 table.
In fact, it seems that Gaurico took the values in Engel’s table for R =

60000, and merely multiplied them by 10/6, although this procedure will
in a few cases give values that differ from those in Gaurico’s table.354

Gaurico’s table was also certainly not the basis of Copernicus’s table of
sines (or semi-chords) published in 1543, although it uses the same radius
and interval.

6.3 Copernicus (c1530?)

The earliest known decimal table of secants is a handwritten table by Nico-
laus Copernicus (1473-1543),355 included in his copy of Regiomontanus’s
Tabulæ directionum profectionumque published in 1490.356 There Copernicus

350For a summary of Gaurico’s life and works, see [Gessner and Simmler (1574), p. 455]
as well as [Moréri (1733), p. 243-244].

351[Regiomontanus (1524)]
352[Gaurico (1557)]
353[Glowatzki and Göttsche (1990), p. 178]
354This procedure anticipates what Copernicus has probably done in some places in

the sine table included in his 1543 opus, although on the basis of Regiomontanus’s full
sexagesimal table.

355For a summary of Copernicus’s life and works, see [Rosen (1971)]. Note in passing that
in 1574 Gessner only briefly mentions Copernicus [Gessner and Simmler (1574), p. 518].

356See [Curtze (1875), pp. 34-37], [Glowatzki and Göttsche (1990), pp. 190-192] and [Fol-
kerts et al. (2019)].
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gave the values of the secant for each degree357 and for R = 10000, over-
layed to Regiomontanus’s table of tangents. A reproduction of Copernicus’s
table was given by Glowatzki and Göttsche.358

Curtze considered that Copernicus had computed the secants from
the cosines359 but Birkenmajer360 thought that the secants were computed
using the formula Secx =

√
Tanx+R2. Rosińska also observed that Coper-

nicus’s table of secants is not copied from Bianchini’s table of cosecants.361

Rosińska concluded therefore that Copernicus used neither Bianchini’s nor
Regiomontanus’s tables for his table of secants.362

But still, Glowatzki and Göttsche observed that since Copernicus’s val-
ues are very accurate, he must have used a manuscript of Regiomontanus’s
tables with R = 6 ⋅ 10

6 or R = 10
7, later published in 1541.363

Now, according to my experiments, using either of Regiomontanus’s
tables, computing the exact secants, by mere division, as Curtze suggested,
and rounding, will give almost always Copernicus’s values, except for 88

◦

and 89
◦ where Copernicus probably tried to obtain more accurate values.

The discrepancy of these two values is not, in my opinion, a sufficient reason
to look for a different source or a different computation for Copernicus’s
entire table of secants.

6.4 Fine (1530)

Oronce Fine (1494-1555) was a French mathematician and cartographer.
After having learned his first lessons of mathematics from his father in
Briançon, he matriculated at the University of Paris and from about 1531
until his death he occupied the chair of mathematics of the Collège Royal
in Paris.364

357Stamm mistakenly wrote that the secants are given for every minute, but this is surely
a typo [Stamm (1933)].

358[Glowatzki and Göttsche (1990), p. 191]
359See [Curtze (1875), pp. 34-37] and [Rosińska (2002), pp. 15-16].
360[Birkenmajer (1900), pp. 62-63]
361[Rosińska (2002), p. 16]
362[Rosińska (1987), p. 422]
363[Glowatzki and Göttsche (1990), p. 192]
364For summaries of Fine’s life and works, see [Gallois (1890b)], Poulle [Poulle (1978)],

[Marr (2009)], [Pantin (2013)] and [Axworthy (2016), Axworthy (2020)]. See also the
accounts given by [Lindgren (2007)] (on land surveys) and [Fréchet (2009)], as well as the
early notice by Gessner [Gessner and Simmler (1574), p. 534]. I have chosen to spell his
name “Fine,” in accordance with Poulle, but it is also sometimes spelled “Finé.”
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In 1530, Fine published his De geometria365 which contains a sexagesimal
table of sines. Fine’s table gives the sines for a radius R = 60, at intervals of
1
′ and to two sexagesimal places (figure 18).

This table is not based on Engel’s 1490 table366 as one might think.
Instead it must be based directly on a manuscript of Regiomontanus’s large
sexagesimal table, without truncating.

In 1542, Fine published his De sinibus libri II which was the first treatise
solely on trigonometry to be printed in France.367 This work is an appendix
of Fine’s De mundi sphaera.368 Ross is very critical of this work and considers
that it was unoriginal and out of date,369 because it does not contain any
contributions to trigonometric mathematics, and because it lags behind
the developments soon introduced by Rheticus for the unification of sines,
shadows, etc., in a same framework. Fine also appears to be unaware of
Regiomontanus’s De triangulis omnimodis370 published in 1533 and which
laid the foundations of modern trigonometry. But on the other hand, Fine’s
purpose with this book was pedagogical and he succeeded in contributing
to the revival of mathematics in Paris.

The 1542 De sinibus libri II reprinted the table of sines published in 1530,
with only minor variations. The layout is the same, although the table was
obviously reset, as can be observed on the last lines of each page.

The second edition of De sinibus libri II was published in 1550,371 but
the sine table now uses a different layout (figure 30). In the two editions
of this work (1542 and 1550), Fine’s introduction gives the sines up to 90

◦

at intervals of 3
◦
45

′. In a second table, he gives the sines up to 7
◦
30

′ at
intervals of 15

′. These two tables were not given in the 1530 De geometria372

and were presumably not used for the computation of the table published
in 1530. None of these tables are mentioned by Glowatzki and Göttsche.373

Fine’s table is the only sexagesimal table based on Regiomontanus’s
tables, apart from those of Schreckenfuchs374 published in 1569 and of

365[Fine (1530)]
366[Regiomontanus (1490)]
367[Ross (1975), p. 379]
368[Fine (1542)]
369[Ross (1975), pp. 385-386]
370[Regiomontanus (1533)]
371[Fine (1550)]
372[Fine (1530)]
373[Glowatzki and Göttsche (1990)]
374[Schreckenfuchs (1569)]
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Bressieu published in 1581.375 Bressieu has actually copied Fine’s table,
from either of the three editions I have mentioned.

Certainly in order to help for the work with sexagesimal numbers, Fine
had also published a sexagesimal multiplication table, his tabula proportio-
nalis.376

I am giving separately a modern reconstruction of Fine’s 1530 and 1550
tables.377

6.5 Apian (1533)

Peter Apian (1495-1552), also known as Petrus Apianus, was actually born
Peter Bennewitz, or Peter Bienewitz, in Leisnig, Germany.378 He was active
in astronomy and geography and was a popularizer of astronomical and
geographical instrumentation.379 Apian studied at the University of Leipzig
from 1516 to 1519 and then for two years in Vienna. His first major work
was his Cosmographia (1524), which was later revised by Gemma Frisius
(1508-1555), Apian’s student.

Apian’s second major work was his Astronomicum Caesareum (1540)
which displayed an elaborate typography and the use of sophisticated
volvelles.

From 1526 until his death he occupied the chair of mathematics and
astronomy at the University of Ingoldstadt.

Apians’s mathematical work is linked to Regiomontanus’s writings.380

He published his work on sines in 1533.
In his Introductio geographica published in 1533,381 Apian provides a table

of sines with R = 10
5 and for every minute of the quadrant (figure 19). The

same table was reprinted in 1534 in Apian’s Instrvmentvm primi mobilis382

(figure 20) and in 1541 in his Instrumentum sinuum383 (figure 21).

375[Bressieu (1581)]
376[Roegel (2021e), Roegel (2021f)]
377See [Roegel (2021g)] and [Roegel (2021h)].
378For surveys of Apian’s life and works, see in particular [Günther (1882)], [Gal-

lois (1890a), pp. 102-116], [North (1966)], [Kish (1970)] and [Röttel (1995)]. See also the
early notice by Gessner [Gessner and Simmler (1574), p. 552].

379See in particular [Lindgren (2007)] for some background on land surveys.
380See [Kaunzner (1995)], [Folkerts (1995)] and [Lindgren (2007), p. 501].
381[Apian (1533)]
382[Apian (1534)]
383[Apian (1541)]
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This table appears to have been obtained by merely dropping the last
two digits of Regiomontanus’s table for R = 10

7, without any rounding.384

Regiomontanus’s table having only been printed in 1541, Apian must
have had access to one of the manuscripts of the 1468 table. Moreover,
as observed by Glowatzki and Göttsche, the manuscript table used by
Apian is in fact the same as the one used in the 1541 printed edition of
Regiomontanus’s table.385

And, as remarked by Kish,386 Apian’s sine table is the first printed table
giving sines every minute and divided decimally, Regiomontanus’s table
having only been printed in 1541.

I am giving separately a modern reconstruction of Apian’s 1533 table.387

Apian’s tables seem to have been copied by directly or indirectly by Bas-
santin in 1557,388 by Witekind in 1576,389 by Peucer in 1579,390, by Giuntini
in 1581,391, by Padovani in 1582,392 and indirectly by Fale393 in 1593.

6.6 Rheticus (1542)

Georg Joachim Rheticus (1514-1574) was born in Feldkirch (Austria).394 In
1539, while he was professor of mathematics in Wittenberg, he set out to
meet Copernicus in Frombork (Poland). He stayed with Copernicus for two
years, published a first account of Copernicus’s theory as Narratio Prima in
Gdansk (1540), and was instrumental in the publication of Copernicus’s De
revolutionibus orbium coelestium395 in 1543. When Rheticus returned from

384Delambre had written that the table was “computed by Apian,” but this is a bit
excessive [Delambre (1819), p. 395].

385See [von Peuerbach and Regiomontanus (1541)] and [Glowatzki and Göttsche (1990),
pp. 173-174].

386[Kish (1970)]
387[Roegel (2021i)]
388[Bassantin (1557)]
389[Witekind (1576)]
390[Peucer (1579)]
391[Giuntini (1581)]
392[Padovani (1582)]
393[Fale (1593)]
394For summaries of Rheticus’s life and works, see in particular [Kästner (1796), 561-

564], [De Morgan (1841)], [Burmeister (1967–1968)], [Bernleithner (1973)], [Rosen (1975b)],
[Kraai (2003)], [Danielson (2006)] [Wanner and Schöbi-Fink (2010)], [Schöbi-Fink and
Sonderegger (2014)], and [van Brummelen (2021), pp. 7-9]. Note also Gessner’s description
of Rheticus’s work [Gessner and Simmler (1574), p. 228].

395[Copernicus (1543)]
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his visit, he also made it possible for Erasmus Reinhold to become closely
acquainted with Copernicus’s theory, leading to the publication of the
Prutenic tables in 1551.

But in 1542, before the publication of Copernicus’s De revolutionibus,
Rheticus published its trigonometrical chapters under the title De lateribus
et angulis triangulorum.396 This work contains a table of sines at intervals of
1
′ and for a radius of 10

7 (figure 25). The sines were in fact not called sines,
but half-chords. And the table is actually by Rheticus and not by Coper-
nicus.397 More precisely, Rheticus took the sines from Regiomontanus’s
table398 published in 1541 (or from a common manuscript source). This is in
particular confirmed by printing errors found in both editions.399 Some of
the typos that remain in Rheticus’s table are in fact so conspicuous that they
should have been corrected by Rheticus. Rheticus however did not carry
over Regiomontanus’s differences, but introduced the actual differences.

In her article on Copernicus’s tables, Rosińska400 hypothesizes that
Copernicus had first planned to append to his work a table of sines with
R = 10

6 but that this table was eventually replaced by Rheticus’s one with
R = 10

7.
In the past von Braunmühl,401 Cantor,402 Busard,403 Rosen404 and Fol-

kerts405 were of the opinion that Rheticus was the real author (computer)
of the sine table. And Zinner thought that the author of the table was
Copernicus himself and that he may have been inspired to construct a table
with R = 10

7 by a glimpse of Regiomontanus’s table.406

Rheticus’s table seems to be the first table of sines where a value can
easily and explicitely be read in two different ways. This novelty was

396[Copernicus (1542)] An edition of this work is given in [Folkerts et al. (2019)].
397See [Swerdlow and Neugebauer (1984), pp. 27-28] and [Rosińska (2002), pp. 18-20].
398See [von Peuerbach and Regiomontanus (1541)], [Zinner (1988), pp. 193-194],

[Glowatzki and Göttsche (1990), p. 150] and [Rosińska (1994b)].
399[Rosińska (1987), p. 423]
400[Rosińska (2002)]
401[von Braunmühl (1900, 1903), v. 1, pp. 140-141]
402[Cantor (1900), p. 474]
403[Busard (1971a), p. 76]
404[Rosen (1975b), p. 396]
405[Folkerts (1977), p. 235]
406[Zinner (1990), p. 183]
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observed by Stamm,407 Rosen408 and more recently by Husson.409 For each
value, there is both a reading using the first line and the first column
(giving the sines), and a second reading using the last line and the last
column (giving the cosines). Similar features are found again in the tables
of Rheticus (1551), Reinhold (1554), Viète (1579), Clavius (1583), Magini
(1592) and Rheticus/Otho (1596). Of course, earlier tables, including those
of Regiomontanus, can also be read that way, but not explicitely, and it is
necessary to perform a (simple) computation to find the cosine of an angle,
for instance.

I am giving separately a modern reconstruction of Rheticus’s table.410

6.7 Copernicus (1543)

As we have seen earlier, Copernicus (1473-1543)411 had computed a small ta-
ble of secants, perhaps around 1530, and in 1542 the trigonometric chapters
of De revolutionibus orbium coelestium were published separately by Rheticus,
together with a sine table. But in Copernicus’s famous De revolutionibus
orbium coelestium published in 1543 shortly before his death,412 Copernicus
included another table of sines, with an interval of 10

′ and a radius R = 10
5

(figure 26). Like in the excerpt published in 1542, the sines were actually
not called sines, but half-chords.

Copernicus’s table shows a few deviations from the values obtained
from Regiomontanus’s table with R = 10

7 when the values are rounded
to R = 10

5. For instance there are three errors in the first 36 values (from
0
◦ to 6

◦) and Copernicus gives Sin 0
◦
40

′
= 1163 instead of 1164, Sin 1

◦
30

′
=

2617 instead of 2618, and Sin 4
◦
= 6975 instead of 6976. However, there

are more deviations when Copernicus’s table is compared to Gaurico’s
table published in 1524 (also with R = 10

5), with eight errors in the same
interval. The most likely basic explanation would then be that Copernicus
used Regiomontanus’s table for R = 10

7 and made a few rounding errors.

407[Stamm (1933), p. 2]
408[Rosen (1975b)]
409[Husson (2014)]
410[Roegel (2021j)]
411For a first summary of Copernicus’s life and works, see [Rosen (1971)]. A recent

biography of Copernicus is that by [Freely (2014)]. For further study, one might turn to
[Swerdlow and Neugebauer (1984)], to Owen Gingerich’s works as well as to Copernicus’s
complete works. On the connections between Italy and Krakow before Copernicus, see
[Walsh (1996)]. For Copernicus’s trigonometric tables, see [Rosińska (2002)].

412[Copernicus (1543)]
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Glowatzki and Göttsche were of the same opinion and concluded that
Copernicus must have used a manuscript version of Regiomontanus’s table
of sines with R = 10

7,413 as he certainly did for his table of secants.414

Copernicus probably did not take the sines directly from the table
published in 1542, although it is almost identical to that of Regiomontanus,
because Copernicus’s manuscript must have been ready long before its
publication. In any case, if Copernicus took his values from Regiomontanus,
he also made some corrections to that table, as Regiomontanus’s typos for
the sines of 36

◦
10

′ and 51
◦
20

′, reprinted in 1542, have been corrected in the
De revolutionibus orbium coelestium.415

However, I think that it is possible to get a somewhat better understand-
ing of the elaboration of Copernicus’s table. I have said above that among
the first 36 values of Copernicus’s table, there are three obvious errors
when comparing them to the rounded values from Regiomontanus’s table
with R = 10

7. For instance, for 0
◦
40

′, Regiomontanus’s table gives 116353,
and Copernicus has 1163, which looks like a truncation, but for almost
every other angle Copernicus’s sine is the rounded and not truncated value
obtained from Regiomontanus’s table.

Now, if we start with Regiomontanus’s sexagesimal table, that is, the
table with R = 6 ⋅ 10

6, the decimal values can be obtained by dividing
Regiomontanus’s values by 6. Considering only the first 36 values in
Copernicus’s table (from 0

◦ to 6
◦), it appears that until 3

◦
50

′, one obtains
Copernicus’s values by dropping one digit of Regiomontanus’s table and
rounding, then dividing by 6, then rounding.416 For instance, for 0

◦
50

′, one
obtains 8726/6 = 1454.333 . . . which is rounded to 1454. In case the result is
a half integer, the rounding occurs to the integer below, except if the first
rounding was by default, although there may be exceptions (such as 2

◦
40

′)
taking account of how the first rounding was performed.

This procedure fails after 3
◦
50

′ and it seems that a different operation
was involved. In fact, between 4

◦ and 5
◦
20

′, there was apparently a trun-
cation of the last two digits of Regiomontanus’s table, the resulting value
was multiplied by 10, divided by 6 and rounded. Between 5

◦
40

′ and 6
◦, the

initial procedure was again applied. These two procedures give a slightly
better outcome than merely using Regiomontanus’s table with R = 10

7.

413[Glowatzki and Göttsche (1990), pp. 178-179]
414[Glowatzki and Göttsche (1990), p. 192]
415[Glowatzki and Göttsche (1990), p. 150]
416This procedure is reminiscent from that probably used by Gaurico in 1524, although

Gaurico started with Engel’s table.
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If we look at the last page of Copernicus’s table, also containing 36
values, a comparison with Regiomontanus’s table with R = 10

7 reveals five
rounding errors (84

◦
30

′, 85
◦, 86

◦
40

′, 87
◦
40

′ and 89
◦
50

′). But if we start with
the great sexagesimal table as above, there are in fact even more errors, 16
altogether. For instance, for 86

◦ one obtains 99757, and not Copernicus’s
99756.

I have of course only sampled the first and last 36 values of Copernicus’s
table, and this should be further investigated. It suggests however that
different computations may have been involved in the making of Coper-
nicus’s sine table, and probably that some parts of Copernicus’s table are
based on Regiomontanus’s sexagesimal table, whereas others are based on
the table with R = 10

7, in addition of involving different rounding schemes
from the same source. It is also possible that some values were based on
other tables. But among the 16 values that are incorrectly rounded on the
last page of Copernicus’s table when starting with Regiomontanus’s great
sexagesimal table, only 10 of Copernicus’s values are identical with those
published by Apian in 1534.417 It is therefore not possible to conclude that
Copernicus used Apian’s table. Perhaps for some comparisons, but not for
all values.

Given this somewhat confused situation, it is understandable that
Copernicus’s table led to other opinions or conclusions. For instance,
Stamm418 wrote that Copernicus probably compared his values to those
published by Apian in 1534,419 but I have just shown that this is not conclu-
sive. Folkerts420 thought that Copernicus had computed the table himself,
since he could not have been able to use Regiomontanus’s table for R = 10

7

which was only published in 1541. Looking for Copernicus’s source, Swerd-
low and Neugebauer421 excluded most sources, including Regiomontanus’s
tables printed in 1541, but they did not conclude further. And according
to Rosińska,422 Copernicus did not use Regiomontanus’s table for his table
of sines, although she did not provide another theory for the origin or
calculation of the table.

417[Apian (1534)]
418[Stamm (1933)]
419[Apian (1534)]
420[Folkerts (1977), p. 234]
421[Swerdlow and Neugebauer (1984), pp. 100-101]
422[Rosińska (1987), p. 422]
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6.8 Gemma Frisius (1545)

Gemma Frisius (1508-1555) (Jemme Reinerszoon, or Rainer Gemma) was
a Dutch physician, mathematician, cartographer, philosopher, and instru-
ment maker. He was born in Dokkum in the Netherlands.423

Gemma Frisius first practiced medicine in Louvain, but his real inter-
ests seem to have been geography and mathematics. In 1529 he revised
Peter Apian’s Cosmographia. He also designed globes and astronomical
instruments. He died in Louvain.

In 1545, he published his De radio astronomico et geometrico424 in which
he included a table of cotangents (figure 27) which was copied from Re-
giomontanus.425

This work also contained a table of arctangents (figures 28 and 29)
obviously copied from that of Peuerbach published in 1516.426

6.9 Rheticus (1551)

In 1551, Rheticus (1514-1574)427 published his Canon doctrinæ triangulo-
rum.428 There, he gave the sines, cosines, tangents, cotangents, secants
and cosecants at intervals of 10

′ and for a radius R = 10
7. Rheticus’s table

was in fact the first table to give all six possible ratios in a right triangle
(figure 31).429

The sines in Rheticus’s table were copied from Regiomontanus’s table
for R = 10

7.430 Most of the values were not changed, but some of the
typos were corrected, for instance the cosine of 38

◦
40

′ whose value was still
incorrect (as Sin 51

◦
20

′) in Rheticus’s 1542 table.
Rheticus made new computations for the tangents and the secants using

423For summaries on Gemma Frisius’s life and works, see [Cantor (1878)], [Hallyn (1996),
Hallyn (1998), Hallyn (2004), Hallyn (2008)] and [Kish (1972)]. [Lindgren (2007)] gives
some background on Gemma Frisius’s work on land surveys. Note in passing that Gessner
briefly mentions Gemma Frisius [Gessner and Simmler (1574), p. 221].

424[Gemma Frisius (1545)]
425[Glowatzki and Göttsche (1990), p. 181]
426[von Peuerbach (1516)]
427[Rosen (1975b)]
428[Rheticus (1551)] See [De Morgan (1845a), De Morgan (1845b)].
429However, in the first treatise of trigonometry independent of astronomical applica-

tions, the Treatise on the Quadrilateral, the Persian al-Tūsı̄ (1201-1274), already in the 13th
century, had used all six trigonometric functions [Archibald (1949), p. 31].

430See [Rosińska (1994b)] and [Glowatzki and Göttsche (1990), p. 152]
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these sines. According to Glowatzki and Göttsche,431 Rheticus merely
computed the ratios for the tangents, but things are actually a bit more
complicated.

First, it appears that the secants and cosecants were computed by divid-
ing 1 (or rather 10

14) by the values of the cosines or sines, and truncating
the results. This can readily be observed on the secants of 17

◦
20

′, 29
◦, 29

◦
50

′,
43

◦, etc., and practically every ratio whose decimal part is greater than 0.5.
This is also true for the cosecants, an example being 35

◦
30

′.
But the tangents and cotangents are another story. I don’t know exactly

how Rheticus computed these values, but a close examination of Rheticus’s
values reveals that the tangents are more accurate than the cotangents and
consequently one cannot have been computed from the other. They must
have been computed differently. The tangents may have been computed
by dividing the sines by the cosines, but this cannot have been the case for
the cotangents.432

It appears that the values of the cotangents are close to those obtained
when computing

Cotx =
√

Csc2 x −R2

but they are not totally identical. The agreement is however much better
than that obtained by merely dividing the values of the cosines by the sines
of Regiomontanus, and it may even be a little better if Csc

2
x is rounded

to seven or eight significant digits. This hypothesis may need to be tested
further, but it parallels a suggestion by van Brummelen and Byrne for the
computation of secants by Maurolico,433 although I argue below that their
suggestion is in fact not applicable to Maurolico’s computations. However,
I also suggest below that Fincke used a similar procedure to compute his
secants in 1583.

In any case, Rheticus’s work remains based on Regiomontanus’s tables,
and although he was the first to construct a table giving all six triangle ratios,
he did not compute the cosecants and cotangents sufficiently accurately
for small angles, and seems to have not yet understood that more accurate
sines were needed. He had no problems giving cosecants and cotangents to
10 figures, when the sines were only given to 5 figures. This understanding
of the need for more accurate sines only came later, and even the Opus

431[Glowatzki and Göttsche (1990), p. 185]
432It will be interesting to see to what conclusions came [Pritchard (2021)] who seems to

have conducted a similar investigation, but whose result is not yet published at the time I
am writing this.

433[van Brummelen and Byrne (2021)]
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palatinum434 published in 1596 is still marred by this problem which will
only fully be solved by Pitiscus in the early 17th century.435

I am giving separately a modern reconstruction of Rheticus’s table.436

6.10 Reinhold (1554)

Erasmus Reinhold (1511-1553) was a German astronomer and mathemati-
cian. He was born in Saalfeld, Germany. In 1536 he became professor of
mathematics at the university of Wittenberg.437 In 1542, Reinhold published
a commentary on Peuerbach’s Theoricae Novae Planetarum. When Rheticus
came back from his visit to Copernicus, Reinhold studied Copernicus’s
theory closely and after the publication of Copernicus’s De revolutionibus
orbium coelestium, Reinhold made detailed annotations of this work.438

Between 1544 and 1551, Reinhold worked on recasting Copernicus’s the-
ory in handier tables and in 1551 he finally published his Tabulæ prutenicæ
cœlestium motuum (Prutenic tables).

In his Primus liber tabularum directionum published in 1554 after his
death,439 Reinhold gave a table of sines (figure 34) and a table of tangents
(figures 32 and 33), both with radius R = 10

7 and at intervals of 1
′.440

The sines were copied from Regiomontanus’s sines,441 probably from
the 1541 printing, but the tangents were recomputed at intervals of 1

′, using
these sines.442 Moreover, in the range from 89

◦ to 89
◦
59

′
50

′′, Reinhold gave
the tangents at intervals of 10

′′.
The tangents seem to have been computed in a non systematic way.

For the angles which are found in Regiomontanus’s table, Reinhold has
apparently mostly taken the ratio of the sines given by Regiomontanus, but
sometimes the result was truncated (for instance for Tan 1

◦ where Reinhold
gives 174550 instead of 174551), and sometimes the sines were rounded
to the tens (for instance for Tan 10

◦ where 173648/984808 was computed

434[Rheticus and Otho (1596)]
435[Pitiscus (1613)]
436[Roegel (2010c)]
437For a summary of Reinhold’s life and works, see [Gingerich (1975)]. Note in passing

that Gessner briefly mentions Reinhold [Gessner and Simmler (1574), p. 184].
438[Gingerich (1973)]
439[Reinhold (1554)]
440See [van Brummelen (2021), pp. 5-7].
441[Glowatzki and Göttsche (1990), pp. 152-153]
442[Glowatzki and Göttsche (1990), p. 185]
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instead of 1736482/9848078). In the case of Tan 80
◦, there must have been a

computation error, as Reinhold has actually computed 9848085/1736482
instead of 9848078/1736482. This error is not present in Rheticus’s table.443

My samples may or may not be representative of the entire table, and it
would be useful to conduct a thorough analysis of Reinhold’s table of tan-
gents.444 It seems in particular that Reinhold did not copy Rheticus’s values
given in 1551 at intervals of 10

′. Reinhold’s error on Tan 80
◦, incidentally, is

found again in Fincke’s table,445 as well as in Clavius’s table.446

In the last part of the table, Reinhold added the tangents at intervals
of 10

′′. The values themselves are not as accurate as one might wish, but
this matters little here. What does interest us is to find out how Reinhold
computed these values. These computations seem so far not to have been
analyzed, not even by Glowatzki and Göttsche.447 At first, this part of the
table suggests a new computation of the sines and cosines of 10

′′, 20
′′, etc.,

up to 59
′
50

′′, but this was most certainly not the case. It is in fact very easy
to see what Reinhold has done, because the ratios behind each tangent
value can be reconstructed. I am giving here only some samples:

Angle Fraction Value

89
◦

0
′
10

′′ 9998370

174038
57.44935014 . . .

89
◦

0
′
30

′′ 9998502

173070
57.77143352 . . .

89
◦

0
′
50

′′ 9998519

172101
58.09680943 . . .

89
◦
30

′
10

′′ 9999625

86780
115.22960359 . . .

89
◦
30

′
20

′′ 9999628

86296
115.87591543 . . .

89
◦
59

′
10

′′ 9999999

2424
4125.41212871 . . .

89
◦
59

′
20

′′ 9999999

1939
5157.29706034 . . .

89
◦
59

′
30

′′ 10000000

1455
6872.85223367 . . .

89
◦
59

′
40

′′ 10000000

970
10309.27835051 . . .

89
◦
59

′
50

′′ 10000000

485
20618.55670103 . . .

443[Rheticus (1551)]
444The forthcoming study [Pritchard (2021)] may contain some interesting clues on this

matter.
445[Fincke (1583)]
446[Clavius (1586)]
447[Glowatzki and Göttsche (1990), p. 185]
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The “Fraction” column gives the ratios actually used by Reinhold for
the tangents, and the column on the right gives the values of these fractions.
These can be compared with those in Reinhold’s table.

It turns out that the values given by these fractions are almost exactly
those of Reinhold, with the occasional rounding errors or typos. For in-
stance, Reinhold table has Tan 89

◦
0
′
10

′′
= 574493507 which must be a typo

for 574493501. In most cases, the fractions seem to have been truncated
(and for instance for 89

◦
30

′
10

′′ this resulted in the incorrect value), but in
some cases they were rounded (for instance for 89

◦
59

′
30

′′).
We can see in this sample that Reinhold uses

Sin 10
′′
= 485 Sin 20

′′
= 970 Sin 30

′′
= 1455

Sin 40
′′
= 1939 Sin 50

′′
= 2424 . . .

and these values are obtained by linear interpolation of Regiomontanus’s
sines. There may again be some slight inaccuracies, and the value of
Sin 59

′
50

′′ would for instance have been better at 174039 than 174038.
The numerators used by Reinhold were also obtained by interpolation

from Regiomontanus’s values. For instance, for 89
◦
30

′′, 9998502 is just
halfway between Regiomontanus’s sine values 9998477 and 9998527. But
for Tan 89

◦
10

′′, something obviously went wrong, because the value of
Sin 89

◦
10

′′ used is smaller than that for Sin 89
◦, although the resulting value

is still acceptable. Of course, given the limited number of significant digits
for the sines, especially at the end of the range, most of the figures in the
tangents end up being meaningless. It doesn’t make much sense to give
Tan 89

◦
59

′
50

′′ to 12 places, when the value of Sin 10
′′ used only has three

places. . .
We can also see that at the end of the range Reinhold moved to cosine

values of 10
7, but that he did not try to do a finer interpolation. In any

case, such an analysis can be made for all 60 × 5 = 300 values which are
not multiples of 1

′, but this is left as an exercise. There may be other errors
such as the one mentioned for 89

◦
10

′′ and it might be interesting to do some
detailed statistics about these errors.

It is precisely for these reasons that Viète’s tangents and secants pub-
lished in 1579 are much more accurate than those of Reinhold, because
Viète used sufficiently accurate sines for the number of figures he was
trying to compute for the tangents and secants.

Reinhold’s table of tangents was the first table of tangents at intervals
of 1

′. Secants at this interval would only be published 25 years later by
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Viète.448 Reinhold’s tangents were reused by Fincke in 1583, and Fincke
added the secants.

A modern reconstruction of Reinhold’s tables is provided separately.449

6.11 Bassantin (1557)

James Bassantin (c1504-1568) was a Scottish astronomer and mathematician
who came to France under the reign of Henri II who was King of France
from 1547 to 1559.450

Bassantin owes his fame to the publication of his Astronomique Dis-
cours451 in 1557 in Lyon. This book contains many volvelles based on the
system of Ptolemy.452 It also contains a table of sines with R = 10

5 and
at intervals of 1

′ (figure 35) which was presumably copied from Apian,
since both the values and the layout agree with Apian’s 1533,453 1534454

and 1541455 tables. Glowatzki and Göttsche came to the same conclusion.456

Possibly the only altered value is the sine of 89
◦
59

′ which Apian had put
at 100000, but which Bassantin put at its correct value, 99999. However,
many other values are wrong, since Apian truncated and did not round
Regiomontanus’s values.

6.12 Maurolico (1558)

Francesco Maurolico (1494-1575) was a mathematician and astronomer
born in Messina, Sicily, but of Greek lineage. He lived almost all of his life
in Sicily and made contributions to the fields of geometry, optics, conics,
mechanics, music, and astronomy.457 He was ordained a priest in 1521 and

448[Viète (1579)]
449[Roegel (2021k)]
450See [de Chaufepié (1750), p. 112], [Delambre (1821), v. 1, p. 308-309], [Hoefer (1873),

p. 314] and [Henderson (1885)] for some biographical elements on Bassantin. In France, he
was called Jacques Bassantin.

451[Bassantin (1557)]
452For some interesting information on the physical structure of this work,

see [Vaucher (2020)].
453[Apian (1533)]
454[Apian (1534)]
455[Apian (1541)]
456[Glowatzki and Göttsche (1990), p. 169]
457For a summary of Maurolico’s life and works, see [Masotti (1974)] and [van Brumme-

len (2021), pp. 12-13]. Note in passing that Gessner briefly mentions Maurolico [Gessner
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later became a Benedictine.
Maurolico edited the works of classical authors including Archimedes,

Apollonius, Autolycus, Theodosius and Serenus. He also composed his
own unique treatises on mathematics and mathematical science.

In 1558, Maurolico published his commentary on the spherics of Theo-
dosius.458 It contains short tables of sines (figure 39), tangents (figure 40)
and secants (figure 41), all using the radius R = 10

5 and only giving values
every degree. Maurolico also gave the tangents and secants for 89

◦
15

′,
89

◦
30

′, 89
◦
45

′, 89
◦
55

′ and 89
◦
59

′.
The values of the sines differ from those of the earlier tables with

R = 10
5, namely those of Gaurico (1524)459 and Apian (1533).460 Instead,

Maurolico seems to have taken his values from Regiomontanus’s table by
dropping two digits and rounding.461 And, contrary to what von Braun-
mühl wrote,462 Maurolico was unaware of Rheticus’s Canon doctrinæ trian-
gulorum463 published in 1551.464

As far as the tangents are concerned, Glowatzki and Göttsche wrote
that Maurolico took his values from Regiomontanus’s Tabulæ directionum
profectionumque465 and recomputed those above 45

◦ using Regiomontanus’s
sines.466

But according to Brummelen,467 the tangents were copied from Re-
giomontanus’s 1490 table up to about 60

◦. Above 60
◦, the values of the

tangents seem to have been recomputed from Regiomontanus’s sines and
Brummelen implies (his table 3) that they have been recomputed that way
until 89

◦
15

′ inclusive. Beyond 89
◦
15

′ the difference between Maurolico’s
values and those computed from Regiomontanus’s sines becomes much
larger. The last four values are more accurate than the values that could
have been obtained from Regiomontanus’s table with R = 10

7. Van Brum-

and Simmler (1574), p. 204].
458[Maurolico (1558)]
459[Regiomontanus (1524)]
460[Apian (1533)]
461[Glowatzki and Göttsche (1990), pp. 178-179]
462[von Braunmühl (1900, 1903), vol. 1, p. 151]
463[Rheticus (1551)]
464See [van Brummelen and Byrne (2021), p. 200]. In 1944, Zeller had already considered

the different opinions of Fincke and Magini, but without settling with any [Zeller (1944),
p. 72].

465[Regiomontanus (1490)]
466[Glowatzki and Göttsche (1990), pp. 181, 185]
467[van Brummelen and Byrne (2021), p. 202]
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melen therefore suggested some kind of independent computation.468

I believe however that the threshhold for that “independent” computa-
tion occurs earlier than 89

◦
15

′. In fact, it is easy to see what Maurolico has
done for the last values of the table. He basically recomputed the required
sines with one more digit and used them for the tangents. For instance,

• for 89
◦
30

′, Maurolico used 9999619.2

87265.3
= 114.588721 . . . (and printed

11458872), when Regiomontanus had only given Sin 89
◦
30

′
= 9999619

and Sin 30
′
= 87265;

• for 89
◦
45

′, Maurolico used 9999904.8

43633.1
= 229.1816258 . . . (and printed

22918163), when Regiomontanus had only given Sin 89
◦
45

′
= 9999904

and Sin 15
′
= 43632 (and not 43633);

• for 89
◦
55

′, Maurolico used 9999989.4

14544.5
= 687.544391 . . . (and printed

68754439), when Regiomontanus had only given Sin 89
◦
55

′
= 9999989

and Sin 5
′
= 14544;

• for 89
◦
59

′, Maurolico used 9999999.6

2908.9
= 3437.725463 . . . (and printed

343772546), when Regiomontanus had only given Sin 89
◦
59

′
= 9999999

and Sin 1
′
= 2909.

The values taken by Maurolico are all correct, except for Sin 5
′ which

should have been 14544.4 and Sin 30
′ which should have been 87265.4. In

summary, Maurolico must have recomputed the sines of eight angles (1′, 5
′,

15
′, 30

′, 89
◦
30

′, 89
◦
45

′, 89
◦
55

′ and 89
◦
59

′), perhaps using Sin 1
′ as a basis. In

fact, if Maurolico has started with Sin 1
′
= 2908.9, he could have computed

Sin 5
′ and found 14544.5 or even 14544.4, depending how he computed the

value. Continuing with 14544.4, Maurolico could have found Sin 15
′ to be

43633.1, and eventually Sin 30
′ to be 87265.3.

This procedure was applied at least as early as 85
◦ and we can see for

instance that the ratio 9961947/871557.4 gives exactly Maurolico’s value,
but that 9961947/871557 (Regiomontanus’s values) does not.

Maurolico’s accurate computation of the last tangents then boils down
to a one digit more accurate value of sin 1

′ than that provided by Regiomon-
tanus. I don’t know how Maurolico obtained that value, but there is a very
simple way, which is to observe that the sine of a small angle measured on
the circumference (in radians) is almost equal to the angle itself. Therefore,
with R = 10

7,
Sin 1

′
≈

π

180 ⋅ 60
⋅ 10

7
= 2908.882 . . .

468[van Brummelen and Byrne (2021), p. 205]
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and all that Maurolico needed was to take 2908.9 instead of Regiomon-
tanus’s 2909. There was no need to resort to bisections, trisections, etc.,
and to recompute the sines of small angles. There was also no need to
interpolate as Regiomontanus did to construct his tables. And proceeding
the above way does not require a very accurate value of π, as Ptolemy’s
value 3.1416 . . . is sufficient.

Maurolico’s third table is his table of secants, which he called tabella
benefica.469 It was actually Fincke who first named that function secant.470

Fincke thought that Maurolico had copied his secants from Rheticus.471

But Brummelen recently gave an edition of Maurolico’s short manual
of his tabella benefica.472 There Maurolico claims that he worked on this
matter in 1550, and it would then very likely be a work independent of
that of Rheticus. Magini had also assumed that Maurolico’s work was
an independent one, not influenced by Rheticus.473 One might therefore
assume that it was directly computed from Regiomontanus, probably from
the 1541 edition.

Maurolico’s table of secants is in fact very accurate, and more accurate
than what would have been obtained by a mere use of Regiomontanus’s
tables.474 In order to explain this accuracy, Brummelen and Byrne claim
that Maurolico computed the secants from the tangents, and not directly
from Regiomontanus’s sines, as claimed by Glowatzki and Göttsche.475

According to van Brummelen and Byrne, Maurolico used the relation

sec
2
θ = tan

2
θ + 1

which transcribes into
Sec

2
θ = Tan

2
θ +R

2

when the radius is R. For instance, for θ = 81
◦, Tan θ = 631375 and√

6313752 + 1000002
= 639245.172 . . . and Maurolico gives Sec θ = 639245.

This appears to work for 81
◦, but merely computing 1/1564345 would have

given the correct result too.

469[Delambre (1819), p. 440]
470[Fincke (1583)]
471[van Brummelen and Byrne (2021), p. 200]
472See [van Brummelen and Byrne (2021)] as well as [van Brummelen (2021), p. 22].
473See the second page of the preface of Magini’s Primum mobile [Magini (1609)], of which

an excerpt is translated in [van Brummelen and Byrne (2021)], but mistakenly attributed
to Magini’s De planis triangulis.

474[van Brummelen and Byrne (2021), p. 206]
475[Glowatzki and Göttsche (1990), p. 193]
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In fact, the procedure suggested by van Brummelen and Byrne (which
echoes Birkenmajer’s suggestion for Copernicus’s table of secants) does
not always work, and fails to give Maurolico’s values for 86

◦, 87
◦, or 89

◦
30

′.
The solution is actually much simpler, and Maurolico must have proceeded
like for the tangents, using an additional digit for a number of sines. Doing
so from 85

◦ to the last angle gives the values in Maurolico’s table, the
only exception being 86

◦. But in that case, computing the secant from the
tangent also does not yield the value in Maurolico’s table. It is possible that
Maurolico only used one additional digit for the secants from 87

◦, or that
he made a mistake, or perhaps that the table contains a typo there.

Incidentally, Fincke seems to have used the procedure suggested by van
Brummelen and Byrne in order to compute his secants in 1583 (and in fact
van Brummelen and Byrne claim so,476 but with no references).

I have also given a modern reconstruction of Maurolico’s tables in a
separate document.477

6.13 Eisenmenger (1562)

Samuel Eisenmenger (1534-1585), known as Siderocrates, was a German
physician, theologian and astronomer. He was professor of astronomy at
the University of Tübingen in 1557-1568.

In 1562, Eisenmenger published his Libellus geographicus478 in which he
gave a table of sines with R = 10

7 and at intervals of 1
′ (figure 42). This

table was certainly also copied from Regiomontanus,479 and probably from
the 1541 printing.480 The layout and headings of Eisenmenger’s table are
practically identical to those of Regiomontanus’s published table, except
that Eisenmenger put only half a degree in each column.

6.14 Schreckenfuchs (1569)

Erasmus Oswald Schreckenfuchs (1511-1579) was an Austrian humanist,
astronomer and Hebraist.481 In 1551 he produced a commentary to the Al-

476[van Brummelen and Byrne (2021), p. 206]
477[Roegel (2021l)]
478[Eisenmenger (1562)]
479[Glowatzki and Göttsche (1990), pp. 153-154]
480[von Peuerbach and Regiomontanus (1541)]
481For a summary of Schreckenfuchs’s life and works, see [von Khauz (1755), pp. 184-

203]. Note in passing that Gessner briefly mentions Schreckenfuchs [Gessner and Simm-
ler (1574), p. 184].
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magest of Ptolemy and in 1556, he published a commentary on Peuerbach’s
Theoricae Novae Planetarum.482

In 1569, in his Commentaria in Sphaeram Ioannis de Sacrobusto,483 he
reprinted Regiomontanus’s table of tangents from one of the editions of the
Tabulæ directionum profectionumque (figure 43).

But Schreckenfuchs also gave two tables of sines. His first table of
sines covers two pages and uses the radius R = 60000 and an interval
of 15

′ (figure 44). This table is likely based on the table of sines found
in Regiomontanus’s Tabulæ directionum profectionumque (1490, 1504, 1550,
1552 or 1559), namely Johannes Engel’s table (figure 16), as the values are
truncated and not rounded from the large table with R = 6 ⋅ 10

6.
Schreckenfuchs’s second table spans six pages, also with 15

′ intervals,
and uses a radiusR = 60 and three sexagesimal places (figure 45). However,
the last place is always given as 0 or 30. This second table cannot have
been obtained from the first one. For instance, for 15

′, Schreckenfuchs
gives the sine as 261 (60000 × sin 15

′
= 261.7 . . .), but 261 would give a

sine of 0
p
15

′
39

′′
36

′′′, not 0
p
15

′
42

′′
30

′′′. It is therefore to assume that now
Schreckenfuchs used the sines in Regiomontanus 1541 (or 1561). For 15

′,
Regiomontanus gave 26180, and this then would lead to 0

p
15

′
42

′′
28.8

′′′ that
Schreckenfuchs could have rounded to 0

p
15

′
42

′′
30

′′′.

6.15 Witekind (1576)

Hermann Witekind (or Wilken) (1522-1603), a student of Melanchthon, was
a German humanist and mathematician. In 1585, under the pseudonym
of Augustine Lercheimer he published a book against the persecution of
witches.484

In 1576, he published his work Conformatio horologiorum sciotericorum
etc.485 in which he included a table of sines for a radius of 100000 and for
every minute of the quadrant (figure 46). This table was presumably copied
from one of Apian’s tables (1533, 1534 or 1541),486 as the values all seem to
agree.487 The layout, however, is different. Each page has six columns for
degrees and 30 rows for 30 minutes. Six degrees therefore span two pages.

482[Malpangotto (2020), pp. 221-232]
483[Schreckenfuchs (1569)]
484[Binz (1888)]
485[Witekind (1576)]
486[Apian (1533)], [Apian (1534)] and [Apian (1541)].
487[Glowatzki and Göttsche (1990), p. 169]
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Moreover, repeated leading digits are not printed (for instance the value
145 following 116 is shown as 45).

Among Witekind’s other scientific publications, I mention only his De
sphaera mundi published in 1574 (second edition in 1590).

6.16 Peucer (1579)

Caspar Peucer (1525-1602) was a German reformer, physician, and scholar
from Bautzen, Germany.488 He wrote on mathematics, astronomy, geom-
etry, and medicine, and edited some of Philip Melanchthon (1497-1560)’s
letters, having married one of his daughters. He also became professor
of mathematics in Wittenberg in 1554, the successor of Erasmus Reinhold
after his untimely death in 1553. In 1560, he was appointed to the medical
faculty of Wittenberg.

In his De dimensione terræ etc.489 published in 1579, and reprinted in
1587, Peucer included a table of sines for R = 10

5 and at intervals of 1
′

(figure 47). The situation parallels that of Witekind, and Peucer’s table was
presumably also copied from Apian (1533, 1534 or 1541),490 since the values
agree,491 with only minor alterations. However Peucer adapted Apian’s
layout and put only five degrees and 30 minutes per page. Therefore one
page of Apian’s table corresponds to four pages of Peucer’s table.

6.17 Viète (1579)

François Viète (1540-1603) was a French mathematician whose work on the
new algebra was an important step towards modern algebra. According to
Zeller, Viète “was the foremost mathematician of France in the sixteenth
century.”492 Viète received a bachelor’s degree in law in 1560 and held
a number of official positions. In 1573, the King Charles IX made him
counselor to the parlement of Brittany. He came back to Paris in 1580.
Among his many works is his In artem analyticem isagoge, the earliest work
on symbolic algebra (1591).

488For a summary of Peucer’s life and works, see [Kolb (1976)].
489[Peucer (1579)]. Earlier editions from 1550 [Chassagnette (2006)] and 1554 do not

include the table of sines.
490[Apian (1533)], [Apian (1534)] and [Apian (1541)].
491[Glowatzki and Göttsche (1990), p. 169]
492[Zeller (1944), p. 73]. For summaries of Viète’s life and works, see [De Morgan (1843)],

[Ritter (1895)], [Busard (1976)], and [van Brummelen (2021), pp. 9-11].
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Also inspired by Rheticus’ 1551 Canon doctrinæ triangulorum,493 Viète
constructed a new table, which he called the Canon mathematicus.494 This
work contained a typographically sophisticated table of the six trigono-
metric functions for every minute of the quadrant and with a radius of
100000, with sometimes one or more additional figures495 (see figure 48).
The printing of the table was started in 1571 but it was only completed in
1579.496

This was the first published canon giving the trigonometric functions ev-
ery minute, but on the other hand it gave them to less places than Rheticus’
1551 table (which however only had an interval of 10

′).
The sines from 0

◦ to 45
◦ and the cosines from 0

◦
30

′ to 45
◦ were taken

from Regiomontanus (or Reinhold) and rounded or not, depending on the
range of the table. Glowatzki and Göttsche had observed that Viète had
recomputed the sines from 89

◦
61

′ to 90
◦,497 but in fact the cosines from 0

◦

to 30
′ have been computed from Regiomontanus’s (or Reinhold’s) sines,

probably with cosx ≈ 1− sin
2
x

2
, which, with a radiusR other than 1, becomes

Cosx ≈ R − Sin
2
x

2R
. For instance, for 6

′, R = 10
8 and Regiomontanus’s sine

value 17453:

Cos 6
′
≈ 10

8
−

174530
2

2 ⋅ 108
= 10

8
−

17453
2

2 ⋅ 106
= 99999847.69 . . .

and Viète gives the value 99999848. Viète did not use the values of the sines
in his table for this purpose, and using 175 (Viète’s value for Sin 6

′) in the
previous example would not produce a sufficiently accurate cosine.

For the tangents and secants, Glowatzki and Göttsche wrote that they
were recomputed from Regiomontanus’s values.498 But we can actually tell
a bit more.

First, we can see that Viète computed the secants from 0
◦ to 45

◦ by
inverting his cosines (and not those of Regiomontanus). The tangents
between 0

◦ to 45
◦ were computed by using Regiomontanus’s full values.

493See [Rheticus (1551)] and [Hunrath (1899)].
494[Viète (1579)]
495See [Hunrath (1899)] and [Delambre (1819), pp. 455-456]. The cosines and secants are

given more accurately than the other values throughout the table. They are given to four
more places from 0

◦ to 0
◦
2
′, to three more places from 0

◦
3
′ to 0

◦
24
′, to two more places

from 0
◦
25
′ to 4

◦
5
′, and to one more place from 4

◦
6
′ to 45

◦.
496[Tannery (1896), p. 205]
497[Glowatzki and Göttsche (1990), pp. 154-155]
498[Glowatzki and Göttsche (1990), pp. 189, 196]
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Then, the cotangents from about 5
◦ to 45

◦ were also computed from the
ratios cos / sin using Viète’s values (and not by inverting the tangents). The
cosecants from about 5

◦ to 45
◦ were computed by inverting Viète’s values

of the sines.
But for the cotangents and cosecants between 0

◦ and about 5
◦, Viète

used more accurate values of the sines than those printed in his table, with
1 to 5 more figures than Regiomontanus. For instance, for Cot 1

′, Viète
used Sin 1

′
= 29.0888204 (here with R = 10

5), that is 5 more figures than
Regiomontanus. This enabled him to obtain (reducing the cosine and sine
to R = 10

9)

cot 1
′
=

999999958

290888.204
= 3437.74668

or (with R = 10
5)

Cot 1
′
=

999999958

290888.204
× 10

5
= 343774668

and this is precisely the value given in the Canon mathematicus (the exact
value being 343774667).

The same applies for Csc 1
′. For Sin 2

′, Viète took 58.1776385, whereas
Regiomontanus only has 5818. And so on.

These values are much more accurate than the tangents and secants
given by Reinhold in 1554 and Fincke in 1583 for large angles, and obvi-
ously Viète had a much better understanding of the requirements for exact
computations.

In his treatise on angular sections,499 Viète describes a way to compute
the sine of 1

′ and other values he needed. This sine can be obtained as
follows. First, like Ptolemy before, one can compute the sines of 18

◦ and 60
◦.

Trisecting 60
◦ twice, we obtain Sin 20

◦ and then Sin 6
◦
40

′. Using quinquisec-
tion with 18

◦, we obtain Sin 3
◦
36

′. Bisecting 6
◦
40

′ we find Sin 3
◦
20

′. Using
the two values Sin 3

◦
36

′ and Sin 3
◦
20

′, we obtain the sine of the difference
of the angles, namely sin 16

′. And bisecting 16
′ four times, we obtain Sin 1

′.
But as a matter of fact Viète seems to have proceeded slightly differently
for his table. He actually found two approximations of Sin 1

′, one greater
and one smaller than the sought value. An interpolation between these
two values then gave a better approximation of Sin 1

′.500

As observed by Tannery, Viète’s tables are rare because of the success
of Rheticus’ Opus palatinum (1596),501 of Pitiscus’ Thesaurus mathematicus

499See [Viète (1615)] and [Zeller (1944), pp. 79-80].
500See [Viète (1579), pp. 62-67] and [van Brummelen (2021), pp. 22-23].
501[Rheticus and Otho (1596)]
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(1613),502 and because of the introduction of logarithms in 1614. They all
made Viète’s tables obsolete.

A persistent legend is also that the Canon mathematicus contained many
errors, and that Viète consequently withdrew or re-purchased all the copies
he could find and had them destroyed. This would then explain why this
book is of great rarity.503 But according to Ritter’s biography of Viète,504 this
legend rests on the editor of Viète’s 1646 Opera omitting the Canon mathe-
maticus, on the grounds that the computations would have to be redone.505

Moreover, as I have shown, Viète’s table is actually very accurate.506

The Canon mathematicus was also published with a London imprint in
1589 (Opera mathematica, London: Bouvier) and there is an edition dated
1609, but Bosmans showed that it is not a reprint. It is the 1579 edition
rebound.507 Cantor and von Braunmühl had mistakenly thought that it was
a new edition,508 probably after Eneström led them to think so.509

A modern reconstruction of Viète’s table is given separately.510

6.18 Bressieu (1581)

Maurice Bressieu (c1546-1617) was a French mathematician and human-
ist.511 In 1576, Bressieu won a position of mathematics professor founded
in Paris by Petrus Ramus (1515-1572), which he kept until 1608.512

In his Metrices astronomicæ published in 1581,513 Bressieu first gives a
sexagesimal table of sines, with an unusual layout (figure 49). The sines
and sines of the complementary angle (cosines) are given in two adjacent
columns and the table therefore only runs up to 45

◦. But Bressieu’s layout
is in fact very unusual, in that it doesn’t use a footer line. In figure 49, the
first column (headed 18) gives from top to bottom the sines from 18

◦ to 19
◦.

The second column (headed 71) gives the sines from 71
◦ to 72

◦, but from

502[Pitiscus (1613)]
503See [Eneström (1892)] and [Cantor (1900), pp. 583-584].
504[Ritter (1895), p. 54]
505See [Tannery (1896), p. 208] and [Tannery (1900)].
506[Roegel (2011)]
507See [Bosmans (1901-1902), pp. 111-114] and [Bosmans (1901), pp. 297-298].
508See [von Braunmühl (1900, 1903), v. 1, p. 158] and [Cantor (1900), p. 583].
509[Eneström (1892)]
510[Roegel (2011)]
511See [de Mérez (1880)] for a summary of Bressieu’s life and works.
512[Waddington (1855), p. 337]
513[Bressieu (1581)]

91



bottom to top. Consequently, the second column actually also gives the
cosines from 18

◦ to 19
◦, from top to bottom.

The values are given in degrees (or parts) with a radius of 60. For
instance, the sine of 45

◦ is given as 42; 25, 35 as Sin 45
◦
= 42 + 25/60 +

35/60
2+⋯. This table contains exactly the same values as in Fine’s tables.514

Bressieu also gives a second table (figure 50), which actually contains
values of the tangents and secants, also with a radius of 60. For instance,

Tan 45
◦
= 60 is given as 1, 0; 0, 0

Sec 60
◦
= 120 is given as 2, 0; 0, 0

Tan 89
◦
3
′
= 60

2 + 18 + 20/60 +⋯ is given as 1, 0, 18; 20

and so on. Bressieu’s tables of tangents and secants are the only known
printed fully sexagesimal tables of tangents and secants. Their layout
follows the style used by Rheticus in 1542 and not that used in Bressieu’s
table of sines.

It appears that these tangents and secants have not been computed from
Bressieu’s table of sines which is not sufficiently accurate. Bressieu could
have taken another table giving the tangents and secants for every minute,
but the only such table available in 1581 was Viète’s table515 and the last
values of Bressieu’s tangents do not agree with Viète’s values. Yet another
possibility is that Bressieu used Reinhold’s values for the tangents.516 But
this appears again not to be the case.

I believe instead that Bressieu used Regiomontanus’s table of sines (or
a derivative thereof) for R = 10

7 and computed a number of sexagesimal
values of the tangents and secants in his second table, but not all of them.
For the last values of the table, Bressieu may have done a number of special
computations, but for the other gaps, I believe that Bressieu interpolated
the missing values. In fact, if Bressieu would have used Regiomontanus’s
values in each case, he would have obtained more accurate values for the
tangents and secants. The deviations do not occur only for the last values
around 90

◦, but also for smaller values. For instance, for Tan 75
◦, Bressieu

gives 3, 43; 55, 18, and working with Regiomontanus’s values would have
given him 3, 43; 55, 23 which is the correct value. For Tan 89

◦
59

′, Bressieu
gives 57, 17, 42; 26, when the correct value is 57, 17, 44; 48, 1, . . ., which he
would have obtained using Viète’s table. Regiomontanus’s values instead
would have given 57, 17, 36; 25.

514[Fine (1530), Fine (1550)]
515[Viète (1579)]
516[Reinhold (1554)]
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In figure 13, the accuracy of Bressieu’s tables is indicated as 60; 60
2, by

which I mean a radius of 60 and two sexagesimal places. However, for 89
◦

and above, the values of the tangents and secants are given to only one
sexagesimal place.

Bressieu is mentioned by Zeller517 but not by Glowatzki and Göttsche.

6.19 Giuntini (1581)

Francesco Giuntini (1523-1590) was an Italian theologian and one of the
most famous astrologer of the second half of the 16th century.518

In his Speculum astrologiæ519 published in 1581, Giuntini included a table
of sines with R = 10

5 and an interval of 1
′ (figure 51). This table was

most certainly copied from one of Apian’s tables (1533, 1534 or 1541),520 or
perhaps from one of its derivatives.

The 1573 edition of the Speculum astrologiæ does not contain this sine
table.

6.20 Padovani (1582)

Giovanni Padovani (b. c1512) was an Italian mathematician and astronomer.521

He was from Verona and a student of the astronomer and mathematician
Pietro Pitati.

In his De compositione, & vsu multiformium horologiorum solarium,522 a
work on sundials published in 1582, Padovani included a table of sines
with R = 10

5 and an interval of 1
′ (figure 52). Like Giuntini’s table (1581),

Padovani’s table was also most certainly copied from one of Apian’s tables
(1533, 1534 or 1541),523 or perhaps from one of its derivatives, but Giuntini
and Padovani’s tables do not share the same layout.

An earlier edition of Padovani’s work on sundials was published in
1570, but I have not seen it. It possibly lacks the table of sines.

517[Zeller (1944), pp. 86-88]
518For a summary of Giuntini’s life and works, see [Ernst (2001)].
519[Giuntini (1581)]
520[Apian (1533)], [Apian (1534)] and [Apian (1541)].
521For a summary of Padovani’s life and works, see [Pizzamiglio (2004), p. 58-59].
522[Padovani (1582)]
523[Apian (1533)], [Apian (1534)] and [Apian (1541)].
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6.21 Fincke (1583)

Thomas Fincke (1561-1656) was born in Flensburg, Germany, now at the
border with Denmark. From 1577 to 1582, he studied mathematics, as-
trology, rhetoric and philosophy, in particular with Conrad Dasypodius, a
teacher at the Strasbourg University and one of the authors of the second
astronomical clock of the Strasbourg cathedral.524

In 1581, Fincke published an ephemeris based on the prutenic tables
(Ephemeris coelestium motuum anni 1582, supputata ex Tabulis Prutenicis). He
returned from Strasbourg to Heidelberg and Leipzig, and moved to Basel
in 1583. This is where, at the age of 22, he published his most famous
work, his Geometriæ Rotundi,525 an influential work on plane and spherical
trigonometry based on Ramus’s Geometria (1569).526

This book does in particular contain tables of sines (figure 54), tangents
(figure 53) and secants (figure 55) with R = 10

7 and intervals of 1
′.527 And it

was precisely Fincke who coined the names “tangent” and “secant” which
had not been used before. Incidentally, Viète did apparently not approve of
these names.528

Fincke’s sines do slightly differ from those of Reinhold, hence from
those of Regiomontanus. It seems that Fincke made a number of small
last figure adjustments to either Reinhold’s or Regiomontanus’s tables.529

Given that the tangents were certainly taken from Reinhold (1554),530 I
assume that this was also the case for the sines.

As far as the tangents are concerned, we can see for instance that the last
values agree with those of Reinhold, except for 89

◦
53

′, 89
◦
56

′, and 89
◦
57

′. In
the first case, Fincke’s tangent is less accurate than Reinhold’s, but in the
two other cases the tangents are slightly more accurate.

Finally, Fincke’s secants are the result of new computations. The val-

524For summaries of Fincke’s life and works, see [Thorndike (1958), p. 140], [Ver-
donk (1971)], [Moesgaard (1972), p. 119-120] and [van Brummelen (2021), pp. 13-16].
Some authors have wrongly attributed some works of Kaspar Finck (1578-1631), who was
a German theologian, to Thomas Fincke. In particular, the Methodica tractatio doctrinae
sphaericae published in 1626, and cited by Moesgaard, is not by Thomas Fincke.

525[Fincke (1583)]
526See [Schönbeck (2004)] and [Zeller (1944), pp. 88-90].
527See also [Glaisher (1873), p. 42].
528[Zeller (1944), p. 88]
529[Glowatzki and Göttsche (1990), pp. 157-158]
530[Reinhold (1554)]
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ues differ from those of Rheticus’s Canon doctrinæ triangulorum.531 Fincke,
however, did not use Regiomontanus’s sines, nor his own version to com-
pute the secants. Instead, it seems that he computed the secants using his
tangents. Fincke most certainly used the formula

Secx =
√

Tan2 x +R2

to compute the secants, and when computing Tan
2
x, he must have kept

only seven or eight significant figures and rounded, although the procedure
may not have been systematic. This is reminiscent of the computation of
cotangents by Rheticus in 1551, and also echoes a recent suggestion by van
Brummelen and Byrne for the computation of secants by Maurolico.532 In
fact, it is only after I concluded the above that I noticed that van Brummelen
and Byrne claimed that Fincke used this formula to compute the secant.533

Fincke’s tangents and secants, as well as Reinhold’s tangents, are less
accurate than those published by Viète in 1579. For instance, Fincke and
Reinhold gave Tan 89

◦
59

′
= Cot 1

′
= 34376070815 (for R = 10

7) where only
the first four figures are correct. Instead, Viète gives a value whose error
is about 10000 times smaller. This is so because Viète took more accurate
values for the sines and understood that this was necessary in order to
obtain tangents with such an accuracy.

I am giving separately a modern reconstruction of Fincke’s tables.534

After the publication of his Geometriæ Rotundi, Fincke began to study
medicine in Basel, Padua, Siena and Pisa. He became MD in 1587. He
then returned to Denmark where he held the chair of mathematics at the
University of Copenhagen from 1591 until 1602, but afterwards was more
active as a physician and his mathematical activity never reached again the
level of his 1583 book.

6.22 Clavius (1586)

Christopher Clavius (1537 or 1538-1612) was a German mathematician and
astronomer. He was born in Bamberg and entered the Jesuit order in Rome
in 1555.535 He published his Euclidis elementorum libri XV (The elements of

531[Rheticus (1551)]
532[van Brummelen and Byrne (2021)]
533[van Brummelen and Byrne (2021), p. 206]
534[Roegel (2021m)]
535For summaries of Clavius’s life and works, see [Busard (1971b)], [Naux (1983)],

[Knobloch (1988)], [Lattis (1994)] and [Sasaki (2003), p. 45-93].
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Euclid) in 1574 and was a supporter of the Ptolemaic system, and at the
same time a friend of Galileo. He also helped develop algebra in Italy and
introduced Stifel’s symbols “+” and “−.”

He was also a member of the Vatican commission that accepted the
proposed calendar invented by Aloysius Lilius, that is known as Gregorian
calendar.

In his last years he was probably the most respected astronomer in
Europe and his textbooks were used for astronomical education for over
fifty years in and even out of Europe.

In 1586, Clavius published an edition of Theodosius’s sphaerics,536 in
which he included tables of sines (figure 56), tangents (figure 57) and secants
(figures 58 and 59) with R = 10

7 and at intervals of 1
′.537

Clavius’s sines and tangents were taken from Reinhold (1554),538 as they
do not show the alterations made by Fincke.539 But the secants instead were
taken from Fincke’s work (1583).540 And in fact Clavius used the new names
“tangent” and “secant” coined by Fincke. Clavius, however, corrected all
the typos in the earlier editions (but not the last digit deviations).541

On the other hand, Clavius’s table has at least one typo, namely for
sin 89

◦
30

′ which he gives as 9999616 instead of the correct 9999619. This
error was corrected by Magini in 1592, and by Clavius himself in 1593.

Clavius’s 1586 table, without the corrections of the typos, was copied
by Blundeville in 1594.

6.23 Bürgi (1587)

This survey of 15th and 16th century trigonometrical tables based on Re-
giomontanus’s work would not be complete without mentioning Jost Bürgi
(1552-1632). Bürgi is well known as a (very) skillful mechanician, clock-
maker and instrument maker, and also as an inventor of a table of progres-
sions which could be used for the same purpose as logarithms.542

536[Clavius (1586)]
537[Zeller (1944), pp. 91-94]
538[Reinhold (1554)]
539[Fincke (1583)]
540[Fincke (1583)]
541[Glowatzki and Göttsche (1990), p. 158]
542On Bürgi’s table of progressions, see [Roegel (2010d)]. The most recent overview of

Bürgi’s work, which contains many other references, is [Staudacher (2018)]. For reasons
explained in [Roegel (2017)], I do not view Bürgi as a coinventor of logarithms.
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Around 1587, Bürgi devised a new way (his so-called “Kunstweg”) to
compute sines iteratively, without any geometrical construction543 and he
constructed at least two tables, one giving the sines at intervals of 2

′′ and
another giving the sines at intervals of 1

′. However, I believe that Bürgi
did not use his new algorithm to construct these tables, and instead built
up the tables by finite differences. Although Bürgi’s work represents a
new computation of sines, it is therefore possible that he reinvented some
techniques already used by Regiomontanus, and even before in India, as
mentioned earlier (see § 5).

The 2
′′ table does not seem to have survived, but the 1

′ table resurfaced
a few years ago. At that time, I made modern reconstructions of both
tables.544

Bürgi’s surviving sine table (figure 60) gives the sines at intervals of 1
′,

with a radius R = 60, and to four sexagesimal places, except for the last
two degrees where they are given to five and six sexagesimal places. These
four sexagesimal places correspond to a radius of 10

9 with a sine usually
correct to 9 decimal places.

For instance, Sin 75
◦ is given as 57; 57, 19, 58, 43 which corresponds to

the decimal value 0.965925827, the correct value being 0.96592582628906 . . ..
In contrast, Rheticus and Otho’s Opus palatinum (1596)545 gives the value

9659258263 for Sin 75
◦, and this is correct to 10 places. Rheticus also gives

the sines every 10
′′.

And in 1613 Pitiscus546 gave 96592,58262,89067, instead of the correct
96592,58262,89068. Rheticus must have had such accurate values already
in the 1570s, before Bürgi, but with the exception of Rheticus, Bürgi’s table
was probably the most accurate sine table constructed at the end of the 16th
century.

Bürgi’s table can be compared to those of Fine, Schreckenfuchs and
Bressieu which are also sexagesimal tables, but which are less accurate and
based on Regiomontanus’s sines.

543[Roegel (2015), Roegel (2016b), Roegel (2016a)]
544[Roegel (2016c), Roegel (2016d)]
545[Rheticus and Otho (1596)]
546[Pitiscus (1613)]
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6.24 Gallucci (1588)

Giovanni Paolo Gallucci (1538-1621) was an Italian astronomer and transla-
tor.547 Among his notable translations, Gallucci published in 1591 his Della
simmetria dei corpi humani, a translation of Dürer’s “Four books on human
proportion” (Vier bücher von menschlicher Proportion, 1528). He was also
a private teacher to the Venetian nobility and a founding member of the
second Venetian Academy.

Gallucci’s most famous works are probably his Theatrum mundi, et tem-
poris548 published in 1588, and his Speculum Uranicum published in 1593,
both featuring some volvelles. In the Theatrum mundi Gallucci also included
a table of sines with a radius R = 60000 and an interval of 1

′ (figure 61).
This table was most certainly copied from Engel’s table (§ 6.1), in one of
the editions of the Tabulæ directionum profectionumque where it appears, not
necessarily the 1490 edition. Gallucci uses exactly the same layout, with
six half-degrees per page, but he has dropped the differences. The values
seem to agree, with the exception of a few transcription errors.

6.25 Lansberge (1591)

Philip van Lansberge (1561-1632) was born in Ghent, Belgium, but in 1566
his parents moved to France and then to England, because of the religious
troubles. There, he studied mathematics and theology.549 He became a
protestant minister in Antwerp in 1580 and then established himself in the
Netherlands.

In 1591 he published his Triangulorum geometriæ550 which is closely
based on Fincke’s Geometriæ Rotundi.551 Lansberge did in particular in-
clude Fincke’s tables of sines (figure 62), tangents (figure 63) and secants
(figure 64) with R = 10

7 and at intervals of 1
′.552 These tables are there-

fore ultimately based on those of Regiomontanus.553 Lansberge also used
the new names “tangent” and “secant” coined by Fincke. I am giving

547For a description of some of Gallucci’s works, see [Delambre (1821), v. 1, pp. 711-714]
and [Ernst (1998)].

548[Gallucci (1588)]
549For a summary of Lansberge’s life and works, see [Busard (1973)].
550[van Lansberge (1591)]
551[Fincke (1583)]
552[Zeller (1944), pp. 94-97]
553[Glowatzki and Göttsche (1990), p. 159]
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separately a modern reconstruction of Lansberge’s tables.554

In 1632, Lansberge published his best known work, his Tabulae motuum
coelestium perpetuæ, for the prediction of planetary positions. Lansberge
was a follower of Copernicus and his work is based on an epicyclic theory,
but he did not accept Kepler’s theories.

Lansberge died that same year in Middelburg in the Netherlands.

6.26 Magini (1592)

Giovanni Antonio Magini (1555-1617) was an Italian astronomer, astrologer,
cartographer, and mathematician. He was born in Padua and studied in
Bologna where in 1588 he obtained one of the chairs of mathematics.555

Magini’s chief scholarly interest was astrology and he adhered to the
Ptolemaic principles. He was much more skilled in calculations than in
theory and his ephemerides were useful. In 1592, he published his work De
planis triangulis.556 This work also contained a Tabula tetragonica557 which
could be used to compute the products of two numbers.

The De planis triangulis also contains tables of sines (figure 65), tangents
(figure 66) and secants (figure 67) with R = 10

7 and at 1
′ intervals.558 These

tables are copied from those of Clavius (and borrow Fincke’s new names),559

and thus are ultimately based on those of Regiomontanus.560 But contrary
to Clavius, Magini has adopted a semi-quadrantal arrangement and only
runs the angles up to 45

◦. The sines are the sinus primus, the cosines are the
sinus secundus, and similarly with the tangents and secants. The value of
Sin 89

◦
30

′ is given by Magini as 9999619, which is correct, but Clavius had
9999616. It therefore appears that Magini has corrected Clavius’s typo.

Magini’s De planis triangulis also contains a Tabula gnomonica which is a
table of arctangents similar to that of Peuerbach,561 but where the entries
vary between 0 and 1000.

In his Primum mobile duodecim libris contentum562 published in 1609,

554[Roegel (2021n)]
555For a summary of Magini’s life and works, see [Campedelli (1974)].
556[Magini (1592)]
557[Magini (1593)]
558[Zeller (1944), pp. 97-100]
559[Clavius (1586)]
560[Glowatzki and Göttsche (1990), pp. 159-160]
561[von Peuerbach (1516)]
562[Magini (1609)]
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Magini gives another table with R = 10
7 and at 1

′ intervals, with sines,
versines, tangents and secants, but the values are not those of the 1592 table.
Instead, Magini took the values from Rheticus and Othos’ Opus palatinum
(1596).563

The later years of Magini’s life were devoted to cartography and geog-
raphy. He worked in particular on an atlas of Italy.

6.27 Clavius (1593)

In 1593, Clavius published his work Astrolabium564 which contained a sine
table with R = 10

7 and at intervals of 1
′ (figure 68). This table was copied

from Clavius’s earlier tables published in 1586,565 but with some corrections.
For instance, as mentioned previously, the value of Sin 89

◦
30

′ was given
incorrectly in Clavius’s 1586 table, and was corrected here, perhaps after
the discovery of the typo by Magini.

6.28 Fale (1593)

Thomas Fale (born c1560?) was an English mathematician. Very little is
known of him.566

In 1593, Fale published his Horologiographia.567 This work, which is
the only one known of him, appears to be the first book in English on
sundials.568 It contains in particular a table of sines (figure 69) which was
presumably copied from Witekind’s Conformatio horologiorum sciotericorum
etc.569 published in 1576 and with which it shares the values and the
layout.570 There are however some slight differences, and Fale gives for
instance Sin 5

◦
3
′
= 8803, when Witekind gave the correct 8802 (compare

figures 46 and 69).
As observed by De Morgan and Goodwin, Fale’s table may be the

earliest sine table printed in England.571

563See [Rheticus and Otho (1596)] and [Glowatzki and Göttsche (1990), p. 160].
564[Clavius (1593)]
565[Clavius (1586)]
566[Goodwin (1889)]
567[Fale (1593)] Later editions were printed in 1626, 1627, 1633, 1652 and perhaps other

years. A facsimile was published in 1971.
568[Turner (1989)]
569[Witekind (1576)]
570[Glowatzki and Göttsche (1990), p. 177]
571See [De Morgan (1851), p. 598] and [Goodwin (1889)].
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6.29 Blundeville (1594)

Thomas Blundeville (c1522-c1606) was an English writer and mathemati-
cian, who wrote in particular on horsemanship and cartography.572

In 1594, he published his Exercises, containing sixe Treatises, etc.573 which
contain tables of sines, tangents and secants for R = 10

7 and at intervals
of 1

′.574 These tables are based on those published by Clavius575 in 1586
and Blundeville explicitely mentions Clavius. They use the new names
coined by Fincke in 1583. It is possible that Blundeville’s tables are the
first complete (that is not merely of sines) trigonometric tables published in
England.576

Interestingly, Blundeville carried Clavius’s incorrect value for sin 89
◦
30

′

given in the 1586 table.
Thus Blundeville’s sines are ultimately based on Regiomontanus’s ta-

bles.577

6.30 Ceulen (1596)

Ludolph van Ceulen (1540-1610) was a German-Dutch mathematician born
in Hildesheim. At some point he settled in Holland. In the 1580s and 1590s
he was a fencing master as well as a mathematics teacher. He died in 1610
in Leiden.578

In 1596 he published his main work, Vanden circkel etc.579 where he gave
among other things a 20-place approximation of π.

Ceulen’s book also contains tables of sines, tangents and secants for
R = 10

7 and at intervals of 1
′ (figure 71). Ceulen’s tables are certainly based

on those of Lansberge580 who is mentioned by Ceulen.581 Ceulen uses the

572For summaries of Blundeville’s life and works, see [Bullen (1886)], [Jacquot (1953)],
[Taylor (1954), p. 173, 331], and [de Smet (1979)].

573[Blundeville (1594)]
574[Zeller (1944), p.101]
575[Clavius (1586)]
576See [De Morgan (1851), p. 598] and [van Brummelen (2021), p. 53].
577[Glowatzki and Göttsche (1990), p. 160]
578For a summary of Ceulen’s life and works, see [Struik (1971)].
579[Ceulen (1596)]
580[van Lansberge (1591)]
581See [Ceulen (1596), fo 25] which mentions Regiomontanus, Reinhold, Rheticus, Clavius

and Lansberge, but not Fincke. Glowatzki and Göttsche only relate Ceulen’s tables to
Regiomontanus [Glowatzki and Göttsche (1990), pp. 160-161].
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new names introduced by Fincke in 1583.
Ceulen departed somewhat from the previous tables, in that he did

not separate sines, tangents and secants in different tables, but put them
together, for a range of two degrees, on each page.

6.31 Rheticus/Otho (1596)

After the publication of his Canon doctrinæ triangulorum in 1551 which
was based on Regiomontanus’s tables,582 Rheticus (1514-1574)583 continued
to work on a more extensive project, where the six trigonometric func-
tions would be given every 10

′′ and for a larger radius. As observed by
Zeller,584 “Rheticus built his trigonometry on the foundation established by
Regiomontanus.”

Rheticus embarked on totally new computations, but his work was
only completed after his death by Lucius Valentinus Otho (c1545-1603)
and published in 1596 in the Opus palatinum585 (figure 72). Otho had met
Rheticus in 1573 and Rheticus had asked him to complete his work.

With the exception of Bürgi’s work, this was the first new computation
of trigonometric values in the 16th century, since most of the trigonometric
tables printed in the 16th century actually use values or computations
inherited from Regiomontanus’s tables586 (see figure 13).

However, even a cursory examination of the Opus palatinum reveals
that it contains two overlapping tables. On one hand, there is a table
giving all six functions with a radius R = 10

10 and an interval of 10
′′. This

table spans 540 pages. On the other hand, there is a table giving only the
cosecants and cotangents, with a radius R = 10

7 and the same interval of
10

′′. This second table spans 180 pages. One might expect the second table
to be an abridgement of the first, but this is not the case, as is apparent
when comparing the first values of the cosecants and cotangents. These
two tables obviously correspond to two different computations. This has
actually been noticed before, and Glaisher wrote that “there seems no
reason why it should have been printed at all, as the great ten-decimal
canon completely supersedes it.”587

582[Rheticus (1551)]
583[Rosen (1975b)]
584[Zeller (1944), p. 62]
585See [Rheticus and Otho (1596)] and [Roegel (2010e)]. See also [Glaisher (1873), p. 43]

and [van Brummelen (2009), pp. 273-282] for descriptions of the Opus palatinum.
586[Glowatzki and Göttsche (1990), p. i]
587[Glaisher (1873), p. 43]
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I have therefore assumed that the shorter table is in fact an older table,
perhaps computed by Rheticus around 1560.588 I believe that after his Canon
doctrinæ triangulorum (1551), which already used R = 10

7 and an interval
of 10

′, Rheticus decided first to compute the functions with an interval 60
times smaller, that is 10

′′, but with the same radius. This is what I have
shown in figure 13.

It is in fact easy to see what were the computations in this first attempt
at a 10

′′ table (and it would consequently be rather straightforward to
complete this table with those for the sines, cosines, tangents and secants,
which presumably existed). We can observe that the cosecants at 1

′ inter-
vals were merely obtained by the fractions 10

14/2909, 10
14/5818, 10

14/8727,
10

14/11635, 10
14/14544, etc. In other words, Rheticus merely used the sines

found in Regiomontanus’s table, apparently sometimes with slight adjust-
ments (as for Csc 4

′ or Csc 10
′), but adjustments that did not always produce

more accurate results (as for Csc 4
′). It is possible that some of these “ad-

justments” were in fact typos. Rheticus did the same for the cotangents,
taking the sines from Regiomontanus. It seems that the adjustments made
for the sines in the case of cosecants were also used for the cotangents, but
this should be checked throughout the table.

For the 10
′′ intervals, Rheticus merely interpolated the sines. For in-

stance, Csc 10
′′ is obtained using Sin 10

′′
= 485, Csc 20

′′ uses Sin 20
′′
= 970,

and so on. There may be the usual typos, such as for Cot 10
′′ which is given

as 206085546390, but should be 206185546392, and was merely obtained by
dividing 9999999 by 485.

Sometime after that first computation, Rheticus must have realized that
the cosecants and cotangents could not be computed accurately with such
a scheme, because Regiomontanus’s sines were not accurate enough for
small angles. He must therefore have decided to construct a larger table,
and he computed this time the sines and cosines with a radius of 10

15 and
an interval of 10

′′. This was probably done around 1570. This work was
used to produce the table for R = 10

10 published in 1596. However, the
cosecants and cotangents were not computed using these accurate values
of the sines, but those from the Opus palatinum itself. For instance, for Csc 1

′,
Rheticus (or Otho) used the sine value 2908882, instead of Regiomontanus’s
2909, but not the more accurate 290888204563 in the R = 10

15 table.
When the Opus palatinum was published, Otho must have decided to

588This concurs with De Morgan who considered that “it is clearly nothing but a previ-
ous attempt made before the larger plan was resolved on.”([De Morgan (1851), p. 599]
and [Glaisher (1873), p. 43])
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include Rheticus’s earlier computation of cosecants and cotangents, but the
reason for publishing it remains unclear, as Otho must have realized that
these first calculations were inadequate. On the other hand, it was much
more difficult for him than for us to realize it, and he perhaps decided to
include these tables in case they contained some valuable results.

Of course, computing the cosecants and cotangents with the sines given
in the Opus palatinum is still not enough for small angles, as the sines are
still not sufficiently accurate. This led Bartholomaeus Pitiscus (1561-1613)
to correct the Opus palatinum and to publish Rheticus’s sine table with
R = 10

15 (figure 73) as well as other tables that he computed himself in
his Thesaurus mathematicus.589 Incidentally, Pitiscus was the one who first
coined the word “trigonometry.”

7 Conclusion

This marks the end of our journey through 15th and 16th century funda-
mental trigonometric tables. But this end is also a beginning. Rheticus’s
Opus palatinum and its amendments by Pitiscus were the start of a new
era and these tables would themselves last until the 20th century. And
the first years of the 17th century were the place of a bifurcation. On one
hand trigonometric tables would continue their path, with little changes
beyond Rheticus’s masterpiece,590 and on the other hand they made their
foray into the world of logarithms, as if logarithms naturally absorbed the
trigonometric functions.591

Logarithms first appeared in public in 1614, and they started in asso-
ciation with sines. Indeed, when Napier published592 the first table of
logarithms in 1614, it was a table of logarithms of sines, and these sines
were either those of Fincke593 or those of Lansberge.594 Napier’s work was
therefore based again on that of Regiomontanus, and not yet on Rheticus’s
work.

589See [Pitiscus (1613)] and [Roegel (2010f)].
590De Morgan wrote that “There have been no trigonometrical tables of note published

since the invention of logarithms, except those which contain logarithms” [De Mor-
gan (1842), p. 497].

591See [van Brummelen (2021), pp. 62-109] for a recent survey of the development of
logarithms as a continuation of trigonometry.

592See [Napier (1614)] and [Roegel (2010g)].
593[Fincke (1583)]
594[van Lansberge (1591)]
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Three years later, the decimal logarithms were introduced by Briggs,595

and expanded in 1624 and 1628.596 They were however unrelated to trigono-
metric tables.

Edmund Gunter was the first to compute and publish tables of decimal
logarithms of sines and tangents in 1620.597 His tables gave the logarithms
to 8 places and were probably based on Rheticus’s Opus palatinum or Pitis-
cus’s Thesaurus mathematicus.

In 1633, Henry Gellibrand completed and published Henry Briggs’s Tri-
gonometria Britannica598 which was a large table of trigonometric functions
and decimal logarithms of trigonometric functions. Briggs’s table was in
fact the result of a new computation of sines, tangents and secants,599 in
which he divided the degree in 100 parts. The sines were computed with
R = 10

15 and the tangents and secants withR = 10
10. Briggs’s trigonometric

functions are not based on earlier tables, not even on those of Rheticus’s
Opus palatinum.

The same year 1633, Adriaan Vlacq independently published his Trigo-
nometria artificialis.600 This work gives only the logarithms of sines, cosines,
tangents and cotangents, and not the trigonometric functions themselves.
But contrary to Briggs, Vlacq computed his logarithms using the val-
ues given by Rheticus in his Opus palatinum. It was Vlacq’s table and
not Briggs’s table which had the greatest offspring, and was many times
reprinted, simplified and adapted until the 20th century.

595[Briggs (1617)]
596[Briggs (1624), Vlacq (1628)]
597[Gunter (1620)]
598[Briggs and Gellibrand (1633)]
599[Glowatzki and Göttsche (1990), p. ii]
600[Vlacq (1633)]
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Al-Khwārizmı̄’s Sine Tables and a Western Table with the Hindu
Norm of R = 150. Archive for History of Exact Sciences, 57(3):243–266,
April 2003.

[Merzbach and Boyer (2010)] Uta Caecilia Merzbach and Carl Benjamin
Boyer. A history of mathematics. Hoboken: John Wiley & Sons, 2010.
[3rd edition]

[Meskens (2010)] Adolf Jozef Meskens. Travelling mathematics - The fate of
Diophantos’ Arithmetic. Basel: Springer, 2010.

[Mett (1989)] Rudolf Mett. Regiomontanus in Italien. Wien: Verlag der
Österreichischen Akademie der Wissenschaften, 1989.

[Mett (1996)] Rudolf Mett. Regiomontanus — Wegbereiter des neuen
Weltbildes. Stuttgart: B. G. Teubner, 1996.

124



[Millás Vallicrosa (1950)] José María Millás Vallicrosa. Estudios sobre
Azarquiel. Madrid-Granada, 1950. [reprinted as volume 39 of Islamic
Mathematics and Astronomy, 1998]

[Moesgaard (1972)] Kristian Peder Moesgaard. How Copernicanism took
root in Denmark and Norway. In Jerzy Dobrzycki, editor, The
reception of Copernicus’ heliocentric theory, pages 117–151. Dordrecht:
D. Reidel publishing company, 1972.

[Montelle and Plofker (2018)] Clemency Montelle and Kim Leslie Plofker.
Sanskrit astronomical tables. Cham, Switzerland: Springer, 2018.

[Montucla (1758)] Jean-Étienne Montucla. Histoire des mathématiques.
Paris: Charles Antoine Jombert, 1758. [two volumes]

[Moos (2020)] Paul Sebastian Moos. Studienort Rom. Gelehrtennetzwerke
zur Zeit der Renaissance am Beispiel von Johannes Regiomontanus.
In Michael Matheus and Rainer Christoph Schwinges, editors,
Studieren im Rom der Renaissance, pages 217–242. Zürich: vdf
Hochschulverlag AG, 2020.

[Moréri (1733)] Louis Moréri. Le grand dictionnaire historique etc., volume 4.
Basel: Jean Brandmuller, 1733.

[Moussa (2010)] Ali Ibrahim Moussa. The trigonometric functions, as they
were in the arabic-islamic civilization. Arabic Sciences and Philosophy,
20:93–104, 2010.

[Mundy (1943)] John Mundy. John of Gmunden. Isis, 34(3):196–205, 1943.

[Napier (1614)] John Napier. Mirifici logarithmorum canonis descriptio.
Edinburgh: Andrew Hart, 1614.

[Napier (1616)] John Napier. A description of the admirable table of
logarithmes. London, 1616. [English translation of [Napier (1614)] by Edward
Wright, reprinted in 1969 by Da Capo Press, New York. A second edition appeared
in 1618.]

[Naux (1983)] Charles Naux. Le Père Christophore Clavius (1537-1612), sa
vie et son œuvre. Revue des questions scientifiques, 154:55–67, 181–193,
325–347, 1983.

[Neugebauer and Pingree (1970-1971)] Otto Eduard Neugebauer and
David Edwin Pingree. The Pañcasiddhāntikā of Varāhamihira.
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Figure 15: Excerpt of Regiomontanus’s table of tangents [Regiomon-
tanus (1490)] (source: The Budapest University of Technology and Eco-
nomics, 85.211, www.manuscriptorium.com).
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Figure 16: Excerpt of Engel’s table of sines with R = 60000 [Regiomon-
tanus (1490)] (source: The Budapest University of Technology and Eco-
nomics, 85.211, www.manuscriptorium.com).
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Figure 17: Excerpt of Gaurico’s table of sines, with R = 100000 [Regiomon-
tanus (1524)] (source: Google books).
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Figure 18: Excerpt of Fine’s table of sines [Fine (1530)] (source: Google
books).
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Figure 19: An excerpt of Apian’s table of sines [Apian (1533)] (source:
Bayerische Staatsbibliothek).
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Figure 20: An excerpt of Apian’s table of sines [Apian (1534)].
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Figure 21: An excerpt of Apian’s table of sines [Apian (1541)].
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Figure 22: The first page of a manuscript of Regiomontanus’s first great
table of sines (R = 6 ⋅ 10

6) (source: Kislak Center for Special Collections,
Rare Books and Manuscripts, University of Pennsylvania, LJS 172, ca1476).
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Figure 23: The first page of the first printing of Regiomontanus’s first great
table of sines (R = 6 ⋅ 10

6) [von Peuerbach and Regiomontanus (1541)]
(source: Dresden).
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Figure 24: The first page of the first printing of Regiomontanus’s second
great table of sines (R = 10

7) [von Peuerbach and Regiomontanus (1541)]
(source: Dresden).
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Figure 25: The first page of Rheticus’s table of sines in Copernicus’s De
lateribus [Copernicus (1542)] (source: Dresden).
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Figure 26: The first page of Copernicus’s table of sines in the De revolutioni-
bus [Copernicus (1543)] (source: e-rara).
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Figure 27: Excerpt of Frisius’s table of cotangents [Gemma Frisius (1545)].
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Figure 28: Excerpt of Frisius’s table of arctangents [Gemma Frisius (1545)].
(continued on next page)
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Figure 29: Excerpt of Frisius’s table of arctangents [Gemma Frisius (1545)]
(cont’d).
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Figure 30: Excerpt of Fine’s table of sines [Fine (1550)] (source: Google
books).
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Figure 31: Excerpt of Rheticus’s table of the six trigonometric func-
tions [Rheticus (1551)] (source: Dresden).
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Figure 32: An excerpt from Reinhold’s table of tangents [Reinhold (1554)]
(source: e-rara).

159



Figure 33: The end of Reinhold’s table of tangents, with values every 10
seconds [Reinhold (1554)] (source: e-rara).
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Figure 34: An excerpt from Reinhold’s table of sines [Reinhold (1554)]
(source: e-rara).
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Figure 35: An excerpt of Bassantin’s table of sines [Bassantin (1557)].
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Figure 36: An excerpt of Gaurico’s sine table with the heading tabula fecun-
da [Gaurico (1557)].
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Figure 37: Gaurico’s table of tangents [Gaurico (1557)].
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Figure 38: An excerpt of Gaurico’s sine table [Gaurico (1557)].
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Figure 39: Maurolico’s table of sines [Maurolico (1558)] (source: Öster-
reichische Nationalbibliothek).
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Figure 40: Maurolico’s table of tangents [Maurolico (1558)] (source: Öster-
reichische Nationalbibliothek).
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Figure 41: Maurolico’s table of secants [Maurolico (1558)] (source: Öster-
reichische Nationalbibliothek).
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Figure 42: Eisenmenger’s table of sines [Eisenmenger (1562)].
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Figure 43: Excerpt of Schreckenfuchs’s table of tangents [Schrecken-
fuchs (1569)].
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Figure 44: Excerpt of Schreckenfuchs’s first table of sines [Schrecken-
fuchs (1569)].
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Figure 45: Excerpt of Schreckenfuchs’s second table of sines [Schrecken-
fuchs (1569)].
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Figure 46: Excerpt of Witekind’s table of sines [Witekind (1576)].
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Figure 47: Excerpt of Peucer’s table of sines [Peucer (1579)].
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Figure 48: Excerpt of Viète’s Canon mathematicus [Viète (1579)] (source:
e-rara).
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Figure 49: Excerpt of Bressieu’s table of sines [Bressieu (1581)] (source:
Google Books).
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Figure 50: Excerpt of Bressieu’s table of tangents (odd columns) and secants
(even columns) [Bressieu (1581)] (source: Google Books). Note that the
faded parts are artefacts of the way Google Books stores images.
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Figure 51: An excerpt from Giuntini’s table of sines [Giuntini (1581)] (source:
Google books).
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Figure 52: An excerpt from Padovani’s table of sines [Giuntini (1581)]
(source: Google books).
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Figure 53: An excerpt from Fincke’s table of tangents [Fincke (1583)] (source:
e-rara).
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Figure 54: An excerpt from Fincke’s table of sines [Fincke (1583)] (source:
e-rara).
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Figure 55: An excerpt from Fincke’s table of secants [Fincke (1583)] (source:
e-rara).
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Figure 56: An excerpt from Clavius’s table of sines [Clavius (1586)].
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Figure 57: An excerpt from Clavius’s table of tangents [Clavius (1586)].
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Figure 58: An excerpt from Clavius’s table of secants [Clavius (1586)].
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Figure 59: Another excerpt from Clavius’s table of secants [Clavius (1586)].

186



Figure 60: An excerpt of Bürgi’s table of sines (1587). Bürgi’s Funda-
mentum Astronomiæ manuscript is kept at the Biblioteka Uniwersytecka
Wrocław, under call number IV Qu 38a. This excerpt of Bürgi’s sine
table was provided by Dieter Launert and is included in LOCOMAT
(http://locomat.loria.fr) with permission.
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Figure 61: An excerpt from Gallucci’s table of sines [Gallucci (1588)] (source:
Google books).
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Figure 62: An excerpt from Lansberge’s table of sines [van Lansberge (1591)]
(source: e-rara).
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Figure 63: An excerpt from Lansberge’s table of tangents [van Lans-
berge (1591)] (source: e-rara).
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Figure 64: An excerpt from Lansberge’s table of secants [van Lans-
berge (1591)] (source: e-rara).

191



Figure 65: An excerpt from Magini’s table of sines [Magini (1592)].
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Figure 66: An excerpt from Magini’s table of tangents [Magini (1592)].
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Figure 67: An excerpt from Magini’s table of secants [Magini (1592)].
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Figure 68: An excerpt from Clavius’s table of sines [Clavius (1593)].
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Figure 69: Excerpt of Fale’s table of sines [Fale (1593)]. (source:
https://archive.org/details/b30333106)
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Figure 70: The first page from Ceulen’s table of trigonometric func-
tions [Ceulen (1596)].
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Figure 71: The last page from Ceulen’s table of trigonometric func-
tions [Ceulen (1596)].
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Figure 72: Excerpt of Rheticus’s Opus palatinum [Rheticus and Otho (1596)]
(source: e-rara).
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Figure 73: Excerpt of Pitiscus’s Thesaurus mathematicus [Pitiscus (1613)]
(source: École des Ponts ParisTech, Paris, photograph by the author).
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