; i Université de Nancy I = UER de Mathématiques &1

ETAPES
SUR LE CHEMIN
du

\MIVE2 >
VLR RS o PN
% PN\
e NP
N 7
\

GENIE LOGICIEL

(e ¢le ele olo elo o)

Thése présentée a ’Université de Nancy |
pour l'obtention du grade de
DOCTEUR ES SCIENCES MATHEMATIQUES
(Mention : Informatique)
par

Bertrand Meyer

(o ¢l ele elo oo o]

|
|

Thése soutenue le 9 septembre 1985
devant la Commission d’Ezamen,
composée de MM. :

Claude Pair (Président),

Alain Bossavit,
Jean-Pierre Finance,
Jean-Francois Perrot (Rapporteurs)

Jean-Raymond Abrial,
Jean-Claude Derniame,
Michel Galinier,
Gilles Kahn (Ezaminateurs).

TOME 2

F Université de Naney [UER de Mathématiques ©

ETAPES
SUR LE CHEMIN
du

GENIE LOGICIEL

[oslo slvole sleq)

These présentée a V'Université de Nancy !
pour l'obtention du grade de
DOCTEUR ES SCIENCES MATHEMATIQUES
(Mentson : Informatique)
par

Bertrand Meyer

[eele vl olo o)

Thése soutenue le 9 septembre 1985
devant la Commission d’Ezamen,
composée de MM. :

Claude Pair (Président),

Alain Bossavit,
Jean-Pierre Finance,
Jean-Francois Perrot (Rapporteurs)

Jean-Raymond Abrial,
Jean-Claude Derniame,
Michel Galinier,
Gilles Kahn (Ezaminateurs).

TOME 2

[82a]

INTEGRATED INTERACTIVE COMPUTING SYSTEMS
P Degano and E Sandewall, editors
North-Hollend Publishing Company / @ EGICS, 1983 167

TOWARDS A TWO-DIMENSIONAL PROGRAMMING ENVIRONMENT

Bertrand Meyer
Electricité de France, Direction des Etudes et Recherches
Service Informatique et Mathématiques Appliquée
1 avenue du Géndral de Gaulle 92141 Clamart
France

ABSTRACT

The use of modern video display terminals for communication with a
computer has a profound effect on the nature of the resulting dialogs.
Sereen-oriented interactive programs require a new set of tools, techaiques
and methods. We report on studies on these topics performed in a computing
environment based on standard commercial hardware. The paper describes some of
the tools which we have used and the ones we have designed | it then discusses
the methodological issues involved in designing two-dimensional dialogs, and
shows the kind of program modularity which 1s required in this framework.
Object-oriented programming appears to provide the right basis ; we have
applied this methodology using the class concept of the Simula 67 language and
the associated prefixing mechanism.

1 - INTRODUCTION

Interactive facilities play an ever increasing part in all the
application areas of computers. Today, this evolution does not only imply that
the -traditional "batch" mode of submitting programs to computers yields more
and more to conversztional execution ; it also impacts the very form of such
executions : whereas dialogs on typewriter-like terminals and the first GCRT
devices would proceed in a "line by line" fashion, current terminal technology
makes it possible to use the full coatents of a screen as the basic unit of
comnunication with the computer, giving rise to the so-called "full-screen" or
"full-page" mode of interaction.

One of the best-known applications of this technique is the preparation
of documents on a computer using one of the "full-screea editors” now
available on wmany computer systems, most notably mainframes and
word-processing systems. Users -of such tools unanimously appreciate their
power and ease of use, to the extent rhat going back to a line-oriented editor
is resented as a painful experience. Full-screen facilities also find
applications 1n many other domains ; examples are software development and
maintenance aids, application programs designed to be used by non-specialist
users under the guidance of guccessive “menus”, business data processing
(where many '“transactional systems" are being developed) and Computer-Aided
Instruction. In these and many other areas, programmers in ever growing
nunbers would like to be able to provide full-screen dialogs for the execution
of their own programs.

168 8. Meyer

The construction of such dialogs implies that the texts to be exchanged
between the programs and their users are two-dimensional ; this requirement
adds a new set of difficulties to the general problems of convarsational
programming, which are themselves far from being fully mastered (in particular
as regards the human eangineering, or ergonomic, aspect of dialegs). This paper
studies some of these problems, and describes some of the solutions which have
been implemented at the Direction des Etudes et Recherches of Electricité de
France (EDF), laying the basis for what may be called 2 tuwo-dimensional
programming environment. The discussion focuses on three of the basic issues
of software engineering, as applied to two-dimensional interactive
programming : tools, methods and languages. The ergonomics of dialog systems,
which is another important topic, is touched upon only briefly.

In some respects, it may be felt that the discussion below lags behind
the current "frontier" technology in hardware and software. In particular, we
limit ourselves to the manipulation of text objects, even though considerable
experience has been gained in recent years in two neighbouring domains, namely
graphics systems and Computer-Aided Design, where more complicated visual
objects are processed. It is clear, on the other hand, that some research
laboratories have developed two-dimensional environments which are more
sophisticated than the one described here ; two examples worth noting are the
set of tools built around LISP /14, 15/ and the Xerox PARC SMALLTALK syatem
/3/, which utilizes special-purpose terminalas and s dedicated operating system.

On the other hand, the toola which are described in this paper do not
appear to be so commonly available in the most widely used environments,
whether in industry or universities ; neither do the underlying ideas. It is
quite interesting in this respect to study two recent papers in the
Communications of the ACM on the subject of interactive programming /4, 10/ ;
although quite different from one another, they both discuss how successive
questions should be asked from users, how mnemonics and keywords should be
designed, how errors should be dealt with, etc. ; both implicitly assume that
the dialog considered proceeds in a completely sequential, line~by-line
fashion, without even considering that there may exist other cases. Much of
the discussion in these papers becomes pointless when one goes to a
two-dimensicnal environment.

Furthermore, an important characteristics of the tools described below
should be emphasized, namely the fact that they were developed end are being
used in a standard “production environment rather than ia a computer science
laboratory. The computing center at the Direction des Etudes et Recherches of
EDF is based on [BM bardware (3081, 3033, 370-168, 4341, ete.) under the
HVS-SP operating system. The time-sharing system is TSO ; full-screen
terminals are of the IBM 3270 or compatible series ; most of them are 3278,
3279-2B snd 3279-~38 models (the latter having seven colors, semi-graphic
possibilities and various other options). Most application programs are
written in Fortran. This eoviroanment (which also includes a Cray-1 and many
other computers) is quite representative of many large classical computing
centers,

Two-Dir jonal Pr ing Envis 169

2 - THE CHARACTERISTIOS OF TWO-DIMENSIONAL DIALOGS

The usefulness of two-dimensional dialogs stems from the combination of
three properties :

= The second dimension as such, which provides the program user with
an overview of a full page of text, rather than just a single line ;

- The use of a page as unit of communication with the computer, which
allows the user to design first an overall sketch and then look
back on his decisions, correct errors, reverse some choices, before
he sends a page of information to the system ;

- The default facility, which makes it possible for the program to
fill some zones where user response is expected by predetermined
values, so that the user will only have to write the answers if
they are different from these values, but not if the questions are
unneeded in his particular case, or call for the same answer as in
the previous use of the system (one of the criticisms heard most
frequently from users of non-page-oriented interactive programs ia
that one must answer a whole bunch of seemingly useless questions
every time one starts using the system).

It should be noted here that a good page-mode interactive program should
keep a profile of every user, so that the default answer suggested for each
question will be the one chosen by the user during the last execution of the
program, vather than a fixed value assumed to suit all users.

Below is an example of a full-page dialog. It is extracted from the
FORTRAN command procedure in our AL library (see section 3) and shows the
Eirst three screens to be filled when tunalng a Fortran program : the user
types in the names of the files containing source and object code, the
destination of printouts, the compiling options, the libraries used, etc. It
is easy to imagine how many successive questions would have to be answered in
an equivalent line-by-line dialog ; wost answers would be indentical from one
use of the procedure to the next. If full-screen is not available, the
designer of such a dialog constantly faces the contradictory demands of two
categories of users : the sophisticated ones, who would like to use many
advanced features and thus request wmany options, i.e. many questions | and the
more numerous "vulgar' users, who use standard options and want short dialog
sessions.

Worth noting is the presence of an option called "same as last time'
which allows the user, from then on, to remain entirely silent, and directs
the system not to ask any more questions. This option 1is particularly useful
in 8 repetitive task such as the test of a given module.

170 8. Meyer

HELLO BERTRAND
WELCOME TO THE AL FORTRAN EXECUTION SYSTEM

PLEASE CHECK THE APPRQPRIATE BOX :

SAME AS LAST TIME ===) / /
COMPILATION, LINK-EDIT, EXECUTION)/
LINK-EDIT, EXECUTION we=) //
B EXECUTION wsa) [/ -

COMPILATION, FORTRAN IV EXTENDED

NAME OF THE FILE CONTAINING SOURCE CODE ===2) tryit.forc{first)

COMPILATION LISTING DESTINATION === pre
(TER, PRT, LOC, DMY, SYS=x or file nams) .
cLass (only if SYS=C, R, S or U) =)

RAME OF THE FILE FOR OBJECT CODE ==a) tryit.obj(ficst)

COMPILER QPTIORS :
OPFTTMIZATION LEVEL ===} 2
GENERATED CODE LIST ==2) no

--— COMPILATION WAS OK ---
LINK-EDIT
NAME OF THE FILE CONTAINING OBJECT CODE ===) u—yit.obj(firuc)
LIBRARIES T0 BE INCLUDED
You may request a library by giving either :
~ & keyword (FORTLIB, GENERALE, IMSL, LINPACK, BENSON, ATELBIB...)
_ the actual name of a file containiag the library in load module
form.
»==) fortlib
w=a) 'edf.myownlib.load'

===) ‘edf.peterslib.load’

=ax)

==z}

—

===)

===) generale

It may be said without overstating the argument that, for the programmer
who writes systems having this kind of interaction with their users, the leap
from traditional, line-by-line conversational programs to page-oriented ones
is as big as the leap from non-interactive “batch” programming to
line-oriented interactive programming. The. new discipline may (perhaps
emphatically) be called "two-dimensional programming” ; the second, vertical
dimension introduced by screen dialogs raises meny important issues with
respect to the methods, techniques and tools of interactivity.

3 - COMMAND PROCEDURES : THE DIALOG MANAGER AND THE AL LIBRARY

The Eirst tool which is available to our users is one which is
distributed by the manufacturer. IBM has recently released /8/ & new version
of SPF (System Productivity Facility, previously known as Structured
programming Facility), a subsystem of TSO, the basic iateractive system under
MVS. The main characteristics of SPF, which meke it rather nice to use for
such functions as text editing or file management, are the following :

- the use of two~dimensional dialogs ;

- the presence of "user profiles" which keep useful information from one
interactive session to the next ;

- a particular technique for error processing.

172 B. Meyer

The main improvement brought about by the new version of SPF is
the set of functions called the "Dialog Managex”" /9/. Thanks to this facility,
any programmer writing command procedures in the command language of TSO may
use some of the internal tools and techniques of SPF, thus being able to take
full advantage of the three properties mentioned above.

The dialog manager may be called through special functions which
have been added to the TSO command language. It is not, however, easy to use
for novice or occasional users ; neither is it readily iaterfzced with
application programs (in particular those written in Fortran). Its mein use in
our environment 80 far has been the implementation of a general-purpose
‘command procedure library, called AL (Atelier Logiciel),

The AL library currently conteins some forty procedures which
encompass a wide spectrum of tools : access to compilers of the various
available languages {Fortran, Cobol, assembly, Algol W, Pascal, Simula 67,
Reduce), file manipulatioa and management, use of specialized programs, access
to on-line documentation, etc. Until recently, all were Lline-oriented
conversational procedures, suffering from the drawbacks mentioned above, It is
interesting to note that our desire to keep the dislogs simple, and thence ta
limit the number of available options, had resulted in the proliferation of
“customized" versions of the more popular procedures : programmers would copy
and modify them, thus hampering our efforts to maintain and improve them.

With the development of two-dimensional versions, these problems

have disappeared : we may now afford to include many options, since the user's .

chaices are remembered from one session to the next and he will usually change
few of them each time ; no more tedious recoding of the same values is
required. During the first use of a procedure, defsult standard values are
pre-filled by the system.

Currently zavailable two-dimensional procedures in AL include
Fortran IV (of which the dialog in section 2 was an example), Fortran VS
(offering access to the I1BM version of Fortran 77), Simula 67, Pascal,
Algol W, Cobol, Apothéce (a system for the management of program libraries).
The entire library will be progressively adapted.

4 - TOQLS FOR TWO-DIMENSIONAL APPLICATION PROGRAMMING : GESCRAN

Once one has discovered the delights of two-dimeasicnal
interactivity, perhaps through the use of SPF and AL, one is often tempted to
apply the same techniques to one's own applicatiaon programs. One available IBM
product makes this possible : GDDM (Graphical Data Display Manager /7/), a
very powerful tool which alse includes semi-graphic facilities. CDDM is also,
however, rather complex and heavy, and clesely tied to IBM hardware and
systems. We thus felt it necessary to design a product which, albeit much less

amhitious, would cater for simple uses while remaining rigorous in its

definicion and more portable.

Two-Dimensional Programming Environment 173

The result of this effort is a ‘package called Gescran (for “Cestion
d'dcrans”, screen management) /1/. Gescran is a set of Fortram subroutines,
designed according to the methodological principles expounded in /13/ ; it
allows the programmer to describe and manipulate objects called "screens", to
create rectangular "windows" in these screens, to define and change the
attributes of these windows (such as associated text, color, brilliance,
protection, etc.), and to visuslize all or part of a screen on the available
terminal. It ie Important to note that screens and windows are in no way bound
to the display hardware : they are purely sbstract objects, kmown to the
program solely through a name, which in Fortram is implemented as en integer
variable, used internally to contain an address and control flags ; the only
operation which may be applied to such a variable is its use as an actual
argument in a call to one of the Gescran subroutines. Associstion with a
physical screen occurs only when a visualisation subroutine is called.

7/

Gescran works on the IBM 3270 seriea of screen terminals, but was
designed 50 as to be adaptable to any terminals offecing similar capabilities.
The construction and manipulation of the data structures representing screens
and their windows are entirely independent from the physical 1/0 cperations.

Among the current developments, we shall wmention a study aimed at
interfacing Cescran with a graphics package, so that the programmer will have
the possibility of describlng a Gescran window as graphical and use the
graphics package rather than Gescran to manipulate this particular window,
provided of course the terminal used provides the cprresponding facilities.

5 -~ COMPUTER-AIDED SCREEN DESIGN : CONSCRAN

An important tocl for the efficient use of Cescran, called Conscran,
provides a higher-level interface for the design of screens as defined above.

The requirement for Conscran stemmed from a problem which had been met
by all Gescran users : before being able to write the sequence of subprogram
calle which describes a set of screens and windows, one must design each
screen by defining the position of its various windows, the parts they play in
the interaction, their contents, color, protection, special features (es.g.
blicking, reverse video}, etc. Until Conscran became available, the best
available technique for this phase was to use a sheet of paper and draw a
picture of the screen. Such a medium end method appear rather primitive when
compared with the aim pursued.

Conscran relies explicitly on concepts teken from Computer-Aided Design
to improve the screen design process. It allows the programmer to perform such
design 1a & two-dimensional interactive fashion : the screens will be 'drawn"
at the terminal, with all the resulting flexibility ; various designs may be
tried, observed, wodified. Conscran automatically generates tha Fgmtran
subroutine containing the calls to Gescran subroutines which are necessary for
the construction of the corresponding screens, thus freeing the programmer
from & rather tedious task. Conscran stores the resulting screen designs in a
data base, thus allowing for later retrieval and modification. It alse
generates a paper "map" of the .screen, showing the position of the varicus
windows, and & "legend' giving their attributes.

Our current efforts go towards extending Conscran to a system allowing
for the design not only of individual screens, but of entire applications as
well, using the same underlylng principles.

Conscran 1tself is a two-dimensional interactive program, writtea in
Gescran. Its aim 1s vhat may be called "Computer-Aided Screen Design'.

174 8. Meyer

6 ~ THE STRUCTURE OF DIALOG PROGRAMS

Even with the world's best tools, two-dimensional programming raises
several difficult issues. One of the most delicate ones is the structure of
dialog programs. The behaviour of such programs wmay usually be quite
faithfully modeled by a state transition diagram : one execution of the
program will correspond to a path in the associated graph.;

Below is an example of such 2 graph ; this is one of the applications
which we have written with Gescran, the SVP system /5/, which allows users to
ask (non-urgent) questions and get answers from the programming assistance
service on their terminzl. Only the "user” part is shown.

swe

Except for its small size, this example is quite representative of the
structure of page-oriented, wenu-driven interactive programs. At every step
in the execution, associated with ome of the states in the diagram, the
program outputs a screen ; certain zones are then filled by the user ; after
having checked the validity of the answers, the program will perform some
action (ususlly reading or updating a data base). The next step depends on the
user's choice, often expressed by his pressing some function key on the
terminal. The labels of the edges in the graph correspond to these possible
choices.

In a atraightforwerd realization of this scheme, the program for an
interactive, menu-driven application will consist of a nusber of paragraphs®,
one per state, each looking somewhat like the following :

state x :
output screen for state x ;
repeat
read user's answers and his choice c for the next step ;
if error in answer then
output message
wtil no error in answer ;
record answer ;

case ¢ ian
<] : proceed to state xi,
€3 : proceed to state x3,

en @ proceed to state xp

Two-Dir

| Programming fronment 175

Using such a scheme for the actual programming will result in programs
with an intricate branching structure, belonging to the well-known "bowl of
spaghettis' type. It has been argued /2/ that such a structure should be
avoided in the first place, by applying to the state graphs of menu-driven
systems such restricting vrules as are imposed by modern programming
methodology upon the control structures of programs. We thiok that the analogy
is wrong : designing the internal structure of an engineering product such as
4 program is really not at all the same as designing the external structure of
a process invol/ing humans, such as the dialog with & machine. In our opinion,
the structural intricacy of the state graph of many interactive systems is an
inherent property of these aystems, and artificisl "structuring” rules are
pointless in this domain. The complexity of the graph may stem from various
Teagons : there cay be temporary detours (correspending e.g. to "help" keys),
shortcuts (which were introduced at some point because a user requested, quite
legitimately, the possibility to go directly from a certain state to another
one, whereas he previously had to backtrack first to the initial menu), and
mlti-level exirs (corresponding to "escape" keys or 'quit" commands). Note
that these requirements will defeat any effort to implement menu-driven
systems by straightforward application of “structured programing" in its
aaive form.

Some authors have introduced special-purpose contrel structures to solve
this problem ; one example is the language PLAIN /16/, which uses "exceptions"
as in Ada, CLU or PL/I. The use of such constructs seems only marginally
preferable to that of ordinary jumps.

A much better solution, as it seems to us, is to completely disconnect
the description of the overall structure of the dialog, i.e. the traversal of
the graph, from the description of what happens at every step, i.e. the
operations performed while in a given state. The latter miy be treated with
ordinary programming coastructs ; for the former, the finite automaton, as
used in compilation or real-time applications, is a helpful model. It will be
quite useful (although not compulsory) to implement the systems in a
table-driven fashion, i.e. represent the state tramsition diagram by a data
structure (usually am array) rather than a function subprogram ; using this
technique, the changes in the scheduling of states, which are quite common as
projects evolve and users request mew facilities, will be easy to accomodate.

More precisely, we shall make use of ten program units on three
hierarchical levels :

SCHEDULE

INITIAL FINAL TRANS IT ION

QUESTION MESSAGE

1768 8. Meyer

SCHEDULE oaly defines the traversal of the transition graph ; it knows
nothing ebout the particular screens of a given application, and should be
identical for all applications :

SCHEDULE :
var curreat : STATE, label : CHOICE ;
Current := INITIAL ;
I'EEEi[
[EXECUE (current, label) ;
current i~ TRANSITION (current, label)
until FINAL (current)

TRANSITION is the function which describes the state diagram :
TRANSITION (s, 1) is the new atate reached when leaving state s by the branch
labeled 1. As wentioned above, TRANSITION may be represented either by a
function subprogram or by a two-dimensional array, the latter leading to a
more easily adaptable program.

EXEQUTE daes what is required in a given state : ask the right question,
check the answer, perform the necessary action and return the choice ¢ for the
next step :

EXECUTE (in s : STATE ; out ¢ : CHOICE) :
var ¢ : CHOICE, a : ANSWER ; "
Lepeat
a := QUESTION (s} ;
correct ;= CHECK (a, s) ;
if not correct then
" TTHESSAGE (a, s
until correct ;
RECORD (a, s) |
© :% NEXT (a, @)

QUESTION, CHECK, MESSAGE, RECORD and NEXT, on the other hand, are
application-specific. The call QUESTION (s) will output the screen associated
with state s and read the user's answers :

QUESTION (in s : STATE) :
output the screen for state s |
read and return the answer a

CHE®K (a, 8) will return true or false depending on whether answer a is
acceptable or not in state & ; MWESSAGE (a, s) ourputs rhe error message
corresponding to answer a in state s, where CHECK (a, s) is false ; RECORD
(a, s) records answer a in state s, vhere CHECK (a, s) 1s true ; REXT (a, &)
determines from the user's answer a the exit label which was chosen for
leaving state s.

It is natural to look for tools which may help in the construction of
interactive systems described in the above framework. Some of the "author
languages" in Computer-Aided Instruction (CDC's Plato or IBM's IMG for
example) pursue similer goals. Can one use the above scheme to build
general-purpose tools for helping in the design of interactive, full-screen
applications ? As mentioned before, this is our aim in the current extensions
to Conacran.

Two-Dimensional Programming Environment 177

It is soon realized that this scheme cannot reasonably be implemented as
presented above if what is sought is a modular, easily extendible system. A
simple remark should convince the reader of this impossibility : if procedures
such as RECORD, CHECK, MESSAGE, QUESTION or WEXT were to be put in a library,
80 as to be re-usdble for various aepplications, then a closer lock at the
above design shows that these procedures must include among their parameters
the state (s), but also the precise interactive application to which this
state belongs. In cother words, any such general-purpose should know about and
discriminate amongst all states of all available applications using them !
This is clearly incompatible with any attempt at modularity.

As it is often the case which such problems, a proper solution may be
found by going from procedure-oriented to object-oriented programming, i.e. by
basing the structure of the program on the main data structures rather than on
the functions to be performed. This is the direction that we have taken ; we
have been greatly helped in this effort by the availability in our computing
center of one of the few gecerally available wmodular, object-criented
languages ¢ Simula 67.

7 - USING A MODULAR , OBJECT-ORIENTED LANGUAGE : SIMULA

Simula 67 /6/ "appears particularly well-suited for the practical
application of the methodological principles introduced above. The main
concepts are those which have been emphasized in /12/ : abstract data types,
top-down program and data structure design, genericity. Similar techmiques
could be applied to a descendant of Simula, Smallealk /3/.

We will only outline part of the system design. In order to implement
the above scheme, it is particularly useful to be able to use a structure
corresponding to the abstract notion of a "state”. The following
chatracteristics are associated with every state s :

- attributes of s : state number, screea to be output when s is
reached ;

- operations which may be requested when the system 1s in state s :
QUESTION, CHECK, MESSAGE, RECORD ;

- actions to be performed when 8 is reached : EXECUTE.

Such characteristics correspond closely to what may be included in the
basic program stiucture of Simula, the class, which is the implementation of
an abstract data type : variables representing the attributes of each state,
procedures (subprograms} representing the admisaible nsperstions, aand
statements representing the initial actions. Onme is thus quire naturally led
to the design of a class STATE.

A fundawental property of ‘Simula which will be used here is known as
class prefixing : a class may be used as “parent” of other classes, which will
inherit irs charactevistics, to which they will add their own refinements.
Procedures may be specified at the level of the parent class, their
realizations being given in the descendants ; usually these will not be the
same In every descendant. Such procedures are declared as virtual in the
parent class. Class prefixing and virtual procedures together form one of the
best-known systems for the authentic top-down design of both program and dara
structures., Here they will allew us to define the class STATE with the
following structure :

7
178 8. Meyer
class STATE |
comment operations : 4
virtual :
ref (answer) procedure QUESTION ;
boolean procedure CHECR ;
Eocedure MESSAGE
procedure RECORD |
ref (choice) procedure NEXT ;
begin
procedure EXECUTE (c) | ref (choice) ¢ ;

begin boolean correct F
correct = false ;
while not correct do
begm ref_(mswer) a;
i~ QUESTION ;
correct 1= CHECK (a) ;
if not correct then
MESSAGE (a)
end validation ;
RECORD (a} ; :
¢ 1= NEXT (a)
end EXECUTE ;
comment attributes : 5
integer screen ; comment Recall that Gescran uses
integers to denote screens ;

end STATE

Class STATE defines the general properties of a screen. Procedure
EXECUTE has now become part of this class ; the same is true for procedures
QUESTION, MESSAGE, CHECK, REQORD and NEXT. Note that all these procedures have
lost their "STATE" parameter (s in the procedure-oriented version). There is
an important difference between EXECUTE and the other five : at the level of
class STATE, the latter, while needed, cannot be refined, since their precise
implementation may omly be kaown for a given STATE. They are thus defined at
the STATE level as ‘"virtual", i.e. only the procedure headings (pertial
specification) is given. In contrast, procedure EXECUTE is the same for all
STATEs ; thus both 1ts heading and body (which uses calls to the five
virtuals) may be given at the level of class STATE.

For any given application, there will be a certain number of inatances
of class STATE, corresponding to the various’ states of the application. This
instantiation concept is veadily implemented by the prefixing mechanism :

STATE class INITIAL MENU ; begin ... end ;
STATE class COMPILATION OPTIONS ; begm +eo end |
etc.

The body of each of these subclasses will 1aclude the corresponding body
for the procedures QUESTION, CHECK, MESSAGE, RECORD and NEXT.

One of the main benefits of this method is that [t allows a truly
modular construction of interactive applications, the general-purpose and
application-dependent parts being programmed separately, All problems
pertaining to a certain state (formulation of the question, treatment of
errors, recording of answers, etc.) are dealt with in the module (class) for
that state, and there only ; on the other hand, the wodule for a state does
not know anything about its connections with the rest of the application’s
graph. Thus it becomes possible to add or change states, transitions between
states etc. without disturbing anything in any module other than the ones
associated with the states directly involved in the modification, Apart from
its elegance, such a modular, object-oriented programming yields software
products on which modifications and extensions are much easier ta perform than
with programs structured in a more conventional, procedure-oriented fashion.

Two-Dimensional Programeming Envirenment 179

8 - CONCLUSION =

We hope to have shown that the two—dimensional aspect of screen dialogs
has important effects on the structure and use of interactive systems. We hope
that the ambitious ongoing developments in the area of integrated software

environments will take into c¢onsideration the key issues which arise in the
design of systems for successful communication between man and machine.

BIBLIOGRAPHY

/lI E. éudin, G. Brisson, B. Mey er : Gescran ; EDF Report, Atelier Logiciel
n® 22, December 1980 (versiom 4, December 19817.

12/ J.M. Brown : Controlling the Complexity of Menu Networks ; Communications
of the ACH, 25, 7, pp. 412-418, July 1982.

/3/ BYT® Magazine : Special issue on SMALLTALK, August 1981.

/4f B. Dwyer ¢ A User-Friendly Algerithm ; Communications of the ACH, 24, 9,
pp. $56-561, September 1981.

/5/ E. de Drouas : Manuel d'Utalisation de SVP ; EDF Report, Atelier Logiciel
n® 32, October 1981.

/6/ ©O. J. Dahl and K. Nygaard : Simula 67 Common Base Language ; Norsk
Regnesentral (Norwegian Computing Center), Oslo, 1970.

/7/ IBM : Graphical Data Display Manager - Release 2 ; order no. SC33-0101-1,
October 19

/8/ 184 : System Productivity Facility for MVS - Program Reference ; order no.
§C34-2038-0, December 1980.

/9/ IBM : System Productivity Facility for MVS - Dialog Menagemeat Services ;
order no. $C34-2036-1, March 1981.

/10/ H. ledgard, J.A. Whiteside, A. Singer, W. Saymour : The Natural Language
of Interactive GSystems ; Communications of the ACM, 23, 10, pp. 556-563,
Qetober 1980.

/11/ B. logez, M.~P. Nardy : Conscran, manuel d'utilisation ; EDF repoct,
Ateiier logiclel n® 38, 1982.

/12/ B. Meyer : Quelgues Ccmceg:s des Langages de Programacmn modernes, et
leur Agghca:mn 4 SIMULA 67 ; Bulletin AFCET-GROPLAN n® 9, 1979,

/13/ B. Meyer : Principles of Package Design ; Communications of the ACM, 25,
7, pp. 410-428, July 1982.

/14/ E. Sandewall : Programming in the Interactive Environment : The LISP
Experience, AQM Comp. Surv., 10, .1, March 1978, pp. 35-72).

/15/ W. Teitelman : A Diaplay Oriented Programmer's Assistant, in Proc. Sth
Int. Jt. Conf. on Artificial Intelligence, Dpt, Comp. Sc., Carnegie-Mellon
Univ., Pittsburgh, 1977, pp. 905-915

/16/ T. Wasserman : PLAIN : An Algorithmic language for Iateractive
Information Systems ; in Algorithmic Languages, de Bakker and van Vliet
(Eds.), North-Holland, 1981, pp. 29-47.

COMPUTING

[82b)]

PRACTICES

Principles of Package Design

1. Introduction

For several years some of us at
EDF have been writing software
tools of general applicability. The
term Atelier logicel (software work-
shop) has been used to describe our
team’s activity. The tools which have
been constructed and distributed dif-
fer widely in their nature and mode
of utilization. An important category
is that of subprogram packages. A
subprogram package is a group of
routines which may be called by any
program; its purpose is to provide a
means of performing tasks in some
domain of application which the
available programming language
does not directly address.

Examples of subroutine packages
which we have developed during the
past three years include those listed
in Figure 1. Working on these pack-
ages, we have gained various in-
sights. Our aim here is to convey

CR Categories and Subject Descriptors: D.2.0
[Software Engineering: G ! dards,
D.22 (Software Engineering]: Tools and
Techniq dules and interfaces, software
libraries, user interfaces; D.2.7 [Software En-
gineering]: Distribution and Maintenance~
documentation, extensibility, D.3.3 (Program-
ming Languages|: Language Constructs-ab-
Stract data types, modules, packages. .
General Terms. Design, Documentation, Lan-
guages, Reliability,

Additional Key Words and Phrases: Reusable
software, software tool, Fortran.

Author’s present address: B. Meyer, Electricité
de France (EDF)—Direction des Etudes et
Recherches, 1, avenue du Général de Gaulle,
92141 Clamart, France.

Permission to copy without fee all or pant of
this material is granted provided that the <op-
1es are not made or dstributed for direct
commercial advantage, the ACM copyright
nolice and the title of the publication and its
date appear, and rotice is given that copying
18 by permussion of the Assaciation for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and/or specific per-
mission.

©1982 ACM 0001-0182/82/0700-0419 Tse.

419

Bertrand Meyer
Electricité de France (EDF)

SUMMARY: Subprogram packages are groups of related
subroutines used to extend the available facilities in a pro-
gramming system. The results of developing several such
packages for various applications are presented, with a dis-
tinction made between external and internal design criteria—
what properties packages should offer to their users and the
guidelines designers should follow in order to provide them.
An important issue, the design of reusable software, is thus
addressed, and the concept of abstract data types proposed

as a desirable solution.

some of these to other practitioners
who may be confronted with similar
problems. No breakthrough is
claimed; our techniques are mostly
standard. We feel, however, that
their presentation and a discussion
of the software engineering methods
used in the design of our packages
may be helpful to practicing pro-
grammers working in an “industrial”
environment,

In Section 2, we describe our en-
vironment, a large scientific comput-
ing center, and underscore the need
for subprogram packages in relation
to other kinds of software tools. Sec-
tion 3 is a detailed discussion of ex-
ternal design criteria, i.e., how pack-
ages should appear to the outside
world. Section 4 presents our
methods for internal design, i.e., im-
plementation to fulfili the require-
ments of the preceding section; the
gist of our approach is that it consid-
ers a package the implementation of
one or more abstract data types. Sec-
tion 5 concludes with some reflec-
tions on the scope of our experience.

Since naming conventions form
an important part of our discussion,

Communications
of

the ACM

we have, throughout the text, trans-
lated the French words and abbre-
viations appearing in subprogram
names. The package names them-
selves have been preserved,

2. Why Subprogram Packages

The ideas presented here cer-
tainly reflect to some extent the fact
that our computing center is geared
toward scientific, mostly Fortran
programming; and, to a lesser one,
that it uses three IBM computers
(370-168, 3033, 3081) under MVS,
to which a Cray-1 has recently been
added.

The first question the reader may
ask is why we concentrate on collec-
tions of subprograms. Our aim is to
extend the range of facilities offered
by the existing language. There are
at least four other solutions.

(1) convincing users to switch to a
better or more powerful lan-
guage;

(2) writing JCL procedures;

(3) writing conversational proce-
dures;

(4) designing special-purpose pre-
processors.

July 1982

Yolume 25
Number 7

COMPUTING
PRACTICES

Briefly, we shall discuss why these
choices are not always satisfactory.

Solution (1) is certainly the ideal optimization). They usually have no hardly more readable than the object and inter-routine type checking, re- thoug}; ‘;’e did msllst Llhat users read n(ﬁompane;
one. However, the sad fact is that associated run-time systems, let code produced by a compiler. cumion.letc. part of the manual at least once, our ru opn:at%gem'

most programmers in industry use
first-generation languages and are
unlikely to try another one. If your
aim is to produce tools that will be

Preprocessors present another
well-known problem. Often simple-
minded, they do not provide all the
services expected from a well-engi-
neered compiler (cross-references,
symbol tables, data flow analysis,
useful error messages, source level

alone debugging aids. Since they
generate code in existing program-
ming languages, they rely on the as-
sociated facilities. This makes run-
time errors a source of distress: they
must be traced back through a pro-
gram-generated program, which is

Ensorcelé—

free-form input and output
Chronos— ¢ time measurement

Additionally, it should be noted
that preprocessors only add surface
improvements to Fortran. They usu-
ally do not provide remedies for this
language's intrinsic limitations with
regard to data structuring, dynamic
allocation, pointer variables, intra

Subprogram packages do not suf-
fer from these defects, although, ad-
mittedly, they raise other problems

3.1 Overall Simplicity

In the area of simplicity our cen-
tral thesis was that most program-
mers would not use a subprogram
package if it required constant reli-
ance on a reference manual. Al-

ideal was that they should then be
able to employ a package for stan-
dard applications without further
reference to any written document.

\ USER 7

APPLICATION
PROGRAM

PACKAGE

SYSTEM

system,
etc.)

Textes— textimanipulation which we discuss in the next two In practice, we have not succeeded

used, you had best conform to the Axédir— direct-access file management : To th tential u thi X P ST 5

majority rule. (An even sadder fact, Gescran— full-screen programming sections. To the potential user, they i reaching this goal completely, but Fig. 3. Hierarchy of Programs and Pro-
Trie internal sorting offer a very neat way of enriching we have nevertheless succeeded in gram Users.

as we shall see in Section 4, is that
the tool writer is usually barred from
using modern languages because of
technical constraints.)

Solutions (2) and (3) (batch or
conversational procedures) are ade-
quate for tools intended for “end
users”, but not for tasks whose exe-
cution is initiated by programs.

Solution (4) (preprocessors) may
seem attractive but there are many
drawbacks involved. One is that it
may lead to the proliferation of pre-
Processors serving various purposes,
which will not be, as a rule, mutually

Fig. 1. Packages and Their Aims.

Initialization and Termination
answer)
CALL LEAGGE

Defining Screens and Creating Windows
CALL MXLSGE (,;;
CALL CREWGE (nw, ns, il, ir, iu,
CA{IL DELWGE (nw)
CALL BRIWGE (nw, b)

CALL PROWGE (nw)
CALL FREWGE (nw)

May [use full screen? (yes, it answer = 0)
Leave full-screen node.

Define ns as the name of a screen.

Set to n the maximum number of window
lines.per screen.

Create window nw in screen ns with i, ir,
iu, id as coordinates

Delete window nw.

Assign brightness b to window nw.

Make window nw protected.

Make window nw free (unprotected).

the existing programming language
with new instructions, implemented
as subprogram calls.

3. External Design Criteria

A subprogram package is a col-
lection of mutually related subpro-
grams. Just how they should be
“related” to each other will be stud-
ied in more detail in Section 4. For
the moment, we turn to an important

question: How should these subpro- .

grams be presented to their potential

concentrating all the necessary infor-
mation for normal use of a package
on a single page. This we consider a
mandatory requirement. For an ex-
ample, see the reference sheet for the
package Gescran as outlined in Fig-
ure 2,

The most important aspect of our
approach is that we do not try to
write complex packages providing a
wide range of services and satisfying
all users’ fantasies. Instead, we con-
centrate on a careful study of user
needs and strive to offer simple and

ity tasks. The application program/
subprogram package/system hierar-
chy is pictured in Figure 3; other
levels may, of course, exist. We shall
refer to the programs which call our
subprograms as application pro-
grams; on the other hand, users will
be those individuals (or programs)
who (which) run application pro-
grams. (These terms, especially the
latter, are two of the most misused in
data processing; we shall strive to use
them precisely.)

compatible. As an example, consider CALL CAPWGE (nw) From now on, convert letters in window users? This problem is vital, espe- efficient answers to the most impor- A
s : 3 = tant of th of decidin: Self-restraint is necessary be-
the case of a Fortran programmier w to capitals. cially in light of the fact that pro- an Il gourse; dectamg :
CALL ASIWGE (nw) From now on, leave any character in win- cause there is at least one level, that

who wishes to use the control struc-
tures of “structured programming.
His programs output results to var-
- ious graphic devices, and they re-

Changing or Examining the Internal Image

CALL REFWGE (nw, tabcha)

dow nw as it stands.

Replace contents of window nw with tab-
cha.

grammers are often reluctant to in-
vest the effort necessary to learn a
new methodology. They will not be
lured into using our packages unless
some very attractive arguments con-

which issues are the most important
is a design decision since often user
needs are either unexpressed or, if
expressed, require much work to be
transformed into realistic specifica-

of an application program, between
users and our subprograms. The lat-
ter must thus be as invisible to users
as possible. This is especially impor-

quire that some arrays have dynamic CALL BLAWGE (nw) Fill window nw with blanks. X ; tant in connection wit B
bounds (i.e., the bounds are read on CALL ASSSGE (nst, nss) Assign valus of screen nss to screen nst. vince them to do so. tions. ey ;nﬁ) fon with errors (Sec
CALL BLASGE (ns) Filt ail unprotected windows of screen ns J).

a file before processing begins).
Many preprocessors, such as Ratfor
[5], are available for the first pur-
pose; others, such as Fortran 3D
[t1), serve the second one (note,
however, that the current release of
the latter product uses the subpro-
gram package formula); still others
exist for the third requirement. The
input languages for these preproces-
sors will, in general, use wildly dif-
ferent conventions. Their treatment
of errors will not be the same. Some
of them, in generating Fortran code,
will delete comments, while others
will recognize comments under a cer-
tain predefined syntax as directives.
Their combined use will thus be very
difficult and, in many cases, impos-
sible.

CALL NBCWGE (nw, n)

CALL EXAWGE (nw, tabcha)

Input and Output (Affecting the External Image)

with blanks.

Asslgn ta nm the number of changes to
window nw since the last input opera-
tion.

Assign to tabcha the current contents of
wiridow nw.

CALL WRISGE (n1s)
CALL REASGE (ns)

Manipulating the Cursor and Function Keys

CALL POSCGE (nw, nline, ncol)

CALL EXACGE (nw, nline, ncol)

CALL EXAKGE (ns, m

Typed nput-Output (interface with Packsge Ensarcela)

Display screen ns on the terminal.
Input screen ns from the terminat.

Position Ihe cursar in window nw, al po=
sifian [rfine neol]

To what posilion [nine, meal] was the cur-
sor in window aw? [0, O] Il not in win-
dowi

Assign lo o the number of the function key
used lo send the screan conlents.

CALUUNIGGE (nw)
CALL UNIIGE (nw}

Direct subsequent output to window nw.

Obtaln subsequent input from window nw.

Fig. 2. Reference Sheet for Gescran.

In the following. subsections we
shall list those desirable qualities
which our packages should possess
and explain exactly how these design
criteria—namely, simplicity; self-re-
straint; ease of use; homogeneity,
safety—were met.

3.2 Self-Restraint

Our subprograms are called by
other programs or subprograms: they
are not directly concerned with solv-
ing “interesting” problems, but
rather with performing general util-

Foreword (""How to Use This Manual ')
Section 1—Introduction

3—Restrictions and Caveat
4—Examples

Appendix A—Error Messages
B—List of External Names
C—Portability
D—Performance

2—Individual Subprogram Deseniption

5—Notions on the implemantation

E—Controt and Data Flow Graph
F—Quick Reference List {last page)

Fig. 4. Structure of the Manuals.

3.3 Ease of Use

Documentation

Documentation is organized in
terms of simplicity, ease of use, and
homogeneity. All packages are doc-
umented by manuals with the same
structure, as shown in Figure 4.

Order of Arguments

One key to ease of use is consis-
tency of design. This criterion be-
comes even more crucial as new
packages are employed and the num-
ber of avallable subprograms grows.
It requires that a set of regular, co-
herent conventions be strictly ob-
served for all distributed products.

420 Communications

July 1982 421 Communications July (982
of VYolume 25 of Volume 25
the ACM Number 7 the ACM Number 7

COMPUTING
PRACTICES

An important area requiring a
homogeneous policy is parameter or-
der. In a language environment not
providing for key word parameter
transmission, actual arguments to
any subprogram must be given in a
fixed order, which matches that of
formal parameters for the subpro-
gram. Package users must thus know
this order; such a constraint often
becomes a source of annoyance and
errors. It is therefore desirable that
the package designer adhere to some
convention.

For example, in the Textes pack-
age, which allows character string
manipulation using pseudo-string
variables that appear to the compiler
as integer variables (see Section 4.6),
the syntax of some typical calls
would be what is seen in the box
below. itext, jtext, and ktext are
pseudo-variables, i and j integers.

The order of arguments decided
on here was the following: in assign-
ments the destination should always
precede the source. This is consistent
with the syntax of most program-
ming languages:

A:=f(B,C,...)

Moreover, since the package’s
aim is to provide the equivalent of a
“string” data type as it exists in, say,
PL/I, the chosen order aims to imi-
tate the syntax of languages which
do offer operations on this type; e.g.,
CALL CNCTTX (itext, jtext, ktext)
follows the PL/I pattern itext = jtext
| ktext.

The rule of consistency in the
order of arguments may conflict with
other, equally important criteria con-
cerning the homogeneity of design.
For example, in the Axédir package
for direct-access file management,
there is a read routine whose call has
the following form

CALL REAFDA (file-id, target,
record-number, error-indicator)

This conforms to the “destination
first” rule, although the file identifier

422

comes before the target for reasons
of consistency with the rest of the
package. For the write routine, how-
ever, we chose the syntax

CALL WRIFDA (file-id, source,
record-number, error-indicator)

since we thought it would be easy to
remember that corresponding argu-
ments occupy exactly the same po-
sition in both operations, “target”
for read and “source” for write being
symmetric. The destination first rule
is thus violated by WRIFDA.

3.4 Homogeneity

Number of Arguments (operands
and paramelers)

The question of arguments in-
volves simplicity as well as homoge-
neity. Not only should arguments
appear in a carefully chosen order,
but the number of them should also
be small if programmers are to re-
member the calling sequence.

Of all the subprograms listed in
Figure 1, 71 percent have zero, one,
or two arguments, and less than 4

percent have more than four (a func-

tion result being counted as an ar-
gument). The maximum number of
arguments is six.

Requiring short argument lists
has an immediate consequence: since
any means of data transmission be-
tween an application program and a
package subprogram other than ar-
gument passing (such as explicit
COMMON block sharing) s
banned, every subprogram may per-
form only a well-defined single task.
In our case, this property became
another motivation for requiring

short argument lists, rather than a
consequence of this requirement, It
is indeed integral to our design phi-
losophy (see Section 4).

Such an approach has interesting
practical consequences which distin-
guish our packages from many com-
mercially available ones. Let a sub-
program, say f; be used to implement
an operation with a certain number,
say n, of operands. It is often the case
that several operating modes are
available, described by a certain
number, say m, of parameters or op-
tions. Quite commonly, n is small,
but m may be large and will grow as
users request new refinements.

At this point, the reader may ask
for a precise definition of the distinc-
tion between parameters and oper-
ands. Although the difference is in
many cases intuitively obvious, an
absolute definition does not exist,
Rather, the distinction should be
thought of as design decision which
the designer bases on the following
guidelines:

—The number n of operands
should remain small.

—The system should be able to
set default values for parameters.

—During the package’s evolu-
tion, as parameters are added (or
removed), the specification of oper-
ands for any single subprogram must
not be changed.

Thus, the distinction between pa-
rameters and operands is partly a
pledge made by the designer with
respect to the future of the package.

There are three ways of specify-
ing .a subprogram f with both oper-
ands and parameters:

CALL CRETTX (itext)

CALL CNSTTX (itext, "xyz . ..")

CALL CNCTTX (itext, jtext, ktext)

CALL SUBTTX (itext, jtext, i, 1)

(CREate a Text variable)
Create & new string variable, of name itext
{pseudo-declaration). I

(CoNStant Text)
Assign the character string ‘xyz . . .' to the string
variable itext.

{CoNCatenate Text)
Assign to itext the vails of jtaxt concatenated to
that of ktext.

(SUBText)
Assign 1o itext the value of the substring of jtext
starting at position i, with / characters.

Communications
of
the ACM

July 1982
Volume 25
Number 7

(a) Include all necessary oper-
ands and parameters in every sub-
program call, as in
CALL f(opnd,, .. ., opnd,,

parmy, ..., parms),

(b) Include only operands, asin
CALL f(opnd,, ..., opnd,)
and provide other subprograms, one

per parameter, to set the values of
parameters, in the form

CALL setval;(parm;)

with the understanding that the ith
parameter will remain set to the
value parm; until a new call to setval,.

(¢)y Use a mixed-mode ap-
proach, with some parameters in-
cluded in the calls to f and others
separately.

Throughout our packages, we ad-
hered to the second approach (b},
which we find preferable for two
basic reasons:

(1) It allows the package de-
signer to set default values for all
parameters, thus freeing the user
from providing arguments corre-
sponding to options not of primary
concern.

(2) Including parameters in the
operation invocation inevitably leads
to problems as the package evolves:
although operands usually do not
change if the initial design is sound,
requests for new parameters will ap-
pear. We have experienced this phe-
nomenon over and over again. For
example, users of Ensorcelé (free-
form input and output) requested
new facilities for output formatting.
To meet their request, we added a
“color” parameter to the Gescran
subprograms when color displays be-
came available. Had we included pa-
rameters in the calls, all the calling
programs would have had to be

changed, making it very difficult to
entice anyone into using our pro-
grams afterwards. Thanks to our
seemingly drastic policy, we have so
far been able to avoid such a situa-
tion.

Note that the use of a language
allowing subprograms to have both
positional and key word arguments
(such as Ada) would solve the prob-
lems inherent in situation (1}, but not
(2).

One may object that our tech-
nique increases the size and external
complexity of packages since there
will be one subprogram per param-
eter per operation. This does not
worry us too much because there is
not much difference in added com-
plexity between a new subprogram,
on the one hand, and a new argu-
ment to an existing subprogram, on
the other.

Another possible drawback is
that application programs will con-
tain many subprogram calls when
they require nondefault options. For
example, if a user wishes to output a
real number X in a particular format,
using Ensorcelé, the sequence of in-
structions could be as long as the one
listed'in the box on this page.

Although such code may seem
horrendous to experienced program-
mers, we find it quite acceptable (and
have even come to like it!). It is really
very readable since every call has a
clearly stated single purpose. Also,
remember that parameters remain
set until explicitly changed so after
initialization, there will usually be
fewer calls to the parameter-setting
routines (unless, of course, the user
program wishes to often change op-
tions).

All in all, we feel our strictly
functional approach, with a clear dis-
tinction between operands and pa-

CALL SAVPAR
CALL EXPON (5)

CALL BLANKS (3)

Save the current values of Ensorcelé parameters.

Real numbers will be outpu! using the exponent (£) format if their
absolute values are not in]107%, 10*°[.

Output items will be separated by at least three blanks,

CALL ZONE (9) items will be justified to the right in zones ot length 3 (or a multipie
thereot if they do not fit).
CALL NBRDIG (8) At least eight significant digits shauld be printed.
CALL PUTZER Tralling zeras should be written (default: blanks).
CALL WRIREA (X} Write X,
CALL RESPAR Restore previous parameler values.
413 Communications
of

the ACM

rameters (and between operation
and parameter-settirfg subprograms),
is very helpful in the design of co-
herent, easy-to-use, and simply
maintained packages.

External Subprogram Names

An important component of ho-
mogeneity as well as the aforemen-
tioned criteria of ease of use is how
external subprogram names are cho-
sen. This issue is a delicate one
(which we had not well understood
when we started our work) because
of four conflicting requirements:

(I) the desire to provide mnemonic
names, as expressive as possi-
ble;

(2) the need to avoid possible con-
flicts with names of subpro-
grams or data segments in the
application programs;

(3) the need for a coherent set of
naming conventions, which
grows with the number of avail-
able packages and subprograms
(and the size of the program-
ming team);

(4) for subprograms callable from
[BM Fortran, the tight 6-char-
acter limit.

At the outset, we had, with clarity
our goal, concentrated on the first
requirement. The reader may have
noted names such as BLANKS and
ZONE in the Ensorcelé example
cited in Section 3.3. Inevitably, this
led to conflicts with names chosen by
application programmers and we
had to adopt a more balanced strat-
egy. All of our current subprograms
have 6-character names with the fol-
lowing structure:

—Three letters which are an abbre-
viation for a “verb” denoting the
action to be performed, e.g., REA
for read, SET for set;

—One letter indicating the type of
object to which the action applies,
such as I for integer, C for cursor;

—Two letters which are a code as-
signed to the package, e.g., GE for
Gescran.

Thus, the subprogram positioning
the cursor somewhere in Gescran has
the name SETCGE.

July 1982
Yolume 25
Number 7

COMPUTING
PRACTICES

Using this technique, we have
been able (with some care) to avoid
name clashes. Additionally, the
method is simple to explain in the
package manuals so the name may
be considered mnemonic for the ap-
plication programmers.

3.5 Safety

Treatment of Errors

An important but difficult issue
is that of errors: How should a gen-
eral-purpose routine react in an error
situation?

First, we shall define precisely
what an error is in the context of our
packages. A subprogram in such a
package is intended to complete
some actions and/or to compute
some values. An error arises when
the subprogram detects that an ac-
tion cannot be performed or that a
requested value does not exist. In
cither case, it means the subprogram
is able to determine the fact that a
certain element does not belong to
the domain of a certain function
(which is part of the subprogram’s
abstract specification).

The possibility of an error made
in writing the subprogram being
ruled out, the cause of the error may
be either of the following:

—The user has provided illegal ar-
guments to a subprogram.

—Some well-founded request can-
not be satisfied because of external
conditions (e.g., dynamic memory
allocation fails since no more
space exists).

What policy should the package
writer adopt in regard to such errors?
There are two conflicting require-
ments: safety and self-restraint,

(1) Safety implies that no op-
eration not conforming to the appli-
cation programmer’s intent and, in
particular, no modification of the ap-
plication program’s state other than
those explicitly provided for in the
package’s manual should ever be

424

performed. Additionally, the appli-
cation program must be able to find
out about the error and take any
corrective action it wishes.

(2) The need for self-restraint,
on the other hand, stems from the
fact that it is very difficult to decide
what action to take on the sole basis
of what is known to the subprogram
(the same situation is experienced by,
say, the writer of a lexical analyzer
in a compiler). It suggests that the
package should be able to make a
reasonable correction, without un-
necessarily bothering the calling pro-
gram, let alone causing a system in-
terrupt.

One way to ameliorate the prob-
lem of errors is to avoid illegal ar-
guments by enforcing as few restric-
tions on subprogram calls as possible
(which in effect means expanding the
specifications to include most
“error” cases as peculiar but legal
ones). Because of such a policy, we
experienced very few error cases in
our first packages and were able to
adopt a rather haphazard approach
to error treatment (see the “error-
indicators” in the calls to the Axedir
subprograms in Section 3.3).

Recently, we have arrived at the
following approach. A small pack-
age, called Errare, which is com-
prised of only three subprograms has
been designed:

(1) CALL RECEER (n,
‘message’), RECE standing for REC-
ord Error, sets a global error indica-
tor to n and outputs the message
along with other information, in par-
ticular the operating chain (in order
to avoid avalanche effects, a shorter
text is output whenever n is equal to
the previous error indicator).

(2) INDEER (0), an integer
function with no arguments (a
dummy argument is required in For-
tran 66), returns the value of the
global error indicator (as set by the
last call to RECEER,; zero if none).

(3) CALL SETUER (n), SET
Unit, directs subsequent message
output performed by RECEER to
output unit number » (recall that in
Fortran, 1/0 devices are designated

Communications
of
the ACM

by integers between one and 99). If
SETUER is not called, error output
will be printed on the standard out-
put file.

With these subprograms, a pack-
age subprogram takes the following
course of action when it detects an
error.

—Record the error number and out-
put a message with RECEER.

—If an action was requested, do not
do anything,

—If a value should have been com-
puted, then two subcases arise:
when a sensible approximation ex-
ists, use it as a substitute; other-
wise, return a value chosen to be
as “out of bounds” as possible
(e.g., a negative integer if an ad-
dress was requested).

This technique seems both self-
restrained and safe. It is self-re-
strained because INDEER is a pub-
lic function. Thus, if the application
programmer wishes to correct errors
possibly occurring in a package sub-
program, he can do so by testing
INDEER after the call; the program-
mer will thereby remain in full con-
trol of all events since the package
itself does nothing abnormal except
outputting a message. The technique
1s safe because it guarantees that no
illegal action will be performed by
the subprogram. On the other hand,
if no reasonable value can be com-
puted, the result will be so absurd
that it will inevitably lead to program
abort shortly after the call unless the
application program regains control
with INDEER. It is certainly much
better to provoke a “negative ad-
dress” error than to allow the pro-
gram to work on an erroneous but
physically meaningful address.

The use of “abnormal” values,
such as negative numbers when an
address or array index would have
been required, 15 only possible be-
cause of the lack of strong type
checking in Fortran. The transposi-
tion of this technique to languages
with stronger type requirements re-
quires the presence of an undefined
value in every type. This condition is
met by languages like Algol W and
Simula 67 in which all programmer-

July 1982
Volume 25
Number 7

defined types are pointer ones with
a special empty value (called null or
none) as one of their elements. No
such possibility exists in Pascal or
Ada whose record types, for exam-
ple, do not possess a void value.
One advantage of our methed is
that the treatment of errors does not
interfere with other criteria. In par-
ticular, in terms of argument lists,
the external specification of package
subprograms does not have to be
changed. Better general solutions are
hard to find, short of an exception
facility like those in PL/I or Ada.

3.6 Functions vs. Subroutines

Almost all of our subprograms
are subroutines (actions) rather than
functions. Using a function may
seem preferable in the case of a sub-
program returning a single value and
having no side-effect; the reader may
have wondered while reading about
the Textes package (Section 3.3) why
we used a subroutine to compute the
concatenation of two strings, Indeed,
if we want to output the concatena-
tion of jtext and ktext, we must write
what appears in the box above in-
stead of the much more natural

CALL PRNTTX (fenux (jtext,
ktext))

where fenttx would be a function
returning the concatenated string.

We found three objections to us-
ing functions.

(1) In many systems, including
ours, Fortran functions cannot be
called from Cobol programs
(whereas subroutines can). Since we
do have a few Cobol users, subrou-
tine interfaces must be written any-
way.

(2) A function type must be de-
clared in the calling program, except
when it is integer or single-precision
real and follows the Fortran default
rule (which eliminates logical, dou-
ble precision, and the Fortran 77
character type). This is a source of
errors in systems with no checking at
link or load time.

(3) Animportant issue in decid-
ing whether to express the same se-
mantics as x = f{a, b,...) or CALL
f(x, a, b, ...) is that only the latter

415

INTEGER itext }
CALL CRETTX (itext)

CALL CNCTTX (itext, jtext, ktext)

CALL PRNTTX (itext)

pseudo-declaration of string varlabie

assign to itext the concatenated string
output

construct gives the subprogram
writer access to all the operands in-
volved, including x, which may be
needed in order to make f safer and/
or more efficient. Both safety and
efficiency were at stake in the choice
made for the Textes package. On the
one hand, since string operands are
integers for the compiler, our subpro-
grams must be able to check whether
both sources and target have been
correctly pseudo-declared, thus
avoiding dangling run-time refer-
ences. On the other hand, the pack-
age uses quite an elaborate memory
management algorithm 7] and will
save a lot of space when itext is the
same string variable as jtext or when
the previous allocation for itext is
greater than or equal to length
(jtext) + length (ktext).

In view of these factors, we only
use Fortran functions for integer
functions giving the value of some
attribute of an object. This occurs in
the sense of Section 4.2 (that is, an
“accessor function” as defined in
connection with abstract data types).
For example, the length of string
itext is denoted by LNGTTX (itext).

4. Internal Design Techniques

.4.1 Framewo}k

In the previous section we de-
scribed our basic aim: to provide our
products’ potential users (the appli-
cation programmers) with packages
whose external appearance is sound
and coherent. The key to success is,
of course, that these properties be
matched by the stability and consis-
iency of internal design. As Jackson
[3] remarked about early attempts to
define modular programming, words
like “functional integrity” are not
very useful as practical design guide-
lines as long as they remain unsup-
ported by more technical definitions
of the methods used. The concept
which we have found most fruitful

Communications
of
the ACM

as a design base for sound subroutine
packages is abstract data types, a
notion now well-established in aca-
demic and research circles although
practically uhheard of by most prac-
ticing programmers.

4.2 Abstract Data Types

An abstract data type is the for-
mal definition of a data structure or
class of data structures, as character-
ized by purely functional properties.
The definition of an abstract data
type T comprises three parts:

— a list of domain names, one of
which is T;

— a list of function names with as-
sociated functionalities, i.e., do-
mains of the arguments and re-
sults (at least one of these do-
mains must be T for every func-
tion); these functions are the ab-
stract representation of the oper-
ations available on the type;

— alist of logical assertions on these
functions, which describe the op-
erations’ formal properties.

A definition comprised of these ele-
ments is a formal specification of the
data type.

An implementation of an abstract
data type is a set of data definitions
and subprograms operating on the
data defined, such that each datum’s
type (with the ordinary meaning of
the word “type” in programming
languages) is associated with one of
the domains in the abstract data
type’s definition. Each subprogram
corresponds to one of the functions
and satisfies its functionality require-
ment with respect to input and out-
put arguments. The values of these
arguments satisfy the assertions for
every call of the subprogram.

Some have argued that a good
way, perhaps the best, to construct
truly modular programming systems
is to organize them as sets of abstract

July 1982
Yolume 23
Number 7

COMPUTING
PRACTICES

data type implementations. This
claim is supported by practical evi-
dence [13].

1t and other reasons explain why
we have used abstract data types as
the model for our packages. In fact,
every one of our packages is the con-
scious implementation of one or
more abstract data types. In partic-
ular:

— The Textes package imple-
ments the “text” or “string” type
with operations like the creation of
a constant text, the extraction or
modification of the ith character, or
concatenation.

— The Chronos package imple-
meants the “time counter” concept.

— The Axédir package imple-
ments the external array type with
“initialize,” “read,” and “write” as
operations.

— The Gescran package imple-
ments the “page” (or “screen”) and
“window"” abstract data types with
operations like *define window in
screen,” “write into window,” or
“visualize screen.”

It is therefore not surprising that
the main design choices we encoun-
tered in implementing packages are
conveniently expressed in terms of
abstract data types. In the following
subsections, we study some of the
most important, namely: linguistic is-
sues; heirarchical design; static vs.
dynamic instanciation; information
hiding.

4.3 Linguistic Issues

The programming language for
writing a package should offer a
structure corresponding to the
schema just presented. This is indeed
the case in many recent languages.
Foremost among these, from the
practitioner’s point of view, are the
pioneer, Simula 67 [1, 8], and the
youngest, Ada {2]—the former be-
cause of its availability on a variety
of machines, the latter on account of
its intended wide circulation,

426

These languages, like their rela-
tives (Lis, Clu, Alphard, Euclid,
Mesa, Modula), include a program
structure (“class” in Simula and
“package” in Ada} with three cate-
gories of elements: data definitions,
subprogram declarations, and state-
ments. Such a structure may be used
to implement an abstract data type
(or an object of such a type, see
Section 4.5); its three components
correspond to data representation,
operations, and initialization, respec-
tively. Given an instance, 4, of a
class/package and x as one of its
components (subprogram or data
element), an external module which
is entitled to “use” A4 may reference
x. This is done either with a “dot
notation”, A.x, or directly by its
name, x, provided that the external
module has “acquired” 4 in some
fashion (inspect A4 in Simula, use A
in Ada) and there is no name con-
flict.

This kind of solution is very con-
venient, both from the package
writer and application programmer’s
point of view. The former designs
and implements the package as a
single module, separately compilable
and verifiable: all the relevant infor-
mation is concentrated in a single,
coherent entity. The application pro-
grammer, when requesting a func-
tion performed by the module, sim-

ply supplies the names of the module

and the function.

Unfortunately, it is usually im-
possible to write subprogram pack-
ages in such a language, even if one
is available. Although “first-genera-
tion” languages like Fortran and
Cobol and the assembly languages
for most machines are geared toward
a very simple, static allocation policy,
newer languages (including not only
“modular languages” but also PL/I,
Algol W, and Pascal) require a much
more ambitious memory manage-
ment scheme, usually with a stack
and a heap, the latter being subject
to garbage collection. Therefore,
even with well-engineered language
systems permitting separate compi-
lation and linking with modules writ-
ten in other languages, the system
for the more elaborate language must
exercise control at run-time. For

Communications
of
the ACM

most systems, this preciudes the
use of such a language for writing
subprogram packages since the
latter must be accessible to any
program.

The tool writer is thus placed in
a very frustrating situation. He
knows the right language(s) in which
to write a subprogram, but he re-
mains unable to use it. We, for in-
stance, have a very good Simula sys-
tem [9] but must resort to Fortran for
subprogram packages, with all its
drawbacks: no data structure other
than the array, no control structure
other than the If and Goto, no
pointer variables, no dynamically
created elements, no parameterized-
dimension arrays, no recursion, and,
of course, no “class” or “package”
structure.

4.4 Hierarchical Design

In order for each element of a
package to remain simple and un-
derstandable, it is necessary that the
package’s structure consist of several
layers in all but the most trivial cases.
For packages seen as implementa-
tions of abstract data types, this
means such an implementation will
use objects belonging to other types,
also defined abstractly, ie., used
through their properties rather than
representation. Thus, a package is
generally implemented as a hierar-
chy of types. Such a hierarchy is
illustrated in Figure 5. Ensorcelé |
(output) appears as a means for ma-
nipulating a stream of “printable”
objects, which is represented using
the concept of unbounded character
string, itself implemented as a se-
quence of lines.

Out of the many advantages of
this approach, two are worth noting.
First, it allows the designér to push
down all machine- and system-de-
pendent elements to the lowest levels
of the hierarchy, thus increasing
portability (for example, Gescran
was built for the IBM 3270 termunals,
but only a few subprograms must be
recoded for other similar devices).
Second, it lends itself to top-down
design, which, as Wirth pointed out
[12], should apply to data as well as
control.

July 1982
Volume 25
Number 7

stream

character
string

line

WRIIEN
WRIREN
WRITEN
etc.

(write Integer)
(write real)
{write string)

T

ES4INT
ES4REA
atc.

(convert integer into string)
(convert real Into string)

T

ES4WRI
RETLIN

(fill line)
{write current line)

Fig. 5. Hierarchy of Types for Writing (Ensorcelé 1).

4.5 Static vs. Dynamic
Altocation

A package implementing an ab-
stract data type may provide one of
the following:

(1) one object of the type;

(2) afixed number of objects of the
type;

(3) anunlimited number of objects,
within the limits of the available
space at execution time,

Solution (1) provides for the im-
plementation of what may be called
an “abstract object” rather than a
type. It is used, for example, in En-
sorcelé which acts on a single stream
of objects.

Solution (2) 1s quite natural in
Fortran because of the arrays’ static
dimensions. For example, one pack-
age similar to our Textes in terms of
the services offered [10} provides a
fixed number of text variables, cor-
responding to the size of an array in
a COMMON block. Of course, this
often results in unpleasant repercus-
sions since the limit may appear too
large (entailing undue space use) or
too small (requiring recompilation-of
separate versions of the package).
We have seldom used this technique;
an example is Chronos, which sets
an absolute limit of 100 time
counters.

Solution (3) comes closest to what
is offered in languages providing
user-defined nonstatic types. Every
object of the type needed in the ap-
plication program must be explicitly
created by it (new statement in Sim-
ula or Pascal). This is the most pow-
erful solution; its main drawbacks

427

within our framework is that a few
non-Fortran (or nonstandard) rou-
tines for dynamic memory allocation
must be used. Packages like Gescran,
Axédir, and Textes provide an un-
limited number of instances (char-
acter strings in the first, files in the
second, “‘screens” and “windows” in
the third).

4.6 information Hiding

One of the main goals of the
abstract data type approach is a clear
separation between what is visible to
application programmers and what
remains private to the package de-
signer. The latter category should in-
clude all elements dependent on non-
essential hardware, system, imple-
mentation, or design peculiarities.
We have found two techniques use-
ful in enhancing this property: the
careful choice of names and the use
of pseudo-variables.

Internal names are chosen so as
to seem mnemonic only to team
members. Like external names (see
section 3.4), they follow a regular
pattern and make collisions unlikely.

The notion of a pseudo-variable
is more important. In the case of
packages offering an unbounded
number of type instances, the indi-
vidual objects must be nameable by
the application programs, although
Fortran does not offer a declaration
other than for standard types. The
solution is to declare the objects us-
ing names which appear to the com-
piler as those of integer variables.
Actual “declaration” will then be ef-
fected by 2 call to an instantiating
subprogram. Such pseudo-variables
were used in the Textes example
cited in Section 3.3.

Internally, the integer variable
will usually contain a pointer to the
location assigned to the object and a
code allowing package subprograms
to check that the variable has not
been modified by an illegal opera-
tions. Indeed, the only legal kind of
operation in which such a pseudo-
variable may appear in an applica-
tion program is parameter transmis-
sion. Any other use (e.g., integer ad-
dition) is forbidden and will nor-
mally be detected in the next call to
a subprogram of the package.

This technique seems the best
way of adapting abstract data type
concept to Fortran: an object is only
available through its name and a set
of well-delimited operations. The re-
sulting programming style is not, of
course, typical of Fortran. In the box
below, an example of Gescran pro-
gramming appears.

5. Conciusion

We believe that the principles ex-
pounded upon in this paper may be
applied with equal success to widely
different kinds of software, and we

INTEGER SCREE, WINDO1, WINDO2

CALL REPWGE (WINDO1 , string 1)
CALL REPWGE (WINDOZ, string 2)

CALL CREWGE (WINDO1, SCREE, 2, 5, 7, 12) Pseudo-declaration of WINDO1 and
CALL CREWGE (WINDOZ, SCREE, 6. 15,1, 4) WINDO2 as windows in screen

Declare pseudo-variables.
Pseudo-dectaration of SCREE as a
sureel pseudo-variable,
SCREE.

initialize contents of windows (RE-
Place contents of windows),

Define WINDO1 as bright (BRllliance

of Window).
CALL WRISGE (SCREE) Display SCREE.
Communications July 1982
of * Velume 25
the ACM Number 7

COMPUTING
PRACTICES

hope that our discussion has shed
some light on a key problem in soft-
ware engineering: how to write reus-
able software. It should be pointed
out, however, that all of our products
are conceptually small. This was a
deliberate decision on our part since
we. felt modest-sized team best suc-
ceeds with simple, efficient, and re-
liable programs, rather than large-
scale, ambitious ones, Although wé
feel many of our methods would ap-
ply successfully to larger projects, we
do recognize that their applicability
to, say, a vast numerical library re-
mains to be proved.

Acknowledgments

The work reported on here in-
volved, in particular, E. Audin, G.
Brisson, E. de Drouas, and B. Logez.
Many others provided advice—most
notably, A. Bossavit. At a meeting of
the groupe “Génie Logiciel” (Soft-
ware Enginnering) of AFCET-TTI
(French Computer Society), addi-
tional useful suggestions were made.
The author is also indebted to I.
Qualters for many improvements in

428

the style of this paper, and to the
reviewers for their comments.

References

1. Dahl, 0.1, Myrhaug, B., and Nygaard,
K. Simtula 67: Common Base Language. Rep.
5-10, Norsk Regnesentral, Oslo, Norway,
1970. The original description of the first of
the modern modular languages. Assumes the
Algol 60 report as a prerequisite; an inte-
grated report is currently in preparation.

2. Honeywell, Inc. The Ada Programming
Language— Proposed Standard Document.
U.S. Dept. of Defense, 1980, Washington,
D.C. The report on the new U.S. Depant-
ment of Defense tanguage, designed by a
team led by 1. Ichbiah.

3. Jackson, M.A. Principles of Program De-
sign. Academic Press, London, [975.
Describes a popular program design method-
ology, based on the idca that 2 program’s
structure should be modeted on the structure
of the data it manipulates. Prime target:
business data processing.

4. Kernighan, B.W., and Plauger, P.J. Soft-
ware Tools. Addison-Wesley, Reading,
Mass,, 1976. A methodology for constructing
composable programs, with a bottom-up
presentation of 3 number of examples. -

5. Kemighan, B.W. Ratfor—A p

S
Etudes et Recherches, Sept. 1978. Describes
a paricular garbage collection algorithm
used in 3 package for text manipulation.

8. Meyer, B. Sur quelques concepts mod-
ernes des langages de programmation et leur
Representauon en Simula 67. AFCET-GRO-
PLAN, Vol. 9, Cargése, 1979, pp. 331-395.
How Simula supports modern programming

pts, such as modularity, icity, top-
down design of both algorithms and data
structures, etc.

9. Norsk Regnesentral. Simula 67 for IBM
System/360— User's Guide, Simula 67 for
1BM System 360—Programmer’s Guide. Pub.
$-24-1 and S-23-1, Oslo, Norway, 1975.
Reference for the IBM Simula implementa-
tion, a programming environment with desir-
able features like separate compilation and
symbolic debugging,

10. Rose, LR, and Hellerman, H. Portable
character processing in Fortran and fixed
character environments. /EEE Trans. Soft-
ware Eng. SE-2, 3 (Sept. 76), 176-185.

A package for text manipulation.

11, Sahel, E. Manuel Fortran 30. IRIA, Roc-
quencourt, France, 978, An extension of
Fortran which allows graphic processing,

12. Wirth, N. Program development by step-
wise refinement. Comm. ACM 14,4 (Apnl
1971), 221-227. A classic reference on the

sor for rational Fortran. Software— Prac-
tice and Experience (Oct. 1975). One of the
most popular Fortran preprocessors.

6. Meyer, B,, and Baudoin, C, Methodes de
Programmation. Eyrolles, Paris, 1978, A

fairly comprehensive survey on
raing methodalogy, programming
basic algonithms, and data structures.

Prog!
e

7. Mcyer, B. Un Ramasse-Miettes par Tri,
Rep. Atelier Logiciel 8, EDF—Direction des

Communications
of
the ACM

P design of prog Mentions that
the refinement process should apply to data
structures as well as the algonthmic part.

13. Woodfield, S.W., Dunmore, H.E., and
Shen, V.Y. The effect of modularization and
coments on program comprehension. Proc.
3th Intemat. Conf. Software Eng,, San
Diego, Calif,, March 1981, pp. 215-223.

An experimental study on what factors affect
the readability of programs. Some results
support the view that abstract data types are
a good basis on which to construct modules.

July 1982
Valume 25
Number 7

NOTE (aott 1985)

Au moment de préparer la version finale
de cette thése, il nous a semblé utile de
compléter cet article de 1984, qui décrit le
prototype de Cépage réalisé 3 EDF, par
un document plus récent (aoidt 1985),
donnant 'état actuel du nouveau produit
en cours de développement, et qu'on
trouvera & la suite du premier. Le second
article (Cépage: Towards Computer-
Aided Design of Software) contient certain
nombre de redites mais aussi des
compléments importants.

[84a]

CEPAGE: UN EDITEUR STRUCTUREL PLEINE PAGE

Bertrand Meyer *, Jean-Marc Nerson **

* Computer Science Department, University of California
Santa Barbara, California 93106 {Etats-Unis)
Tél. (805) 961 43 85"

** CIMSA, 10 Avenue de |'Europe
78140 Vélizy (France)

RESUME?

Nous décrivons Cépage, un éditeur de documents structurés congu pour etre d'emploi
agréable sur les terminaux actuels. Cépage se trouve au confluent des travaux sur les
éditeurs syntaxiques, du développement des éditeurs pleine page, et des études sur les
environnements logiciels avancés. C'est un éditeur universel, dans lequel la description
du langage est un simple paramétre ; son interface externe est faite pour les enfants
de l'¢re vidéo. Cépage constitue un prototype de ce que pourrait etre un éditeur
structurel utilisable dans un environnement industriel.

MOTSCLES
Editeurs structurels, éditeurs syntaxiques, ergonomie des dialogues,
ication homme-machine, environnements de programmation,
formatage des programunes.
ABSTRACT

This paper describes Cépage, an editor for structured documents, designed for ease of
use on modern terminals. Cépage was conceived as the common child of three
influences: syntax editors; full-screen editors; and advanced software environments.
Cépage is universal, the language description being a mere parameter to the system;
its user interface is intended to be acceptable to the children of the video game era.
We think Cépage is a prototype of what a structural editor should look like in order to
succeed in production environments.

KEYWORDS
Structural editors, Syntax Editors, Human Interfaces, Man-Machine
Communication, Programming Environments, Program Formating,
Ergonomics.

Uravail effectué initialement &. Blectricité de France, Direction des Etudes et Recherches,
1 avenue du Général de Gaulie 82141 Clamart (France)

Zous présentony nod excuses au Jecteur pour les anomalies de typographie (accents
i et de bibli i en anglaia), dues au fait que cet article a é&té

préparé sux Etats-Unus sur un systéme de traitement de textes mal adapté & la langue
francaise.

153 ‘

CEPACE: UX EDITEUR STRUCTUREL PLEINE PACE

Bertrand Meyer
Jean-Marc Nerson

1. LES OBJECTIFS

élérons & celw de

est un éditeur structurel (terme gque nous pr r :

s n'.ca.éx?:&:"). dans la conception duguel l'interface humaine a élé'étudxée av:c[un soin
to{:l particulier. Il est enlidrement paramétrable et peut s'appliquer A tout langage
défini par une grammaire: langzge de programmation, de spécification, mais aussi
langage de description de documentsstructurés de toute nature {nous appellerons ci-
aprés "documents” les objets que I'éditeur sert & construire).

Cépage s'inscrit dans toute une lignée d'éditeurs structurels dévéloppés auccours
des dernidres années [Allison1983, Donzeau-Gouget981, Donzeau- oulg]e.
Habermann1962, Hansenl971, 1981, Teitelbaum1981, Wilander1980, ‘_Fe\telbaule& ;
Les éditeurs structurels, par opposition aux éditeurs de lex;ul'classlqueds. z:::’\ceter:r;

i de simples suites de lignes ou de s,
de manipuler des documents non comme } b e fgnesiou dprearactéres;
i me des objets structuréds, en leu{- appliquan! P
:?:iv:nn;nt 3 leur structure. Parmi les principaux avantages de cette mélhode, on
peut citer:])

- 1a garantie d'obtenir des documents syntaxiquement corrects; ‘

ibili 0 i tucllement complexes mais

- sibilité d'eflectuer des transformations éven

g::azsgzs correctes, par exemple des transformations de programmes en vue de

leur optirnisation ou de leur transport; . Hrmba

1bili "utii § ie des taches de rouline liées

o bilité de décharger l'utdisateur d'une partie :

l::gs::lsxté, dans un éditeur de textes classique, de fournir tous les détails de la

syntaxe “concréte” des documents; ; .

i i . dre syntaxique dans un autre

-1 sibihté de traduction automatique d'un ca n

(p:rizsemple dans le cas de conversions entre langages de programrnation):

- l'utilisation d'une structure de données normalisée (en général lurbre

syntaxique abstrait) qui peut servir de support 4 d’autres outils logiciels (cf. par
e{c:mple [Schroederi983]), voire & des enviconnements de programmation
complets ([Habermann1982])
En dépit de ces qualités, les éditeurs structurels n'ont pas encore gagné droit de
cité dans l'industrie. L'une des raisons principales de cette :xtauatxun e’f)lL' se{gﬁ‘nois“
t des cas, est de type "lgne & ligne”,
liée & leur interface externe qui, dans la plupar : N A
i § ges de
‘est-a- ue le dialogue avec l'utilisateur consiste en une s | 1 :
icf;néa:::s ?:t.ede réponses. Or les environnements 'de progrmmahop dlspumblels
aujourd’hui offrent de plus en plus couramment des éditeurs de texte pleine page, tels
SP]F (sur 1BM), Emacs (sur Multics et Vax-Unix) ou Vi (sur Vax-Unix), qui hre‘n.t parti des
possibilités d:as terminaux actuels. Parmi les caractéristiques de ces systémes, on
peut citer (Meyer1983a] : '
- L'utilisation de !'éeran complet, de préférence 4 la ligne, comme umté'.de
communication entre le systéme et l'utilisateur, donnant & celurm_une vnxloq
notablement plus large sur le document en cours Ide construction, et lui
permettant donc d'exercer un meilleur controle sur Pensembie du progessus

d'édition;

1564 ’

- la possibilité, plus facile & fournir que dans un systdme ligne 4 ligne, de
personnaliser le dialague en conservant des informations relatives 4 chaque
utilisateur;

- l'utilisation en parallgle, dans certaing systémes, de plusieurs fenetres,
permettant 4 1'utilisateur de posséder & chaque instant plusieurs vues différentes
sur le document manipulé;

- enfln, et plus généralement, I'application du principe de "manipulation directe
[Shneiderman1983] , selon leguel on maitrise mieux un systéme lorsqu'il fournit &
chaque instant une représentation claire et & jour de l'état courant des objets
traités,

Le bénéfice de ces différentes propriélés est tel qu'il est & peu prés impossible de
convaincre un utilisateur d'un éditeur pleine page de revenir A un éditeur ligne a ligne,
quelles qu'en soient par ailleurs les qualités. Ceci, selon notre expérience, vaut aussi
pour les éditeurs structurels: s'ils sont de type ligne & ligne, ils ne pourront gagner les
faveurs des utilisateurs habitués 4 des systémes pleine page.

Les objectifs de Cépage découlent des réflexions précédentes. Il s'agissait de
combiner les avantages des éditeurs structurels en matidre de sareté et de puissance
avec la commodité d'emploi des éditeurs de textes pleine page, en tirant le meilleur
parti possible des terminaux modernes,

Le projet Cépage ne se voulait pas un projet de recherche, mais plutot un
transfert de technologie, destiné A rendre industriellement utilisables des idées, celles
de l'4dition structurelle, qui ont fait l'objet de travaux importants de la part des
chercheurs, En fait, nous avons du, & notre corps défendant, "inventer" un peu plus que
nous'ne 1'avions envisagé initialement.

Les principales sources d'inspiration ont &t&, pour les éditeurs structurels,
Gandalf et (dans une moindre mesure) Mentor et CPS; comme modéle d'interface
bomme-machine, Smalltalk nous a également influencés.

Selon tout critdre objectit, le prajet Cépage est un petit projet. La spécification et
la conception sont I'ceuvre des deux auteurs de cet article, la réalisation presque
exclusivement du second (Cépege inclut un petit éditeur de textes, écrit par N.
Triquet). Les premitres discussions remontent & la fin de 1982; le projet a
véritablement pris corps au début de 1983, avec pour objectif (qui a &té respecté)
d'obtenir un protolype en é&tat de fonctionnement le 20 décembre 1983 La
programmation proprement dite n'a commencé qu'en septembre 1983. Le programme
comprend environ 6000 lignes en Pascal: il utilise par ailleurs le progiciel Gescran pour
la gestion de linterface écran [Audin1980] , réalisé dans la meme équipe, et qui
représente environ 4000 lignes de Fortran 77 (Gescran est un ensemble de sous-
programmes permettant de décrire commodément les interactions "plein écran” en ne
manipulant que des abjets appartenant 4 quatre types abstraits, appelés écran,
fenetre, zone, terminal et accessibles uniquement & travers les primitives du progiciel
{Meyer1982] : il s'appuie sur le progiciel d’entrée et sortie Ensorcelé [Brisson1982,
Meyer1981]). Les conditions quelgue peu particuliéres dans lesquelles ce projet a été
réalisé expliquent sans doute que ces paramétres ne correspondent gudre 4 ce que l'on
pourrait déduire de I'étude des bons auteurs [Boehmissz] L

IL peut etre intéressant de noter que Tutilisation partielle de spécifications

formelles, fondées sur le langage 2 [Abriai1980]} puis sur la méthode M [Meyer1984a] .a
rendu quelques services

155

e

R e

2. L'UTILISATION DE CEPAGE

2.1, L'éeran

L’écran affecté A une session de Cépage est divisé en un certain nombre de
fenetres (figure 1). Chacune de ces fenetres remplit une fonction précise:

- la fenetre "document” contient une représentation de I'état actuel du document.
en cours de construction ou de modiflcation; certains des éléments de cette
représentation, affichés entre chevrons (par exemple instruction), correspondent
4 des éléments du document qui n'ont pas encore été aflinés et sont dits non~
terminaux,

- la fenetre "exte” est destinée A recevoir les textes non structurés qu'll peut etre
nécessaire de fournir A certaines étapes d'une session (par exemple des
identificateurs, des commentaires};

- la fenetre "menu” offre 4 chaque étape la liste des choix disponibles;
- la fenetre "type” donne le type syntaxique des éléments délimités (ct. ci-aprés);

- des fenetres “réserves” (non présentes sur la figure 1) donnent des informations
sur des documents ou éléments de documents autres que le document en cours
d’édition; ces fenetres sont utilisées pour changer de document pendant la session
ainsi que pour les opérations de copie et de transfert.

- la fenetre "message" sert A afficher les diagnostics.

2.2, Le dialogue

A chaque étape de I'exécution d'une session de Cépage, le systéme propose 4
l'utilisateur de choisir entre un certain nombre de possibilités & l'aide d'un menu.
Pour utiliser les fonctions de base de Cépage, les menus suffisent; un manuel
d'utilisation n'est donc pas nécessaire pour peu que l'on ait compris les concepts
principaux du systéme. Dans la version [BM actuelle, le choix entre les différents
éléments du menu s'eflectue grace aux touches de fonction du terminal. Sur des
terminaux plus évalués, on peut imaginer d'utiliser une souris.

Chaque fois qu'il est nécessaire de désigner un élément du docurment (par
exemple pour indiquer & quel terminal s'applique un affinage, comme sur la figure 1a),
on utilise a cet eflet le curseur, que I'on positionne sur I'élément en question. C'est la
seule facon d'accéder au document (la notion de numéro de ligne, par exemple, est
ebsente). L'utilisation d'un dispositf plus rapide tel que la souris serait
particulidrement bienvenue ici.

Quelques fonctions plus avancées exigent l'emploi de commandes; ces commandes
sont formées d'un mok unique, et leur existence découle uniquement du nombre limilé
de touches de fonctions disponibles (12). Cépage n'a donc pas de "langage de
commande” au sens classique du terme: toutes les interactions avec le systéme se font
par "pointer-toucher”.

En particulier, I'utilisateur construisant avec Cépage un lexte de programme, en
Pascal par exemple, n'est jamais amené & frapper au clavier des éléments de syntaxe
coneréte, par exemple des mots-clés tels qu' if, procedure, record, cte. Au liey de cela,
un menu lui permet de choisir entre conditionnelle, déclaration de pracédure,
ddclaration de type enregistrement, etc., et le systéme prodult pour lui fa syntaxe
correcte (les taches de routine sont l'affaire des ordinateurs, non ceiles des humains).

Le seul cas ol le clavier {hors touches de function) est nécessaire est celui od
Uutiisateur doit fournir un texte que le systéme ne pourrait invenler seul, comme un
identificateur ou un commentaire. La fenetre “lexte” est utilisée & cet eflet; le texte y
est construit grace 3 un éditeur de textes (pleine page) inclus dans Cépage.

156

{a)

r— document r meny
procedure p (In x ¢ nleger) ; FONCTION TOUCHE!
e DESCENDRE 1
1 = <enregistrament>; e 2
1 = amay <index> of
<lype>: AVANCER a
var RECULER)
R &
! AFFINER
viclype> | @
begln MODIFIER §
while < condition > do INSERER 7
pix=1h: DETRUIRE 8
<instruction> |
- - B2
a<inslructton>
Ilx=0 message
i { iy
(b}
—docum-m—-‘ — :;nu T
procadure p (in o) INSTRUC, TOUCHE
type AFFEGT, 1
—Ln = <enraglstrement >; APPEL 2
= 80UCLE
T ey “TANT QUE” 3
' BOUCLE
=l mIuSQuUtAr 4
vi<iypes: conoimion, (5) =
8LOC 5
begin LECTURE 7
whils <condilion > do ECRITURE 8
p{x=-1); (ANNULER)]
e<instruction >, - \ype
repeat

<instructlon>
x

until x =0

sad

™3

(c)

— document
procedure p {In x \ Integer)

1 = genreqisirement]
11 = array <index> of
<lype> |

white<condilion>dg
-1
<lInstruclions> |
repeat
@ it<condition>then
<inslruction>
else
<lnslruction >
untll x =0

Led

texle

— meny
FONCTION TQUCHE
‘| DESCENDRE il
MONTER
AVANCER
RECULER
AFFINER
MOODIFIER
INSERER
DETRUIRE

I ST PO

p—

©® Position du curseur

O—

touche de foncllon choisie
par Cutilisateut

FIGURE 1 - UN AFFINAGE

157

2.3. Les fonctions de base .
Les principales fonctions offertes par Cépage se rattachent aux catégories
suivantes.
- promenade: parcours du document (montée et descente dans la hiérarchie des
entités syntaxiques, avancée et récul dans les listes);
- construction-modification: affinage, changement d'un affinage antérieur,
insertion et destruction dans une liste;
- copie-translert: reproduction ou déplacement d'un élément de texte (utilisant
'opération de "délimitation": voir ci-aprés),
- archivagerestauration: archivage sur un fichier, sous une forme adéquate, de
I'état actuel d'un document en cours d'élaboration, partiellement ou
complétemnent afliné; restauration d'un document précédemment archivé.
- génération: production de la forme finale d’un document completement afling;
~ controle de session: choix du document courant, passage d'un document & un
autre, définition de bibliotheque ete. (une bibliothéque est un ensemble de
documents; on peut au cours d'une session travailler sur plusieurs documnents,
dont un seul est actif & chaque instant, et passer librement de t'un & 'autre}.

2.4, La délimitation

La délimitation (figure 2) est une opération nécessaire pour les fonctions qui
exigent de l'utilisateur qu'il définisse un sous-ensemble syntaxique du document: ainsi,
pour une copie ou un transfert, il faut délimiter la partie du document & laquetle
s'appliquera l'opération. Cette délimitation s'effectue selon les principes de la
manipulation directe.

Pour "délimiter", on place le curseur & un emplacement quelconque de I'élément &
délimiter, et l'on précise la portée de ce document par une suite de commandes,
effectuées grace aux touches de fonction (indiquées sur le menu de délimitation); &
chaque étape, le systéme fait ressortir I'élément délimité par un changement des
attributs d'aflichage (couleur, affichage en négatif, ete.).

Les commandes de délimitation sont les suivantes:

- englober: inclure dans [I'élément déiimité la structure syntaxique

immédiatement englobante (par exemple, si l'on avait Jusque 14 délimité une

instruction, inclure I'ensemble du bloc qui la contient);

- “désenglober”: annuler I'effet d'une opération "englober” en revenant au niveau

inférieur;

- étendre & gauche: inclure I'€lément immédiatement, antérieur {cette opération

s'applique au cas ob I'élément délimité est une sous-liste; les trois opérations

complémentaires sont exclure 3 gauche, étendre A droite, exclure & droitej;

- terminer (accepter I'élément actuel); annuler.

2.5. Modificaticn du langage

Cépage est entitrement indépendant du langage, la syntaxe (coneréte et
abstraite) est un parametre qui peut etre modifté A volonté. Dans la version actuelle, la
description ou la modification du langage se fait de facon assez classique, par 'entrée
d'une grammaire. Il est prévu ultérieurement de fournic pour cette opération
Uinterface du systéme lui-meme, ce qui revieat & dire que l'un des langages pour
lesquels Cépage sera défini est un langage de description syntaxique (il est bien
conforme aux principes généraux de la conception de Cépage de faire en sorte que
l'utilisateur n'ait pas & connattre la syntaxe concréte de ce "langage”).

168

iy i

Procedure p (In x ¢ Integer) ; ENCTIE TOUCKE]
4
t = < onreglatrement>; SNOEOBER d
tt = array index of OESENGLOBER 2
<type>:
ACCEPTER 3
ANNULER 4

lexie type
<Instruction> < instruction> l
youl x=0 [_ v

end

FIGURE 2 - LA DELIMITATION

La portlon hachurée & 614 oé:Imitée (ot apparait en nagatl! ou dans une coulsur
spéciaie). En appuyant sur la touche de lonction 1 {(MENGLOBER"), on
délimite I'snsemble de la zone entourée sn pointiilé.

La modification du langage peut paraitre une opération peu utile en pratique, pour
autant que Cépage soit fourni avec des descriptions des principaux langages. En fait, la
possibilité d'adapter facilement la description du langage & des conditions locales nous
parait une caractéristique vivernent souhaitable, Elle permet en particulier de mettre
en place des normes de programmation d'une facon plus commode (et plus facile &
faire accepter) que par l'utilisation d'outils de controle o posteriori. On peut ainsi
définic des sous-ensembles d'un langage, des conventions relatives aux commentaires,
4 la structure des programmaes, etc.

3. CEPAGE: LES CHOIX TECHNIQUES

3.1. Les structures de données fondamentales

Au cours d'une session, Cépage travaille (figure 8) & partir de deux structures de
données principates:

- la description interne du langage, cu graphe de grammaie,
- la description interne d'un ensemble de documents: foret syntaxique abstraite.

Il est important de noter que ces deux structures de données sont traitées sur un
pied d'égalité. C'est ce qui fait de Cépage un systéme entidrement paramétré par le
langage: la description du tangage est interprétée répétitivement par le systéme. Cect
distingue nettement Cépage d'un systéme tel que Gandalf, paramétrable certes, mais

159

Foret ayntaxique

abatratte

Dictionnalre

e
e
i GESCRAN
Lecture
Forme SEEade Archivage Eorme
visuallsée Algorlthmes Aestauration archivebie
de vizualisation
%\
& N\
o %
& A
~ °b CA
S 2%
S %
& F %\
< %
09*\
Z
Forme Graphe de
lextuelle OrERTE

Figure 3 : Les struclurcs de données

dans lequel la description du langage est "compilée", é'est-édlre dans lequel on doit
partir d'une version "noyau” de Gandaif et d'une description d'un langage X (ou Z, ou)
pour cbtenir un outil Gandalf-X, ou Gandait-C, adaptée au langage choisi. La solution
adoptée par Cépage offre une plus grande souplesse et explique qu'il soit possible de
modifler facilement le langage. En revanche, elle ne permet pas de prendre aussi
facilement en compte des actions sémantiques, ce qui est un des buts de Candalf.

Le graphe de grammaire est une structure de données permettant de représenter
l'ensemble des propriétés de la grammaire du langage. La syntaxe abstraite est
Utilisée comme base; elle est décrite par un ensemble de types syntaxiques et de
preductions, Chague type syntaxique apparart & gauche d'une production au plus; ceyx
qui n'apparaissent & gauche d'aucune production sont dits terminaux. 1l y a trois
sortes de productions, dites “concaténation”, “unton” et “liste”, illustrées
respectivement par les exemples suivants:

conditionnelle = ¢: baolden i stl, st2 instruction,

instruction = affectotion | conditionnelle | composée

.

compasée = instruction

La syotaxe coocréte est obtenue par "décoration” des productions de la syntaxe
abstraite; par exemple, & toute production de type liste sont associds un en-tete, un
délimiteur et une fin (par exemple begin, le point-virgule et cond dans le cas de
composée). Le graphe de grammaire regroupe I'ensemble de ces informations,

160

i ‘arbres syntaxiques
La foret syntaxrique abstraite comprend un ensemble d'ar!
abstraits, associés chacun & un document ou élément de document en cours

d'élaboration.

programme
.
et listdecl . -—===composée
/ / affectation instruction boucle
i = 7 ? /]
i /
5 / &
’ déclaration déctaration / l
—— — L] /
/ (/
/o !
// ! dinaire booléen instruction
/'l e L4
z integer z / ! N \
#
z + 1

*: noeud concaténé
=: noeud liste
8 : noeud alternatif
#: nosud texte

Figure 4: Arbre Syntaxique Abstrait

Les noeuds internes d'un arbre syntaxique abstrait (figure 4) sont de quatre
sortes, correspondant aux quatre types de productions:

- les noeuds "'concaténés’ ont une arité fixé

- les noeuds "alternatifs” représentent seulement un choix dans une production de

type union;

- les noeuds "liste” peuvent avoir un nombre quelconque de fils.

161

- les noeuds “"texte”, correspondant & des él& ts terminaux affinés par
l'utilisateur & I'alde de {"éditeur de textes inclus dans Cépage.

3.2. Autres structures de données

D'autres structures de données complétent les deux précétentes.

Outre les arbres syntaxiques abstraits, trois représentations sont nécessaires
pour les documents:

- la forme visualisable, un ensemble d'éléments destinés 4 etre transmis A Gescran

pour affichage sur le terminal & chaque étape de la session;

- la forme archivable, pour préservation et restauration ultdrieure de I'état

instantané d'un document;

- la forme textuelle, but ultime du processus d'édition.

Par ailleurs, la foret syntaxique abstraite s'accompagne d'un dictionnaire,
contenant les différents éléments textuels nécessaires (identificateurs, etc.). Les
feuilles des arbres syntaxiques contiennent des références au dictionnaire.

3.3. Les algorithmes

I convient de laire remarquer que les objectifs définis précédemment impliquent
I'absence d'analyse syntaxique dans Cépage. La construction d'un texte s'effectue par
choix successils, correspondant A la syntaxe abstraite; la syntaxe concréte est
construite par le systéme, qui effectue en réalité l'opération inverse de I'analyse
syntaxique, appelée parfois "désanalyse” (un-parsing).

On notera que la liberté laissée aux utilisateurs dans la description du tangage
permet d'établir en pratique un bon compromis enlre la facilité d'utilisation st le
degré de détail auquel descend le systéme; par exemple, on peut envisager de
considérer ezpression comme un terminal. Une autre technique pour ce type d'entité
syntaxique, non mise en ceuwre dans la version actuelle de Cépage, est celle de
[Kaiser1982] , intermédiaire entre “analyse et "déanalyse"

S'il n'y a pas d'analyse syntaxique, un autre type d'algorithmes a posé des
problémes sérieux: la construction de la forme visualisée. il s'agit de proposer 4
chaque instant une représentation aussi riche que passible de I'état du document, en
tenant compte des limites imposées par la taille physique du terminal.

Avec un éditeur de textes, pleine page ou non, on ne peut en général fournir quun
extrait du document formé d'une suite contigué de lignes (cerlains éditeurs offrent la
possibilité d'exclure des groupes de lignes de la partie aflichée afin de se concentrer
sur les éiéments les plus intéressants & un moment donné). Un éditeur structurel doit
etre capable de fournir une vue globale du document ou d'une partie de celw-ci, meme
s'il ne peut la représenter sur I'écran avec tous ses détails. La solution est I' &lision: on
remplace certains éléments du document par une abréviation - plus précisément, par
une simple indication de leur type. Ainsi, une procédure de 2000 lignes pourra etre
figurée par la simple indication “procéddure”; nous appelons ce type d'abréviation
abstraction. Le second type d'abréviation eflectue par Cépage est le rétrécissement,
qui consiste en une abstraction appliquée & une ou plusieurs sous-listes d'une liste,
comme dans-

231 wnstructions™;

p := ezpression;

"'57 instructions”

A chaque étape de la session, ie systéme détermine le foyer sur lequel l'ulilisaleur
semble voulour concentrer son attention d'aprés les dernidres opérations qu'll a
effectuées, et cherche & aflicher une vue aussi détailiée que possible d'une portion du

162

Y e A N 5

TR

R T p———

document, de part et d'autre du foyer, déterminant les abstractions et
retrecissements nécessaires. Il en déduit {a forme visualisable qui est transmise &
Gescran pour affichage.

La recherche d'une bonne représentation visualisable s'est révélée une tache
d'une difficulté inattendue. Nous avons été surpris par le peu de documents
disponibles; si 'on excepte une bréve allusion dans [Barstow1984] , la seule référence
publiée est & notre connalssance [Mikelsonsi981] , qui est difficilement utilisable du
fait de son imprécision et des caractéristiques particulidres de l'environnement déerit.

L'abondante littérature sur le formatage des programmes ('prettyprinting”,
paragraphage} est ici de peu d'utilité, I'hypothise fondamentale, quoique en général
implicite (cf. en particulier [Oppen1380]) est que, si la longueur des lignes est Lmitée,
le nombrs de lignes, lui, ne 'est pas. Pour un formatage sur écran, les colonnes et tes
lignes sont des ressources sévérement limitées,

Nous avons donc été amenés & concevoir des algorithmes spécialisés décrits
ailleurs [Meyerl983b, Meyer1984b] , et qui dépassent le cadre de cet article. Ces
algorithmes sont linéaires par rapport au nombre de noeuds de l‘arbre syntaxique. 1
s'agit de l'un des domaines ol nous avons da “inventer".

4. L'AVENIR DE CEPAGE

Comme il a été indique au début de cet article, la versicn de décembre 1983 est un
prototype, comprenant cependant les fonctions essentielles du systéme. Les actions
ci-aprés sont ensuite prévues.

- Il faudra étudier les réactions des utilisateurs. La conception de Cépage repose

sur ce que nous pensons etre une bonne base ergonomique pour des systémes

interactifs, opinion confortée par des études récentes reposant sur de solides
bases scientifiques [Card1983] , mais demande, bien entendy, & etre validée
expérimentalement.

- Tl est également prévu d'adapter le systéme & d’autres environnements. Cépage a

été concu pour etre portable; le choix de Pascal, de préférence & un langage

orienté objets comme Simula 67 {utilisé précédemment avec succés dans la meme
équipe pour réaliser des cutils \nteractifs de qualité), &tait justifié par cet objectif.

It est prévu A court terme d'adapter Cépage 4 un environnement Unix, & la fois sur

Vax et sur une station de travaill SUN (2 {'université de Californie); le SUN est un

poste de programmation & base de 68000, possédant un écran 4 haute résolution

("bit-map") et une souris. Ce projet est pour nous particuliérement important,

car c'est seulement dans des environnements matériels de ce niveau que des

outils tels que Cépage pourront, selon nous, tenir toutes leurs promesses; nous
espérons que Cépage sera également adapté & d'autres systémes de ce type (Perg,

Apollo, SM 90...).

- Il convient également d'2jouter les principales fonctions absentes du prototype,

en particulier l'outil de modification du langage, et préparer des grammaires-

Cépage pour les principaux langages utilisés en pratique (le prototype a été testé

avec une grammaire d'un langage voisin de Pascal).

A la lumiére des premidres expériences, nous aurons peut-etre la réponse 2
quelques-unes des questions qut restent actuellerment en suspens, comme celle de
I'analyse syntaxique: faudra-t-il, dans une version uliérieure, ejouter un analyseur
syntaxique, de facon 4 permettre de manipuler par Cépage des programmes existants,
obtenus par d’autres moyens?

Nous espérons que la mise en service des premiéres versions confirmera ce que
nous pensons etre le grand intéret potentiel du systéme actuel, et permettra d'en faire
un élément essentiel d'un environnement de programmation puissant et ergonomique.

163

References

Abrial1980.

Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer, “'A Specification
Language,” in On the Construction of Programs, ed. C.A.R. Hoare and R Perrot,
Cambridge University Press, Cambridge (U.K.), 1980,

Allison1983.

R Allison, “Syntax-Directed Program Editing,” Software, Practice and
Ezperience, vol. 13, pp. 453-465, April 1983

Audinl1980.

Eugéne Audin, Gérard Brisson, Bertrand Meyer, and Francoise Vapné-Ficheux,
"Geseran, Manuel de Référence,” Alelier Logiciel 22, Electricité de France, 1980,
(Fourth Edition, 1984)

Barstow1984.

David R Barstow, “A Display-Oriented Editor for INTERLISP." in /nferactive
Programming Environments, ed. David R. Barstow, Howard E. Shrobe, Erik
Sandewall, pp. 288-299, McCraw-Hill, New York, 1984.

Boehm1982.

Barry W. Boehm, Software Engineering Economics, Prentice-Hall, Englewocd Cliffs
(N.7.), 1982,

Brisson1982.

Cérard Brisson, Bertrand Meyer. and Francoise Vapné-Ficheux, "Ensorcelé:
Entrées et Sorties Sans Format (2¢me partie)," Atclier Logiciel no. 6, Electricité
de France, December 1982.

Card1983.

Stuart K. Card, Thomas P. Moran, and Allen Neweil, The Psychalogy of Human-
Computer fleraction, Lawrence Erlbaum Associales, Hillsdale {New Jersey), 1983,

Donzeau-Gouge1981.

Véronique Donzeau-Couge, Gérard Huet, Gilles Kahn, and Bernard Lang,
“Environnement de Programmation Mentor: Présent et Avenir,” in Actes des
Troisidmes Journdes Francophones sur Ufnfarmatique, Gendve, 1981,

Donzeau-Couge.

Véronique Donzeau-Gouge, Gérard Huet, Gilles Kahn, and Bernard lang,
“Programming Environments Based on Structured Editors: The MENTOR
Experience," in [nteractive Programming Environments, ed. David R. Barstow,
Howard E. Shrobe, Erik Sandewall, pp. 123-140, McGraw-Eill, New York.

Habermann1582
Nico Habermann and cthers, The Second Campendium of Gendalf Documentalion,
Carnegie-Mellon University, Pittsburgh (Pa), 1982,

Hansen1971. .

Wilfred I. Hansen, "Creation of Hierarchic Text with a Computer Display,” ANL-
7818, Argonne National Laboratory, Argonne (Ill), 1971 (Also as dissertation,
Computer Science Department, Stanford University, June 1971).

1981.1.W. Lewis , "Beyond ALBE/P: Language and Neutral Form,” in Proceedings of the
Sth [niernational Conference on Soflware Engingering, pp. 422-429, San Diego
(Ca.}, March 1981

Kuiser1982.

Gail E. Kaiser and Elaine Kant, "Incremental Expression Parsing for Synta-
Directed Editars,” Computer Science Report, Carnegie-Mellon University, October
1982,

Tl

Meyer1981.
Bertrand Meyer, “Ensorcelé: Entrées et Sorties Sans Format (lére partie),"
Atelier Logiciel no. 4, Electricité de France, April 1981, (Fourth Edition)

Meyer1982.
Bertrand Meyer, “Principles of Package Design," Communications of the ACH, vol.
25, no. 7, pp. 419-428, July 1982

Meyer1983a.
Bertrand Meyer, “Towards a Two-Dimensional Programming Environment,"” in
Proceedings of the Buropean Conference on Integrafed Computing Systems
(ECICS 82). Stresa (Italy), 1-3 September 1982, ed. Pierpaolo Degano and Erik
Sandewall, North-Holland , Amsterdam (The Netherlands), 1983.

Meyer1983b.
Bertrand Meyer and Jean-Marc Nerson, *'Showing Programs on a Screen,” Internal
Report HI/4590-01, Electricité de France, September 1983,

Meyer1984a.
Bertrand Meyer. .A System Description Hethod, Workshop on Specification
Languages, to appear, Orlando (FL.}, March 1384.

Meyer1984b.
Bertrand Meyer and Jean-Marc Nerson, Showing Programs on @ Screen, Submitted
for Publication, 1984.

Mikelsons1981.
M. Mikelsons, "Prettyprinting in an Interactive Programming Environment,"
SIGPLAN Notices, vol. 18, no. 6, pp. 108-116, June 1981.

Oppen1980.
Derek C. Oppen, “Prettyprinting,' ACM Transactions on Programming Languages
and Systerns (TOPLAS), vol. 2, no. 4, pp. 465-483, ctober 1980,

Schroeder1983.
Anne Schroeder, "Outils d’Analyse des Programmes sous Mentor,” CLOBULE
(AFCET), no. 4, 1983.

Shneiderman1983,
Ben Shneiderman, "'Direct Manipulation: A Step Beyond Programming Languages,”
Computer (IEEE). vol. 16, no. 8, pp. 57-69, August 1983,

Teitelbaum 1981.
Tim Teitelbaum and Thomas Reps, “The Cornell Program Synthesizer: A Syntax-
Directed Programming Environment," Communications of the ACH, vol. 24, no. 9,
pp. 563-573, September 1981,

Wilander1980.
Jerker Wilander, “An interactive Programming System for Pascal," BIT, vol. 20,
pp. 163-174, 1980.

165

CEPAGE:
TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE

CEPAGE :

Vers la conception de logiciel assistée par ordinateur

Bertrand Meyer

Computer Science Department, University of California
Santa Barbara, California 93106 (USA)
(806) 961-4321

and

Interactive Software Engineering, Inc.
270 Storke Road, suite #7
Goleta, California 93117 (USA)

ABSTRACT

The system described in this paper, Cépage, is a powerful tool for creating programs or other
documents in any language with a non-trivial structure. With Cépage, the computer, not the
user, generates the proper syntaz for the documents under construction, and produces on the
terminal screen, at every step of the interaction, a clear and consistent displey of the current
state of the the document.

Cépage applies principles of Computer-Aided Design to provide users with structural views of
programs and other documents, allowing them to look at the program at any chosen level of
detail.

The language is a parameter for Cépage, so that it is easy to use the sytem to support a new
language or a local variant of an existing language. .

The system offers facilities not only for creating and modifying texts, but also for performing
systematic transformations and, in the case of programs, checking and ezecution. It may thus be
used towards interactive testing and rapid prototyping, more generally, as a basis for an
advanced programming environment based on the manipulation of structured: documents
through a sophisticated user interface.

A preliminary version of this paper was presented at the Convention Informatique, in Paris, on
September 18, 1985,

Table of Contents

- CONTEXT .
2 - EXTRACTS FROM A SESSION
3 - THE BACKGROUND: STRUCTURAL EDITORS ..

4 - SYSTEM STRUCTURE
4.1 - The Grammar Graph

4.2 - The Abstract Syntactic FOrest ... enstosscns

4.3 - Display form

4.4 - The Library
4.5 - The External Form

5 - THE FUNCTIONS OF CEPAGEcc..ccconeeee

5.1 - Moving around
GRS 1)) 3] T ——
5.3 < EXPROSION ..cciimseisssassssassarssonsssanasssissassorsssassssratsassases

5.4 - Cancel Modify ..o
5.5 - Comment /Explain

5.6 - Search/Replace
5.7 = SeleCtion ..omivirvsmssmsninmsarsisisnissen it issssessasassrssses

518)=, PATHITIR 2ol o o soorre e sess so e sas o SRISORTaaT oA SEET

5.9 - Undo/Redo

5.10 - Record /Replay ...ccvuememiirniiimsismeinisnsisiimn i sssanis
5.11 - Catalog management/Copyc.cce..s

5.12 - Delimit

5.13 - Save/Restore

5.14 - Library ma t
5.15 - Generation
5.16 - Language description T T T

5.17 - Interactive language description and modification ...
5.18 - Semantic checking
5.19 - Execution

5.20 - Display ..ociermianmeinin
5.21 - Library of primitives ..

6 - THE NEXT STEP: PATTERN BASED INTERACTIVE PROGRAM

GENERATION .. =
7- ACKNOWLEDGEMENTS

BIBLIOGRAPHY ..iiviciininnnnnsis

ii

CEPAGE: TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE

1 - CONTEXT

Many of the tools used to design software are still very primitive when compared to those
which have been made available by software engineers to the engineers of other fields. This
paper presents a tool whose aim is to provide software designers with facilities similar to what
is known in other application areas under the general name of “Computer-Aided Design”.

A prototype of the system presented here, called Cépage (English-speaking readers should
pronounce its name 2s Sea-Page) was developed at Electricité de France in 1983 [13] using
standard mainframe equipment: an IBM 3081, running MVS—TSO—SPF. The version described
in this paper is an entirely new development; although based on the same fundamental .ideas
and on experience with the prototype, it pursues more ambitious aims aad is designed as a
commercial product. This new product is being manufactured by Interactive Software
Engineering, Inc. (in Goleta, California), initially for a Unix environment!; plans are under way
to port it to other architectures (VAX-VMS, IBM-PC, IBM-MVS, Apple Macintosh)Z.

Cépage will show its best on a bit-mapped display, but scaled-down versions for less
expensive terminals are also useful.

The design of Cépage relies on a simple but (we think) powerful idea: to allow visual
manipulation of structured documents in terms of their structure, not just as if they were mere
sequences of characters. Typical “structured documents” are programs written in some high-
level language; but it is important to add immediately that all documents with non-trivial
structures, such as specifications, designs, schedules, technical reports whose structure follows a
regular pattern and other standardized documentation are equally good candidates for handling
by Cépage.

Since the visual aspect of Cépage is so important to its understanding, we will for the time
being defer any thegretical explanation of the tool and rather give a short “demonstration’ of
the system, to help the reader get a feeling for the kind of interaction that goes on with such a
tool.

2 - EXTRACTS FROM A SESSION

We are using Cépage on a unspecified display. In this paper, we use various font
conventions (roman, italics, boldface) to distinguish the display styles that emphasize the
different types of elements; on an actual screen, Cépage relies on the facilities provided by the
hardware: fonts on a black-and-white bit-mapped screen, different colors on a color display,
various levels of highlighting, etc.

Below is the picture that we might have at a given moment in a Gépage session (figure 1}.

Actually figures 1 to 4 do not show the whole screen, but the main window, devoted to the currently

active document. The screen contains other windows, for such things as session information, help

messages and the catalog of available documents {one may work on several documents at a time and

switch back and forth between them).

2 The kernel version (serving as a basis for the others) is developed on a Sumitomo U-station. a 63000-based
Unix System V workstation with a color bi pped display. The impl ion | is Dilars {Design
and Implementation LAnguage for Reusable Software), an object-oriented language with multiple inheritance
and information hiding, pre-processed into C.

2 VAX is a trademark of Digital Equipment Corporation, Unix of AT&T Bell Laborateries, Macintosh of Ap-
ple Corporation.

4 CEPAGE: TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE o 2

program < NAME> ;

(* Thia is a presentation of CEPAGE)
label <Label_list> ;
< Constant_declarations> ;

< Type_declarations> ;
Y 1 3 Expand
:(Vana“a_detlam!mm} ; i!zju-lwh::_xg___ﬂﬂgi
begin Ohar
repeat hl:eh-\:
< iove In
<Statement> T
until [Stove to Previown |
< Boolean> Mave to Next
. Efnds
sly Redo
< Statement>; © T
<Statement_list> Gaback
d (* * Suiteh
end (*program®) S
GENERATE
L

Figure 1: A Cépage Document Window

As you see, we are working on a program in some Pascal-like, slightly Adaish language®.
out to be slightly Adaish as well.*

The most original feature of this program is that it is not complete: it contains not only
“true” program elements, appearing in boldface on the figures like label, until, the initial
comment (“This is a presentation of...”), ete., but also things in italics like <Statement>,
<Statement_list> etc. which represent as yet unexpanded program parts (the reader who
remembers his compiler courses will know them as “"non-terminals”). They are distinguished
from the expanded parts by the angle brackets and by the italics font (or, on a particular
terminal, by a diflerent color).

Texts such as the one displayed here are called Partially Expanded Documents (we use
the word “document” rather than “program’ to emphasize again the fact that the underlying
language could describe structured objects other than programs). Partially expanded documents
are the basic entity that Cépage handles. Of course, eventually a document should be
completely expanded, and Cépage can then generate a textual version of the finished product -
which, in the case of a program, may be passed on, for instance, to a compiler; other kinds of
documents might be handed over to a text formater such as troff on Unix, ete.

There is also an instance of <Statement>, in the repeat... loop at the beginning of our
program body, that appears in roman font (again, it might be a color), rather than italics. That
one does not represent an unexpanded statement: quite to the contrary, the statement has
indeed been expanded, and its expansion is so long that, given the size of the window, there is
no way to display the details of the statement without losing some of the context (the whole
program). The expansion of this statement perhaps contains as many as several hundred lines
{which would imply that you are aot a programmer of the most modular kind).

We call abstraction the process of displaying just the name of a non-terminal type, like
<Statement>>, to stand for a possibly large part of a document.

4 So far a9 we know, Pascal-like and Adaish are not trademarks of enybody yet.

29 Eztracts from a session B

Of course, you may at some point want to see some of the abstracted part. Nothing could
be easier: just move the cursor to some position in the <Statement> in roman and press a
mouse button (or function key, depending on the terminal). Of course, as you go down you will
lose some context, which you may see again by moving “out” again, using the corresponding
option in the menu.

For the moment, however, we are interested instead in developing our program a little
more. We have decided to expand the <Statement> that appears just before the end; thus we
have brought the cursor {represented by the hand on figure 1) to the “window” in which the
word <Statement> appears. We look and choose the Ezpand option, again using whatever
selection medium is available: mouse to point in the menu, function key etc. Actually, as the
menu shows, the Ezpand operation is so fundamental that you don't really need to select it
explicitly: just moving the cursor to a non-expanded element and pressing a button or function
key will trigger the expansion mechanism.

The basic interaction with Cépage is normally done in this fashion: Show and Select
(S&S), i.e. indicate a position on the screen and select a function from a menu. S&S is a very
effective way of dealing with computers interactively; Shneidermann (18] indicates that many of
the interactive systems that are really popular with their users rely on the principle of direct
manipulation and on the idea that the user should “see what he has got” at every stage of the
interactive session. This applies not only to editors but aldo to systems for Computer-Aided
Instruction, Computer-Aided Design (an application area which influenced Cépage significantly,
as will be seen below), to video games etc.

The effectiveness of this approach is backed by extensive psychological studies {3]. Of
course, the “S & S" principle is at its best when the display and the selection device (mouse,
joystick) are adequate.

Once we have said that we wanted to expand a particular statement, something new will
appear on the screen. The text of the document does not change, but a new ment pops up,
listing the set of possible statements in the language at hand (figure 2).

program <NAME> ;
(* Thia is a presentation of CEPAGE *)
label <Label_list>> ;
< Constant_declarations> ;
< Type_declarations> ;
< Variable_declarations>> ;

begin
repeat
<Statement>
until EXPAND:
< Boolean> Statement,
o i
< Statement>; ©
repeat...
<Statement_list> [rm]
end (*program*) call...
CANCEL

Figure 2: Selecting an expansion in a menu

The new menu allows us to select the type of statement we want. We do not need to type
any keywords (e.g. if, etc.); we just select the choice we want in the menu, and the system will
take care of generating the proper syntax for us. (However, we may also type the beginning of

8 CEPAGE: TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE o 2

the statement if we prefer to work in this fashion, as will be explained. below).

Here assume we decide we want a conditional statement and choose the corresponding
item in the menu, with any available selection facility. The system generates the resulting
structure: figure 3 shows what now appears on the window.

program <NAME> ;
(* This is a presentation of CEPAGE *)
label <Label lst> ;
< Constant_declarations> ;
< Type_declarations> ;
< Variable_declarations> ;
begin MAIN MENL
repeat Expand
jor |un go there and clic|]
<Statement> h g click
il Change
gl Delete
<Boolean> Move In
end; Mova Out
¥ if <Boolean> then Move to Pravious
< Statement> | Moveto Mext |
else Undo
<Statement> Rudo
end i R Gobaek
< Statement_list> Sutieh
end (*program®) SAVE
GENERATE
QuIT

Figure 3: Result of Expansion

The part which previously read <Statement> has been replaced with the syntax for a
conditional statement.

Note that up to now we haven't used an alphabetic keyboard: the mouse suffices for the
manipulations done so far. We do not have to use the mouse: we could type phrases, or
meaningful beginnings of phrases, if we prefered to. But we may work by S & § if we like. Which
solution makes more sense depends on the user’s individual taste and on the power of the
terminal hardware available,

At some point, for elements such as expressions, it may become tedious to have to describe
the structure; one just wants to type in the stuff. For the elements of lowest levels such as
identifiers or constants, this is the only possibility anyway since they have no further structure.
To enter such elements, one just types them at the place where they appear; they will be
immediately parsed by the system.

For example, one may wish to resort to typing when entering the boclean expression of our
newly built conditional statement, as shown on figure 4.

2O . Eztracts from a session 7

program <NAME> ;
(* This is a presentation of CEPAGE *)
label <Label_list> ;
< Constant_declardtions> ;
< Type_declarations> ;
< Variable_declarations> ;
begin
repeat
<Statement>
until
< Boolean>
end;
o if f (z) # $%2-2 then
<Statement>
else
< Statement>
end ;
< Statement_list>
end (*program®*)

Figure 4: Entering Text

It is important to note that the user has a choice at all levels between menu selection and
typing. In the latter case, an added advantage over text editors is that one may type just the
beginning of a phrase provided it is long enough to dispel any ambiguity; for example, typing
just while at a place where a statement is expected is enough for the system to generate the
entire pattern for a while loop.

We stop here our little demonstration. Other features resemble those which are generally
available in text editors: delete, copy, move, search, replace, “yank™ (i.e. put aside for later re-
use}, etc. There is an important difference, however, since here all such manipulations may only
apply to syntactically meaningful parts of the partially expanded document; so if we have, say

ifz then
b

else

a:=25
call P (z)

end

and want to apply an operation such as delete, copy etc. to a part of the document containing
¢, then this part may only be one of the boxes above. On the other hand, there is no way to,
say, replace “else call” by *‘; goto”, since neither pattern corresponds to a syntactic entity.
This is what is meant by “structural” manipulation.

8 CEPAGE: TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE = 2K}

3 - THE BACKGROUND: STRUCTURAL EDITORS

A tool such as Cépage is known as a “structural editor” (in other terminoclogy for the
same concept, ‘‘editor” has been used with the qualifiers “‘structure”, “syntax”, “syntax-
oriented”, “language-based”, etc.). A structural editor manipulates documents in terms of their
underlying structure, not as if they were flat sequences of characters. Many of the basic ideas
were contained in Hansen's EMILY system [10]; the best-known structure editors are Mentor,
developed at INRIA (4,5,6], Gandalf, from Carnegie-Mellon {9) and the Cornell Program
Synthesizer {19]. A more recent tool with graphical facilities is Pecan [16,17].

Structural editors offer several potential benefits:
o they guarantee that only syntactically correct programs are generated;
e they provide a unified basis on which to build complete programming environments,

where all tools can rely on a single data structure describing programs (this data
structure, as we shall see below, is the abstract syntax tree);

e they make it possible to perform possibly complex program transformations in a safe
and efficient way;

o they allow automatic translation from one programming language to another;

e they may be used to free the designer from routine tasks like generation of the concrete
syntax.

Note that in listing these benefits we have referred to “programs” to emphasize the most
immediate applications but, again, it should be noted that other kinds of documents may be
handled by structured editors.

Most structural editors have been used so far in academic environments only, which we
think is a pity because of their great potential advantages. In our opinion, the main reason for
this situation is that structural editors have lagged behind in terms of their user interfaces.

In most present programming environments, one or more full-screen editors are available.
These tools make it possible to take advantage of current video terminals to edit documents in
a ‘“direct manipulation” mode; the size of the “window” provided by the system on the
document is the size of the available screen, which gives the user a much wider view of the
document and better control of the editing process than with traditional “line-by-line” editors.

The advantage of full-screen editors over line-oriented ones is so clear that it is impossible
to convince users to go back to the latter once they have experienced the joys of the former. We
were particularly aware of this fact after having witnessed in two different cases how how a
full-screen editor (IBM's SPF and Vi on Unix, respectively} all but ousted the previous line
editors in a matter of months in two different installations; the philosophies of Vi and SPF are
remarkably different, but the results were identical. This is all the more significant when one
considers the resistance of most users to any kind of change in their software habits
- languages, methods or tools.

It was thus clear to us that no structural editor, regardless its other qualities, would
become successful in industry if it did not provide at least the services of modern [ull-screen
editors. Cépage is an attempt to combine the best of both worlds.

A particular attention was devoted in Cépage to the design of the display algorithma:
the idea is to provide users with structural views of their programs or other documents, instead
of just the contiguous extracts offered by text editors. The paradigm here is that of computer-
aided design: one should be able to hierarchically ¢raverse a program in the same way that one
explores, say, an electronic system at various levels (system, subsystem, wafer, gate,
transistor...); similarly, one wants to see the global structure of a software system, then a little
more of a particular module, then one of the procedures of that module, then some of its
statements, etc. The display policy will be outlined below.

4 System structure ' 9

4 - SYSTEM STRUCTURE

The structure of Cépage is given by Figure 5. A kernel, or “pilot system”, works on a set
of data structures: grammar graph, abstract syntax forest, display form, visual form, library,
external form. The design of Cépage was done according to the “object-oriented” philosophy,
which may be roughly summarized as implying that a system should be described by the types
of objects it manipulates and their patterns of communication. True to this approach, we shall
present the internal structure of Cépage by describing successively each of its main data
structures.

Abstract
Syntactic
. Forest
Qrm Construct
e Modify
Read TDisplay
Display Show toss éfore
P Cépage External
Analyze Retrieve Form
Generate Modify \\ Interpret
Language \
N\
N\
AN
N
Text Form Crammax
Graph

Figure 6: Cépage System Structure

4.1 - The Grammar Graph

The grammar graph data structure is used to describe the language in which the
documents are written. A distinctive feature of Cépage is that this data structure is repetitively
interpreted by the kerne! system, which means that the system as such is completely language-
independent; the language is a parameter, easy to modify even at run-time. This flexibility may
be used for instance by a software project leader to modify the standard description of the
language used, so as to enforce programming standards. For example, the syntax for the
modified Pascal used in the above figures includes a compulsory comment at the head of all

10 CEPAGE: TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE @ 4.1

programs, procedures and [unctions (the comment used in the examples was This is a
presentation of CEPAGE).

In a different application of the same concept, one might wish to extend the syntax of
Fortran to include statements such as while... do or repeat... until, which will be translated
on-the-fly into lower-level Fortran equivalents (using IFs and GOTOs). The idea that the
language should be a mere parameter thus allows Cépage to offer a modern interactive
alternative to the concept of pre-processor.

The description of a language, as embodied in the grammar graph, is based on the notion
of abatract syntax. The abstract syntax contains the specification of syntactic types
covering the various kinds of constructs in the language. A syntactic type is defined by a
production of the abstract syntax, which is a description of its deep structure, independently of
its external representation. Thus the production defining conditional statements, which if
classical Backus-Naur Form would be something like

<conditional> = if <boolean>> then <statement> else <statement> end
will just be, in abstract syntax:
conditional = statement ; boolean ; statement

The abstract syntax that we use for describing languages, has three kinds of productions.
The one describing conditional in the above example is called an aggregate production; it defines
the elements of & syntactic type as having a certain number of components ; some components
may be defined as optional as e.g. the label_partin a Pascal program. An aggregate production
is not unlike a Pascal record type definition. A type may also be defined by a choice
production, giving the list of alternative expansions, as in the following example:

staterent = assignment | procedure_cntl] conditional | loop | compound

The third and last type of production comprises list productions. As an example, a
compound statement is defined abstractly as consisting of zero, one or more statements; this is
expressed as a list production, using the star notation:

compound = statement*

The abstract syntax of a language is defined by a set of productions of the above three
types. A syntactic type is defined by (i.e. appears on the left of) at most one production, so
that we can speak of aggregate types, choice types, list types. Syntactic types that do not
appear in the left-hand side of a production are called terminal types; examples are types like
Identifier, Constant etc. that have no further meaningful structure.

The grammar graph contains a representation of the abstract syntax of the language, i.e.
of the productions defining it. The nodes of the graph correspond to the syntactic types; an
appropriate data structure is associated with productions of each kind; for example, the
description of an aggregate or choice type will contain a list of pointers to the nodes associated
with the types appearing on the right-hand side of the corresponding production.

More information must be present in the grammar graph in order for the system to be
able to display readable views of the documents. Such views must be shown in the form familiar
to the user, i.e. the concrete rather than abstract syntax. The operation which makes it
possible to construct a concrete representation from an abstract one is known as un-parsing,
since it is the exact opposite of the “parsing task performed by compilers (and by Cépage, since
the user has a choice between entering by menu or by typing the beginning of a meaningful
phrase). In order to un-parse a document, the system must know the concrete syntax of the
language.

In the grammar graph, the concrete syntax is defined by additions to the abstract
productions. For example, the concrete syntax for conditional , defined above by a production
of the aggregate type, may be included in the grammar graph through a list of elements
representing the following sequence:

41 System structure 11

if @2 then @1 else @8 end

Such a sequence is to be understood as follows. Elements such as if, etc., are called
operators and represent the constituents that appear in the concrete syntax only. Operators
may be keywords of the language; they can also be formating marks like line_break, indent (n)
(meaning “indent right by n positions”), blanks (m) (meaning “skip m blanks”), tab (p) {meaning
“continue at position p of the line” and useful for fixed-format languages like Fortran), etc.
Elements of the form @ represent abstract syntactic elements, indexed relative to their position
in the right-hand side of the abstract production; thus here @1 is the first statement, @2 is the
boolean expression, @9 is the second statement. So the above concrete syntax addition means
that to display a conditional statement we display if, followed by the boolean expression,
followed by then, etc.

In this example, the order of the components of a conditional expression is not the same in
the concrete and abstract forms. This was dome not only for elegance (the order statement,
boolean, statement is more symmetric than the concrete one), but also to point out that these do
not have to be the same. In fact, the notion of “‘order’ of components in the concrete syntax
disappears if, as may happen, some components appear more than once in the concrete form; for
example, we may wish to automatically include at the end of each procedure a comment
reminding the reader of the name of the procedure, so that we will associate with the abstract
production

procedure = name ; parameter_list ; body
the following concrete syntax, using the Pascal convention for comments:
procedure @! (@2) ; @3 end procedure {@1}

Associating a concrete syntax with a non-terminal defined by & list production is simple;
all we need to record in the grammar graph is three operators: a header h, a terminator ¢t and a
delimiter 4; 2 list will be displayed as

r@1d@24d@%..d@n ¢

where @i is the concrete representation of the &-th element of the list. Thus for a compound
statement in an Algol-like language, is begin, t is end and d is the semicolon.

There is no need to associate concrete syntactic information with nodes of the grammar
graph representing choice types such as statement.

The grammar graph is thus a powerful structure which makes it possible to describe
possibly complex languages in a flexible way. As stated previously, it seems to us very
important to allow for easy creation and modification of grammar graphs.

One of the standard languages supported by Cépage is thus LDL, 2 language
description language. LDL' documents are descriptions of grammars by abstract syntax
productions and concrete syntactic additions, as seen above.

4.2 - The Abstract Syntactic Forest

To represent partially expanded documents, the system uses a a set of abstract syntax
irees, or ubstract syntactic forest.

An abstract syntax tree is not unlike the “parse tree” used by compilers, but it
corresponds to the abstract syntax of the language rather than to the concrete one; in other
words, it contains only essential, structural information, and excludes anything that is only
associated with the external representation of documents (i.e. keywords and more generally
what we have called “operators” above).

Figure 6 gives an example abstract syntax tree.

The relevant praductions of the corresponding abstract syntax are the following (with (Al {€]
and [L} standing for aggregate, choice and list production respectively):

12

var_deel

CEPAGE: TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE o 4.2

: aggregate node
: list node
choice node

: terminal node

#

integer

block

3

* compound

assignment statement loop

; | ;

; ; I
z binary ezpression statement
#
z + g

Figure 8: An Abstract Syntax Tree

42w System structure 13
[A] block = var_part ; ct:mpaund

L var_part = var_decl

(A] var_decl = variable_list ; type_description

L] varigble_list = variable

[A) varigble = name

[A] compound = statement

€] statement = assignment | conditional | loop | compound
(A assignment = variable ; ezpression

€ ezpression = variable | constant | binary

[A) binary = ezpression ; operator ; ezpression

[A] loop = ezpression ; statement

The Cépage abstract trees have four kinds of nodes, corresponding ta the syntactic type
categories: aggregate nodes, choice nodes, list nodes and terminal nodes. In the implementation
of an abstract syntax tree, the type of each tree node is known through a pointer to the node of
the grammar graph associated with the type.

The leaves of a tree are either:

o nodes corresponding to elements yet to be expanded (like the leaves labeled var_decl,

boolean and statement in the tree of figure 6); such nodes may belong to any of the four

categories;

o expanded terminal nodes, to which a text has been associated by the user thanks to the

text editor.

Note that choice nodes may only appear as leaves, corresponding to the first of these two
cases,

We have referred above to the basic data structure as abstract syntactic forest rather
than tree. The reason is that users will normally manipulate not one but several partially
expanded documents or sub-documents simultaneously. Each such element is represented by an
abstract tree; their reunion constitutes a forest. At each time, only one element is active; the
list of all available elements is contained in a catalog. Users may [reely add elements to or
delete elements from the forest, using the catalog, and go from one element to the others,
making them active in turn.

All document manipulations performed in response to user requests are executed by the
system as operations on the abstract syntax forest. The available operations are listed in
section 5 below.

4.3 - Display form

Although the abstract forest form of the document is best from the system's point of view,
users need a clear, concrete representation of the current state of the document.

A full-screen text editor can only show a contiguous excerpt of the document, which makes
it, very hard for users to keep a global view of the document and the editing process; often, in
applications such as program design, users end up going constaatly back and forth from one end
of the document to the other. Some text editors (e.g. SPF) provide an eliston mechanism that
makes it possible to mask temporarily certain lines of the text in the output, but this feabure
only yields a marginal improvement in the ergonomics of document preparation.

With a structural editor, it should be possible to do much better. The view offered should
itsell be structural: users should be provided both with the details of the particular local part of
the document in which they are concentrating their attention at any given time, but also with
the relevant structural context, for example the enclosing structures in a block-structured

14 CEPAGE: TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE r 4.3

language.

The display mechanism used by Cépage is entirely automatic: after each operation
requested by the user, the system will determine the best possible view of the text that it can
present to the user, and display it.

The display algorithm, one of the main contributions of Cépage, is rather complex and
described in another paper [14]. We shall only mention here some of the main problems
involved.

The display task is close to what is known as pretty-printing, i.e. printing of a program
in a form suggestive of its syntactic structure. However, most published discussions of pretty-
printing (see e.g. [15]) are of little interest for an interactive structural editor because they apply
only to the case of paper output, for which it is assumed that the output width is fixed but
there is no constraint on the number of lines. With a screen editor, both lines and columns are
scarce resources: we want to find a representation of a partiaily expanded document in the
limited space available in a given window.

Since the concrete texts may be of arbitrary length, there will in general only be solutions
il we allow abbreviating the parts of a document that are the least relevant at display time.
Such abbreviation was called holophrasting by Hansen [10]. It occurs in Cépage in two
different ways:

e We may perform abstraction by replacing a possibly complex substructure by its

syntactic type name. This was done with the <Statement>> in roman on figures 1 to 4.

o In a long list, we may perform collapsing by replacing a certain number of list elements,
say 35 statements in a <Stetement_list>, by the mere mention

<35 Statements>

The aim of the Cépage display algorithm is thus to un-parse the abstract syntax tree into
a concrete form that will fit into the available window area, performing abstraction and
collapsing as necessary.

Technically, the algorithm produces a list of rectangular windows containing the text of
the various parts of the document; these windows are handed down to a screen management
package, called Screenpack, which takes care of the physical display. Screenpack works on
abstract objects called ‘‘windows”, characterized by attributes which may be modified by
Screenpack’s primitives.

An interesting possibility is for users to attach comments to nodes; there is a special
explain display mode, in which the information displayed for an abstracted node is not just 2
syntactic type indication such as <Statement> (not very informative), but rather the comment
attached to the node, if there is one. Note that this feature supports both top-down and
bottom-up design: in the former case, the comments will normally be written before the nodes
are expanded, in the latter the nodes will be expanded first.

One may imagine systems for displaying programs that go beyond the facilities offered by Cépage and
offer true graphical views of programs. Research on such tools was recently described in a special issue
of [EEE Computer (8], As mentioned previously, the Pecan system [16,17] also offers graphical views of
programs. This line of research is obviously important, and future versions of Cépage may include
graphical views. We have, however, included textual views only in both the Cépage prototype and the
current industrial version, for four reasons: first, designers are used .o manipulating programs and other
software-related documents as texts and, regardless of the useflulness of pictures for explanatory purposes,
text remains the ultimate basis on which to determine what a program really does, what a specification
really means etc.: second, the problem of providing consistent views et & variable level of detail, with
zooming and un-zooming capabilities, seemed to us at least as important as the inclusion of graphical
facilities: third, graphic programming is still at the research stage, as the articles in [3] clearly show, and
we are interested in producing a practical product for today's software professionals in industry: finally,
the variable-level display problem seemed difficult enough with text, as we learned by solving it for

43 9 System structure 15

Cépage [14]: so it was reasonable to first limit ourselves to textual views before we went to graphical

representations.

4.4 - The Library

The library is an external data structure that makes it possible to store and retrieve
partial designs. Thus an editing session may be interrupted at any time and re-started later.
The library is organized as a database, where documents may be retrieved by name.

Technically, abstract syntax trees are stored in the library in an extended Polish form.
Trees, however, are not the only thing to store: since the language description is entirely
parameterizable, a suitable external form must also be found for storing and restoring grammar
graphs, and care must be taken to ensure that each tree is stored together with a reference to
the appropriate grammar graph; an abstract syntax tree without a grammar graph is as
meaningless as a dinner without cheese (un repas sans fromage est comme une belle & qui il
manque un oeil [2]).

4.5 - The External Form

When a document is ready (completely expanded), the system must be able to generate a
text form suitable for handling by other tools. This is done by simply using the standard display
algorithm, with its output directed to a file or printer and its parameters set up in such a way
that the number of available lines is considered infinite and no abstraction or collapsing may
occur.

5 - THE FUNCTIONS OF CEPAGE

To allow the reader to get a better grasp of the whole scope of Cépage, we now give a
systematic list of the functions that are or will be supported by the current version of Cépage.

5.1 - Moving around

A basic set of functions makes it possible to move around a document, by climbing along
the corresponding abstract syntax tree:

e up (to parent)

e down (to ~th child)

o left (to sibling)

e right (to sibling)

o existence tests: is there a parent, a left sibling, a right sibling? How many children?

The names above refer to the abstract syntax forest. We have been very careful, however,
to make Cépage usable by non-sophisticated users who do not necessarily know about trees and
forests; thus the names of the options in the basic menu (see figure 1 above) are not up, down,
left and right, but (respectively) Move out, Move in, Move te previous and Move to mezd,
expressing the move in user’s terms rather than system terms.

5.2 - Marking

The marking commands make it possible to take note of positions in the document while
moving around, and to come back to them later.

There are three such commands: Mark marks the current position in the document; Back
returns to the most recent position to which one has not yet returned; Forth cancels the effect
of the most recent Back command that has not yet been canceled in this fashion.®

S The effect of commands such as Back and Forth is rather awkward to explain in natural language. The
same applies to Undo and Redo (see below). We have written formal specifications of these ds, which el-

18 CEPAGE: TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE 5.3

5.3 - Expansion

The expansion function makes it possible to expand a previously unexpanded node of the
abstract syntax tree. It is executed according to the information contained in the grammar
graph. For an aggregate or list node, no user input is needed; for a choice node, the user must
make a selection between the various possibilities (see 5.7 and 5.8 below); for a terminal node,
he must enter the text to be attached to the node.

5.4 - Cancel/Modify

Canceling a expansion puts an expanded node back into the unexpanded state. In the case
of a choice node, the Modify function allows the user to make a new selection; as much as
possible of the initial expansion will be carried over to the new one (for example, when
transforming an if ... then ... else ... statement into a while loop, the boolean expression and
the then part of the conditional statement will be transferred to the loop).

5.5 - Comment/Explain

The Comment command attaches a comment to a node {expanded or not). The Explain
command changes the display mode so that comments will be displayed with particular
emphasis.

5.8 - Search/Replace

Search and Replace correspond to traditional editor functions. In Cépage, however, the
search pattern and (in the Replace case) the replacement are structured elements similar to the
document being edited: the editor is called recursively to enable the user to define them (in
special windows).

5.7 - Selection

The selection facility allows the user to make a choice among a set of predefined
possibilities and allows the system to determine which item was selected. The way in which the
list of choices is displayed and the user makes his selection (pointing with a mouse in a menu,
pressing a function key, typing an ordinary key etc) depends on the terminal hardware.

5.8 - Parsing

The parsing function makes it possible to read a text typed in by the user and to build the
corresponding syntactic structure (subtree of the abstract syntax tree). The text can be
incomplete: the parsing method used in Cépage allows the system to fill in the missing parts if
the text typed is incomplete but unambiguous.

5.8 - Undo/Redo

Undo makes it possible to back up to previous states of the editing session by canceling
the effects of previously issued commands. Redo cancels such a cancellation.

iminate any potentisl ambiguity

5.10 The functions of Cépage 17

5.10 - Record/Replay

The record/replay facility makes it possible to archive the succession of commands issued
during an editing session and to replicate them. It thus allows recovering from a system crash.

6.11 - Catalog management/Copy

Catalog management keeps several documents during an editing session, one of which is
the “active” document, the others constituling the ‘‘catalog”; this function allows the user to
select an element of the catalog as the new active document, to copy part of the active
document into a new entry of the catalog, or to copy an element of the catalog onto an
unexpanded node of the aclive document.

6.12 - Delimit

The delimiting Tunction enables the user to define a part of a document, to be used as
parameter for a function such as cancel, copy ete. Since the “moving around" functions are
particularly simple to invoke, delimiting is mainly useful for selecting sublists.

5.13 - Save/Restore

The save/restore function copies documents (which may be partially or totally expanded)
from memory to files and back, using an appropriate external representation.
5.14 - Library management

Library management maintains databases of (partially or totally expanded) documents,
stored under the external representation mentioned above.
5.16 - Generation

The generation [function creates textual versions of totally expanded documents.

5.18 - Language description

The language description function makes it possible to translate descriptions of languages
to be supported by Cépage into their internal representations (grammar graphs). The
descriptions must be expressed in a language called LDL (Language Description Language}), not
further described in this paper.

5.17 - Interactive language description and modification

The interactive language description and modification function is similar to the previous
one but uses Cépage itsell to enter and modify LDL descriptions (grammars). It thus relies on a
grammar graph obtained by applying the previous function to the description of LDL in LDL.
This function provides for incremental language modification, i.e. makes it possible to construct
and modify 2 grammar graph in a stepwise fashion, as the corresponding LDI. deseription is
being developed and updated.

5.18 - Semantic checking

The semantic checking function makes it possible to perform verifications on documents; it
is only applicable if the language description includes the definition of the corresponding
semantic constraints. :

18 CEPAGE: TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE 519

5.19 - Execution

The execution function makes it possible to execute the active document, considered as an
executable program. It is only applicable if the language description includes dynamic semantics
for each operand type. A partially expanded document may be executed: when execution
reaches an unexpanded element, the user is interactively asked to provide the results of the
execution. This facility is a first step towards making Cépage into a tool for rapid prototyping
and program testing.

5.20 - Display

The display function displays an abstract syntax tree or subtree in a given window area,
finding the best representation it can {a detailed description of the display algorithms for
Cépage may be found in the paper [14]).

5.21 - Library of primitives

The library of primitives is a set of procedures which enable outside programs to access all
of the above Cépage functions and the Cépage data structures. By making these Cépage
internals” accessible to other software tools, it is planned that Cépage will be used as the
kernel of a more complete software environment, in which tools of various kinds (e.g. for static
program analysis, complexity analysis, program transformation, testing, text processing, etc.)
will be able to take advantage of the basic data structures and functions provided by Cépage.

6 - THE NEXT STEP: PATTERN-BASED INTERACTIVE PROGRAM
GENERATION

We have emphasized three aspects of Gépage:
o editor, i.e. system for creating and modifying documents at the source language level;

e program development system, with facilities for program checking, testing, and rapid

prototyping;

o basis for & programming environment.

These are the short term goals. To conclude with a more futuristic view, we will now
present a more remote but very promising application of this system towards solving the
problem of software reusability. We may call the Cépage solution pattern-based interactive
program generation.

Most of the software being written today is of a repetitive nature: there exist a small
number of basic program patterns (counting, searching, socting, comparing, exchanging,
assigning, creating...) on which programmers compose endless vatiations. Most of this work is
done at the lowest reasonable level, that of common languages; the use of shared, standard
components is not, despite a [ew exceptions such as libraries of numerical software,
commonplace This situation stems in part [rom the fact that each new situation may be
slightly different from the ones encountered previously. For example, even though most search
routines share a general organization (go to the beginning of the table, loop until either the
required element has been found or the subset of the table in which it may appear has been
exhausted, report “found” or “‘absent”), the representation details will considerably vary from
one case to the next. .

It is not easy to construct software components that provide a suitable answer to the
problem of reusability. Consider the simple problem of providing the users of a computing
center with a tool for sorting arrays. Assume that the algorithm is chosen to be, say, Quicksort,
which is well explained in computer science textbooks, so that one does not have to worry about

6 © Pattern-based program generation 19

this aspect of the question. A particular problem instance is characterized by how elements will
be compared and how they will be exchanged. The solutions open to 2 software toolsmith are
the following:

e A - Provide procedures for the most frequently occurring cases: e.g. increasing and
decreasing sort of integer, real, etc. arrays.

« B - Provide a single procedure (or operating system command) with many parameters or
options.

e C - Provide a single procedure with two procedure parameters, corresponding to the
comparison criterion and the exchange mechanism.

« D - Have a sorting procedure “skeleton” and manually create a tailor-made version for
each user who requests it, flling in his particular sorting criterion and exchange
mechanism, with the help of a text editor.

e E - As D, but use a macro-processor to generate the various versions.

None of these solutions solves the reusability problem satisfactorily. Solution A is too
partial; in many cases, the users will want to sort an array of pointers, leaving the elements
themselves in place, or use only part of the elements as keys, etc., so it is unlikely that many
actual cases will be covered by the library routines. In solution B, the options may cover a
larger number of cases, but the tool will require coding many options, thus using a reference
manual, a cumbersome and error-prone process. Solution C will work but with great
inefficiency, since the procedures passed as parameters will be called repeatedly in the inner
loops of the sorting program; the overhead, which is typically a factor of 10, will be
unacceptable in many cases. Solution D, using an editor to generate tailor-made versions, is
tedious and error-prone. Solution E implies learning the conventions of the particular macro-
processor on hand, which may be at odds with those of the programming language used, even if
they were designed by the same group®; furthermore, macro-processing is not interactive: the
user must first provide actual arguments in the adequate formalism, then wait for the macro-
processor to generate a text for inclusion in his program.

Structural editing may provide a better solution. A simple idea is to apply the notion of
abstract syntax. A sorting program may be defined as belonging to the following syntactic type:

sorting = comparison ; ezchange

One can thus envision a simple extension of the editing process in which the user
interactively describes the comparison criterion and exchange mechanism to be used in a
particular instance, and the system generates the appropriate sorting procedure by the same
expansion mechanism (abstract to concrete) which was used to sutomatically produce the
digplayable form

if ¢ then A else Bend
from the description of the language, the user providing only ¢, A and B. The only difference is
that the amount of text gemerated by the system will be proportionally larger in the case of
program generation.

We believe that such interactive, pattern-directed program generation is possible in the
Cépage framework as presented above. The basic mechanisms are already present; in particular,
since the language is a modifiable parameter. it is possible to extend the basic constructs such as
conditional, loop etc. with libraries of program patterns such as search, sort, or even payroll,
ete. Such patterns will be defined in the same way as basic language constructs: by their
abstract and concrete syntax.

_The idea of program patterns is close to the concept of “plans” used in the Programmer’s
Apprentice project [20]. We think, however, that reusable, parameterizable program modules

6 For example, on Unix, the macro-processor embedded in the C compiler [11] and the M4 macro-processor
[12' have different conventions regarding parentheses, commas, reserved words etc,

20 CEPAGE: TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE @6

can be implemented in the Cépage framework without recourse to the Artificial Intelligence
techniques used in the Programmer’s Apprentice.

7 - ACKNOWLEDGEMENTS

Cépage would not have existed if we had not read about the pioneer structural editors:
EMILY, Mentor, Gandalf, the Cornell Program Synthesizer. It is a pleasure to acknowledge
their influence and, more specifically, that of several discussions with Gilles Kahn, of the
lectures by Nico Habermann at the EDF-CEA-INRIA Summer School in Le-Bréau-en-Yvelines
(July 1982), and of discussions with David Notkin and Tim Teitelbaum at the Simula workshop
on Programming Environments in Lund, Sweden (February 1983).

Outside the domain of structural editors, we have also benefited from the ideas of the
Programmer's Apprentice system (20], from object-oriented design and programming as
pioneered by Simula 67 (1], and from the general approach to interaction embodied in the
Smalitalk system [7].

Most of the ideas come from the systems mentioned. We think our main contributions are
in the user interface, in the design of the dispiay algorithm (14], in the idea that the language
should be an interpreted, easy to modify parameter, and, more generally, in our ambition to
take structural editing out of the laboratory and make its exciting potential available to
practicing programmers in ordinary industrial environments.

Bibliography . 21

References

12

10.

11.

12,
13.

14

15.

16.

1Y

Graham Birtwistle, Ole-Johan Dahi, Bjorn Myrhaug, and Kristen Nygaard, Simula Begin,
Studentliteratur and Auerbach Publishers, 1973.

Brillat-Savarin, quoted by Gustave Flaubert in Le Dictionnaire des Idées Regues, Lemerre,
Paris, 1881.

Stuart K. Card, Thomas P. Moran, and Allen Newell, The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale (New Jersey), 1983.

Véronique Donzeau-Gouge, Gérard Huet, Gilles Kahn, and Bernard Lang, “Environnement
de Programmation Mentor: Présent et Avenir,” in Actes des Troisiémes Journées
Francophones sur UlInformatique, Gendve, 1981.

Véronique Donzeau-Gouge, Gilles Kahn, Bernard Lang, and Bertrand Mélese, ‘Documents
Structure and Modularity in Mentor,” SIGPLAN Notices (Proceedings of ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, Pittsburgh, 29-25 April 1984, Ed. Peter Henderson), vol. 19, no. 5, pp. 141-
148, May 1984. (This issue is also Software Engineering Notes, vol. 9, no. 3)

Véronique Donzeau-Gouge, Gérard Huet, Gilles Kahn, and Bernard Lang, “Programming
Environments Based on Structured Editors: The MENTOR Experience,” in Interactive
Programming Environments, ed. David R. Barstow, Howard E. Shrobe, Erik Sandewall, pp.
128-140, McGraw-Hill, New York, 1984.

Adele Goldberg and David Robson, Smalltalk-80: The Language and its Implementation,
Addison-Wesley, Reading (Massachusets), 1983.

Robert B. Grafton and Tadao Ichikawa (Editors), Graphical Programming Techniques,
Special issue of IEEE Computer, Vol. 18, no. 8, August 1985.

Nico Habermann et al,, The Second Compendium of Gandalf Documentation, Carnegie-
Mellon University, Pittsburgh (Pennsylvania), 1982.

Wilfred J. Hansen, “Creation of Hierarchic Text with a Computer Display,” ANL-7818,
Argonne National Laboratory, Argonne (Ill}, 1971. (Also ss dissertation, Computer
Science Department, Stanford University, June 1971)

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

Brian W. Kernighan, The M4 Macro-Processor, Bell Laboratories, 1978.

Bertrand Meyer and Jean-Marc Nerson, “Cépage : Un Editeur structurel Pleine Page,” in
Second Colloque de Génie Logiciel (Second Conference on Software Engineering), pp. 153-
158, AFCET, Nice (France), 1984. English translation: "CEPAGE, a full-screen structured
editor” in Software Engineering: Practice and Ezperience, North Oxford Academic, Oxford,
1984, pp. 60-65.

Bertrand Meyer, Jean-Marc Nerson, and Soon Hae Ko, “Showing Programs on a Screen,”
Seience of Computer Programming, vol. 5, no. 2, pp. 111-142, 1985.

1

Derek C. Oppen, “Prettyprinting,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 2, no. 4, pp. 465-483, October 1980.

Steven P. Reiss, “PECAN: Program Development Systems that Support Multiple Views,"
in Proceedings of Seventh Iniernational Conference on Software Engineering, pp. 324-333,
Otlando (Florida), March 26-29, 1984.

Steven P. Reiss, “Graphical Program Development with PECAN Program Development
System,” SIGPLAN Notices (Proceedings of ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, Pittsburgh, 29-25
April 1984, Ed. Peter Henderson), vol. 19, no. 5, pp. 30-41, May 1984. (This issue is also
Software Engineering Notes, vol. 9, no. 3}

22

18.

19:

20.

CEPAGE: TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE

Ben Shneiderman, ‘Direct Manipulation: A Step Beyond Programming Languages,”
Computer (IEEE), vol. 16, no. 8, pp. 57-69, August 1983.

Tim Teitelbaum and Thomas Reps, “The Cornell Program Synthesizer: A Syntax-Directed
Programming Environment,” Communications of the ACM, vol. 24, no. 9, pp. 563-573,
September 1981.

Richard C. Waters, “The Programmer’s Apprentice: Knowledge Based Program Editing,”
in Interactive Programming Environments, ed. David R. Barstow, Howard E. Shrobe, Erik
Sandewall, pp. 464-486, McGraw-Hill, New York, 1984. Originally in IEEE Transactions
on Software Engineering, SE-8:1, January 1982

[84b)]

AN APPLICATION OF PROGRAM TRANSFORMATION
TO SUPERCOMPUTER PROGRAMMING

Alain Bossavit

(Electricité de France, Direction des Etudes et Recherches!)

Bertrand Meyer

(University of California, Santa Barbara?)

ABSTRACT

We show how a sequence of systematic program transformations may be used to derive an
efficient, vectorizable program (to be used on vector computers such as the Cray machines) from
an initial version which is mathematically simple but recursive and very inefficient.

The example chosen is that of cyclic reduction. We start with a description of the
algorithm which follows directly from a mathematical analysis of the problem and is expressed
in terms of the operations of the "vector machine", specified as an abstract data type; we end
up with an Ada package.

We discuss the advantages and limitations of Ada with respect to vector programming and
raise some issues concerning the use of program transformations in software design
methodology.

A first version of this paper was presented as an invited talk at the Second VAPP
Conference (Vectors and Parallel Processors in Computational Science), Oxford (Great Britair),
August 20-24, 1984, The present version will be published in a special issue of Computer Physics
Commaunieations devoted to the proceedings of that conference.

! EDF-DER Service IMA, 1 avenue du Général de Gaulle 92141 Clamart (France)
{1} 785 41 40.
2 Department of Computer Science, University of California Santa Barbara 83106 (USA}
(805) 961-4321
.. Jueh) ' "Lr P a):
bpm@ucsb (Arpanet+CSnet)
(on leave from EDF)

1

2. THIS TOTAL REDUCTION PROBLEM ...

3

1
5

G

Table of Contents

. BACKGROUND

2.1, Statement of the Problem ...

2.2, Applications
TIE VECTOR MACIIINE

F.1. VOCLOT OPOTALIONS tureserenissrsenremsererdissmnsssssinsiesssstsansssansnrosnssessrsisasitinsensssmses sghssashssnsbbg sstipsassanssssses

3.2. An Abstract Model ..

. CYCLIG REDUCTION ...
. PROGRAM DEVELOPMENT

5.1. First Procedural Version ...

5.2. Removing Extra Variables ...

5.3. Isolating the Recursion

5.4, Introducing an Intcger Parameter

5.5. Removing the Recursion ...

. A SCALAR, VECTORIZABLE VERSION ...cccoiiiimnrinniinniininnias

6.1. The Program .o.ocvvnvnvicnciniininnns

6.2. A Timing Diagram .

7. AN ADA VERSION ..ot
8. CONCLUSIONcoccivmmnniiae Ry
Acknowledgementcecviniiiiiiinionn

IefErenees mm.swwwermrrmm svmmreae

Q@ 0 W B DB A A A WD W W

[S oy
WO = O

1. BACKGROUND

In previous work, we have investigated the application of modern software engincering techniques to
the design of veetor programs {e.g. (15,5,6,7] ete.). Our general approach has been to investigate super-
computcr programming not as a sct of recipes designed to yicld maximum performance on some or other
specific machine architccture, but rather as a systematic design activity, in which the concern for
elliciency must not offset other important software qualitics such as correctness, reliability, extensibility,
portability and others.

Techniques which can be applied towards this goal include asscrtion-guided stcpwise program
devclopment (10] and the use of abstract data types for the specification of "virtual vector machines” as
modcls of actual vector processing hardware.

This paper continucs our previous efforts by studying the application of another well-known pro-
gram construction method, program transformation, to the devclopment of an cfficient veetor program
corresponding to an important algorithmic concept, cyclic reduction. We start from a correel but very
incfficient program, obtained as a straightforward implementation of the basic mathematical idea and
expressed in terms of high-level operations of the abstract "vector machine”; we then perform a serics of
transformations, cach aimed at removing some of the inefliciency while preserving Lhe semantics of the
program. The final version, for which we offer an Ada implementation, is an elficient, readily veetorizable
program.

2. THE TOTAL REDUCTION PROBLEM

2.1. Statement of the Problem

Consider a set S with a binary operation, written ®, which gives § the structure of a monoid, i.c. @
is associative and has a zero element, written 0. Note that @ is not required to be commutative. Elements
of Swill be called scalars.?

We define V = VECTOR [5}, the set of finite sequences of elernents of S. An element v of V, called a
vector, is of the form

v= <v1, Uy e v">
where v, € Sfor i=1, 2 ... n. The number of elements of a vector vis written 1o

We define the shift operation

iV =V
such that
T(<Y,, 0y, 00 >) =<0, v, vy, 0 >
The total reduction problem is, given a vector & € V, to find ancther vector ¢ € Vsuch that
z=a® 1z Yavi
which can also be written, in scalar terms:
{31 = a7
5 = ¢ Oz

o equivalently:
7= a'.@ ., @ a“,@ - ®a,
fori=1, 2, ... d.

2 This use of the word "scalar” does not quite conform to standard mathematienl usage. but is common in

fiscussions af vector progr

2.2. Applications
The total reduction problem, as defined by /1/ above, has scveral applications. The most obvious

ones are the sum of Lhe clements of ¢, oblained by taking ordinary addition for @, and linear recurrences,

which may be written as . .

e, b

0 1

2l

!

Zt—1

U

which is an instance of the total reduction problem obtained by taking for @ the product of 2 X 2
malrices.
But some classes of non-linear recurrences lall into the same model, a straightforward generalization

e *z,_, + b

£ o=
' ¢ fni + 4

which can be put into the form of /1/ by again taking for @ the product of 2 X 2 malrices and writing
the cquation as

g=u /v,

Y
v,

A useful particular case where this is applicable is Cholesky factorization: consider a symmetrie
matrix with diagonal

<d,, dy, .. d>

and subdiagonal

<31, LR >.

n-t
The recurrence to be solved {or Cholesky (actorization is

where

b,;‘,| +ﬂge = d;
b *a =g

i.e. by climinating b;:

2
81

3
o = &y — =3
a-y

which is a problem of the above form if we take 5, = g
3. THE VECTOR MACHINE

3.1, Vector operations

Equation /1/ does not seem to lend itself naturally to efficient solution on vector processors such as
the Cray-1 or Cray-XMP, which lavor the exccution of "extension” operations {15,5]. Roughly speaking,
cxtension operations are those which can be cxecuved in parallet on all the elements of & vector (or more
generally, in Lhe casc of the Gray machines, en whole vector slices). A typical extension operation is the
addition of two vectors, clement by clement. !

' It shoubd be noted that on the Cray machines or on the CDC Cyber 205 vector operations are not actu-
ally performed on afl elements in parallel, but rather use pipelining. For most practical purposes, however,
pipelining may be conxidered as a form of parallelism.

Such operations on vectors may be exccuted by vector hardware much more efficiently than by just
applying repetitively their non-vector, or “scalar” counterparts. More precisely, a scalar operation which
takes time S when applicd to onc element will take time

teat {n}=n*S

when applied to a vector of n elements. A true vector operation, when applicd to this vector, will take a
time approximately equal to

tet (R)=U + n*V

where U'is the start-up time and Vis the asymptotic unit veetor time. On a vector machine, of course, V
must be significantly less than 8.

The performance of vector addition in both sealar and veetor mode on the Cray-1 is illustrated by
the diagram below. Vector mode becomes better than scalar mode for vector lengths n > U/ (S-V). The
non-linearity of actual vector processing time, which is apparcnt on the figure, is duc to Lhe fact that the
Cray processes vectors by slices of maximum length 64, hence the discontinuity at n = 64 (and also 128,

192 cte.). 3

scalar mode
execution time
(microseconds) 1

vector mode
-2

64 n
1

.,

The performance of an operation cxecuted in vector mode may be characterized by two paramcters
[13}:

- the asymplotic vector speedup p =

S
12
U d .
v cfined as the value of n for which the per-clement per-

- the "half-performance length” n, =
)
U+ n*Vv

formance is half the asymptolic one, i.e. 2 * V; Lhis parameter gives an idea of

n
the minimum length for which the benefits of vector mode offset the penalty incurred for short vee-
tors because of the startup time.

On a Cray-1, depending on the operation, p varies belween 7 and {0 and n; between 20 and 30.

Ouly those parts of 2 program which conform to certain rules may be exceuted in veetor mode and
thus achieve high performance. For Fortran programs on the Cray-1, the rules are the following {15] :

- 1. only "DO" loops are "vectorizable”;

- 2. these loops may only contain "primitive” operations snch as assignment and arithmetie on
boalean operations (no jumps, ete.),

- 3. the data clements accessed during successive loop iterations must be cegulinrly spaeed 1n
memory, i.e. array indexes must be lincar functions of the loop index;

- 4. no "backward dependeney”, in which a statement updates an array value a (1) und uses a provi
ous value of the same array, a (i-p) (Tor some p > 0), is permitted;

- 5. no "cross dependency”, in which an array value may be updated by ouc statement of the loop
and used by another, is permitied.

-6-

In the last two cases, vectorization is inhibited by the compiler not because the hardware ecould not
carry out the computation in vector mode, but because the vector semantics of the program may be
different from the standard (sequential) semantics implied by Fortran and other common languages. If, on
the other hand, one fecls certain that the dependency is only apparent, for instance il the element
updated in a loop with index is a (2% +1) and the value used is that of e (2%) (so that the array slices
updated and used are in fact disjoint), then one may foree vectorization; the Cray Fortran compiler will
aceept a special direclive, IVDEP, to that effect.

The above rather stringent rules seem to preclude the vectorization of many simple algorithms; for
example, the formula which we have given for total reduction, i.c. /1/ above, clearly implics repeated
backward dependencies.

[n order to obtain vectorizable versions of this and other algorithms, more perspective is needed on
the "vector machine” and the operations it may perform.

3.2. An Abstract Model

Rather than studying at the scaiar {e.g. Fortran) level what can be vectorized and what cannot, it is
preferable to provide a formal model of the machine at the approprinte level of abstraction. Ilere we con-
sider a vector computer as a virtual machine associated with an abstract data type, type V =
VECTOR (S}, snd capable of performing a certain number of operations.

There is in fact probably no such thing as the vector machine, but rather various models adapted to
various applications. We thus tailor our specification to the problem at hand. Rather than giving a com-
plete formal description’ of the abstract data type "vector”, we concentrate on some uscful operations and
their essential propertics.

Operation Type Notation Properties

Zero v 0 All clements

Vector zero

Length V — Integer]

Access to

—_

Blements V X Integer S v

Extension letz=v@ w:

of & Sealar |d=minfiul jul);

VX V=V v® w z, = 1,0y,

8pomtmn (i€ Ll
Jrof = |4+ 1;
(ro). =

Shifu V—V TV vy for£> 1,

Ofori=1

Odd Part V—= Vv Ov Ou, = sy

Ilven Part V—V Ey Bv, = uy

Merge into let 2=

Odd and VX V—V alternate (v, w) alternate (v, w):

foven Parts Oz=v;Ez=w

A,

On a vector computer such as the Cray-1, all the operations in the above table {except Tor “length"
and "access Lo clement” which require constant time) are "extension operations” which can be exccuted in
veclor mode. It should be noted, however, that some vector computer architectures may be more restric-
tive: the CDC Cyber 205, for instance, requires array elements to be contiguous, not just equally spaced,
so that operations such as "odd part”, “even part” and "merge” do not qualify.

The above list of operations is by no means exhaustive; more complete lists may be found in e.g.
[6,7). Tt should also be noted that for some applications it may be useful to introduce opcrations extract-
ing other "slices” than just the odd and even parts. The operations given here will suffice, however, for
our purposcs.

Among the abstract propertics of these operations which are particularly interesting are the follow-
ing (for any vectors v, w € V):

Ery = Qv /i/

Oty = 1By fiif
Ofv@w) = 0v Ow /il
E{v@®uw) = Ev @ Eu fiv]
r(v@w) = 7 @rw 1374

4. CYCLIC REDUCTION

The above properties, expressed at the vector rather than scalar level, provide the key to an efficient
solution of the total reduction problem /1/ by a vector algorithm. The idea to be applied here is a very
fruitlul heuristics, using the concept of recursion and close to techaiques such as “red-black ordering”
which can be applied to the development of several efficient vector algorithms.

In the “total reduction” equation
=¢@rz 1/

let us try to reduce the problem size by a lactor of 2 by applying operators O and E (odd and even parts)
to both sides, yiclding:

Oz=0{(a® rz)

Ez=E(a® rz)
i.c. by applying properties /i/ to /fiv/:

Oz=0a @ rEz 12/

Ez=Ea©Oz /3/

The interesting fact here is that by substituting the value of Ez, as obtained from /3/, inte /2/, and
using the associativily of @ combined with property /v/ above, we obtain a new equality:

Oz = (0a @ 7Ee) ® 70z 14/

which is a new instance of the total reduction problem, applied to the new vector variable Oz, a being
replaced by Oa @ 7Ea. This new instance uses vectors of approximately half the size of the original ones.

We thus have the essential ingredients for an cfficient recursive algorithm, known as cyelic reduc-
tion:

- for vectors of length 0 or 1. the result z will be just a:

- IPor larger vectors, we apply the algorithm recursively, using formula /4/, to obtain Oz ; formula

/3/ then yields Bz ;

- we obtain z by merging thase Lwo vectors (alternate operator).

6. PROGRAM DEVELOPMENT

6.1. First Procedural Version

The first version of the procedure is a direct translation of the basic mathematical definition. We
use an Ada-like notation.

procedure total_rcductt'onl (a:in VECTOR ; z :out VECTOR)
var oddpart, evenpart : VECTOR
begin
if |df < { then
z:=a
else - - o > 1
total_reduction, (Oa © rEa, oddpart) ;
evenpart ;= Ea @ oddpart ;
z := glternate (oddpart, evenpart)
end if

end procedure - - tatal_reductiam

The above version is correct but grossly ineflicicnt for several reasons:
- the procedure is recursive;
- it has local vector variables (oddpart and evenpart) which must be aliocated anew for each recur-
sive instance of the procedure;

- it uses two parameters, an input a and an output z, whereas in practice onc usually prefers to

work on a single vector, which is initially the input and will gradually be "transformed” so as to

become the output (the initia! value being saved il necessary).

We shall get rid of these sources of inefficiency through & stepwise process. To make the successive
program transformations clearer, we underline in each version the elements which have been changed from
the previous version.

§.2. Removing Extra Variables

Our first transformalion is a straightforward one, which gets us a little closer to our aim of working
on a single object (z): we note that it is harmless to begin the procedurc by the assignment z := a in all
cases, not just when {of < I (in the other case, this assignment will be overridden by the assignments to
the odd and even parts of z).

procedure talal_rcductiang (a:in VECTOR ; z:out VECTOR)

var oddpart, evenpart: VECTOR
begin
Zas GV
iflal > f then
lo!al_rcductian2 (Oa ® rEa, oddpart) ;
evenpart ;= Ea @ oddpart ;

z = alternate {oddpart, evenpart)
end if

end procedure - - total_reduction,

.g-

The next simplification is to get rid of the local variables oddpart and evenpart by cxtending the
nolation a little: we now allow assigning vector values direetly to the stices Oz and Ez of & vector z. For
example, to change the eyen part of 2 to y, we shail just write

Ez=1y
instead of

z := alternate (Oz, y)

With this ncw notation, the procedure can be simplified as follows:

procedure fotal_reductiong (a:in VECTOR ; z : out VECTOR)
begin
g:=a;
if la > I then
latal_rzductians (Ca @ rEe, Oz);

Ez =FEa® Qz;
end if
end procedure - - total_reduction

£ 4

The next obvious step towards the goal of working wilh only one vector variable is to replace all
occurrences of ¢ with z after the initial assignment z ;= a. We have to be very careful here: in the pro-
cedure resulting from such a transformation, the same vector z will be used as both an in and out actual
parameter of the recursive call. [t should be noted that Hoare's specification of the semantics of recursive
procedures [12] specilically excludes this case.

The replacement will be correct, however, if for the time being we assume a copy mechanism for
parameter passing. In other words we take in to mean "parameler passed by valuc”, i.e. copied upon each
procedure call into a variable local to the procedure instance; and we take out to mear “paramecter
passed by result”, i.e. copied back, on procedure return, from the local variable. To avoid any conlusion
resulting from the fact that we are using an Ada-like notation, it should be nosed that this mode of
parameter passing is not the normal Ada mechanism for in and out paramecters.

procedure tota.l_rzductimu (a:in VECTOR ; z : out VECTOR)
begin
Trm=)
if [> 1 then
taial_r:duc!ion“ (Oz®rEz, Oz);
Ez.=Ez® Oz;
end if

end procedure - - im’al_rea'ucin'un‘

10 -

5.3. Isolating the Recursion
It is uselful now Lo separate Lhe proeedure into twe parts: one which uses the iaitial vecetor 6 and one
which does not, To this effcet, we transform the procedure into a set of two mutually recursive pro-
cedures, only the first of which depends on ¢ ; Lhe sceond one, called intcrna!_parti, has only z as a param-
cter, of moade in out. Again, this is correct only if we assume a copy mechanism for parameter passing,
i.e. an in out parameter is copicd to (al eall time) and from (at return time) a variable local to the pro-
cedure instance.
procedure tota[_rcduction5 (e :in VECTOR ; z : out VECTOR}
begin
T =las;
! 5[7'-)

end procedure - - tatal_reductions

procedure {nternal port; (z:in out VECTQR)
begin
if |4 > 1 then
total_reductian5 (0z & 1Bz, Oz) ;
Ez :=Et® Oz,
end if

end procedure - - internal_parts

We can now isolate the recursion by cxpanding the call to totel_reduction in internal_part. The
effeet of this call is to assign the value of the first parameter to the sccond and Lo call internal_part recur-
sively. By carrying out this cxpansion, we get rid of the mutual recursion introduced in the previous step:
in the new version, only internal_part will be (direetly) recursive; total_reduction remains useful lor initiali-
zation only.

procedure ,total_rcductione (a :in VECTOR ; z: out VECTOR)

begin

z:=a;
internal_part, (z) ;
end procedure - - totaLreduct:'ons

procedure internal_part, (z : in out VECTOR)
begin
if {4 > 1 then
Qui=0:Q r Fz,
internal part, (Qz) ;
Ex:=Ez® Oz;
end if

end procedure - - internal_partﬁ

5.4. Introducing an Integer Parameter

The remarkable feature of the recursive scheme which we have obtained is that the recursive call
now has a single and simple actual parameter, Oz, where the formal parameter was z. Thus the sequence
of actual parameters in successive recursive calls, starting with the iritial call from total_reduction, will
be .

2

z=4a 0z, 0%z ..., 0™,
where O ¥z (k > 0) is the k-th iterate of O. The value of the exponent for the inaermost eall is

m=1 + llog (}a] ~1)]
(here and in the sequel, logarithms are in base two; for any real number z, lz] denotes the floor of z, ic.
Lhe greatest integer asuch that n < z).

This remark suggests a new version in which the explicit parameter to the recursive part is not z
itsell any more, but k, the number of times operator O must be iterated. Of course all instances of the
recursive procedire must be able to work on z; thus we make z a variable global Lo the recursive pro-
cedure. To this end we make procedure internal_part local Lo the non-recursive procedure total_reduction.

procedure total_reductian7 (a:in VECTOR ; z : out VECTOR)
var m - NATURAL - - i.e. non-negalive tnieger ;
procedure inlemal_part? (k:in NATURAL)

- - local to total_reductiaﬂ,,

begin
if ¥ < mthen
_Q_fz::.O_szTE‘Qk'lz;

internal_pn.rt,, (k1)
EQ* s=EQ* :00%z;
end if

end procedure - - internal_part,

begin - - total_reduction

7
z:=4a;
me= 1+ llog(la} = 1))
internal_part, (1) ; - - initiol parameler 13 one

end procedure - - to!al_reduct:'on7

S12-

5.5. Removing the Recursion
These procedures can be further simplified. The body of procedure intemal_part7 is of the form
if k < mthen
Uk F
internal_part7 (k+1);
Dk
end if
where Uk is the statement
0% =0%0rE0*:
and Dl: is the statement
EO* 2= EO* 20 0%
Thus the exceution of the successive recursive catls amounts to a traversal of Uhe following tree in the
order indieated by the dotted line, t.e. the sweecssive exceution of
v, Uy..U ,0,D ,. D,D,.
where m = [1+log ({a} — 1)]. Note that there is one more instance of D, than of U, since U_is a null
statement.

inlernal_part (1)

internal_part (2)

internal_part (m) N

>

S13-

Thus no recursion is nceded after all: the body of procedure total_réduction, may be readily
represented by

up ; down

where up and down are two simple joops:
- - up:
for k := 1 to m-1do
Uk
end for ;

- - down:
for k == m downto { do
Dk
end for ;

(the mnemonics used for the ‘oops reflect the fact that the index k goes up in the first loop and down in
the second ene).

It is parlicularly interesting to note that, although the recursion initially scemed quite necessary, it
has been completely removed. The above version is truly non-recursive in that it does not secm to contain
any hidden recursive feature, for example a stack lurking in the guise of an integer representing an array
of binary values as in some iterative implementations (sce e.g. [14]) of the Tower of Hanoi, Quicksort, the
Deutseh-Schorre-Waite tree traversal algorithm cle.

8. A SCALAR, VECTORIZABLE VERSION

6.1. The Program

[t is usclul to write U, and D, in a form which is closer to Wow they would be expressed in an ordi-
nary (scalar) programming language, but still easily amenable to antomatic vectorization. We define

slice (low, high, step)

where low, high and step are integers such that low < high and step > 0, as the scb of all integers of the
form

low + k*step

which fall into the range low ..high. Then Uk and Dk can be written as follows:

U (ie. 0= 0% 67 B0 s}
forall i in stice (1 + 2% |d, 2%) do
2fij =z fi)@zfi-2F
end forall
--D, (ie. O "'z = E0*'20 0%,
forall iin stice (1 + 2%,]d, 2%) do
zfi :=z/€/®=/i~2k'1/

end forall

S 14

We have.used the notation forall ... in ... to emphasize the fact that the above are paralicl loops:
on a veclor processor, ail the vector operations corresponding t6 an instance of Uk or Dk can be performed
simultancously.

Note that the backward dependencics in these loops are only "spparent” in the scnse of section 3.1 :
since hoth loops are low-level translations of veetor operations (U and D, kept as comments in the
above code), Lhe expected interpretation is the vector one (which anyway turns out to be identical to the
sequential loop serantics in Lhis case). Thus if a conservative vectorizer such as the Cray Fortran Trans-
lator inhidits veclorizution of these loops because of the apparcat dependencics, the programmer should
override the inhibition.

Below is a non-recursive version of total_reduction which integrates the various improvements
achieved so far. This version would be readily vectorizable by any simple vectorizer (such as CFT, the
Cray Fortran Translator, on the (7raky-l). A Turther simplification is obtained by using variables step and
half_step, corresponding to 2 £and 2 ¥ respectively, in licu of &

procedure tota.l_rcductz‘ong (a:in VECTOR ; z : out VECTOR)

var step, half_step : NATURAL ;
size : NATURAL ; - - size will stand for |d|

begin
size = [d| ;
forall ¢ in slice (1, size, 1} do
zff =afif;
end forall ;
step = 2 ; half_step == 1 ; - - This corresponds to k =
while step < size do - - U,
forall ¢ in slice (1 + step, size, step) do
zfif =z [i] @ z [i - half_step]
end forall ;
half_step = step ; step = 2 * step
end while ;
- - here {1 < half_step < size < step = 2%half step}
while step > 1 do - - Dk
forall iin slice (I + half_step, size, step) do
T fif =z [tf ® z [t - half_step/
end forall ;
step .= half_step , half_step .= hall_step /2
end while

end procedure - - latal_reductian‘{

-15-

6.2. A Timing Diagram

The diagram below may be helpful in visualizing the operations performed on z during ar cxccution
of the procedure. It applies to the case Jof = 9. The elements are represented horizontally; the vertical axis
represents time. Hxecution of the operation

2 fif =25 @ z [

al lime tis pictured as

Elements: 7 {

t -

The two main loops ("up” and “down”) appear clearly on the diagram: the first one is executed in
steps | to 3, the sccond one in steps 4 to 7.

It is interesting to note that this dingram follows dircetly from the non-recursive veesion of the pro-
cedure; it can also be deduced from the initial recursive version (by expanding the call graph), but the
deduction is much more difficult.

o

Ilements: | 2 3 1 6

~1
x
=3

""&.\‘
t=4 \

Note that there is & minor possibility for extea parallelism, botween sleps dand 8, thit our develop-
went method has not eaplured.

The time needed for total reduction of a veetor a using cyelie reduction on the Cray is approsima-
tively

tyer, =2 (r=1)*U + (2%(n~1) = r}*V

TR

where r = [log (Ja])) This time should be compared to gy = (n=1) * § for the trivial algorithm (con-
stants U, Vand § were introduced in section 3.1). For the Cray, the cutoll point at which cyelie reduetion
hecomes more efficient is approximately |d = 40.

7. AN ADA VERSION

Below is an implementation of the algorithm as an Ada function, embedded in a generic package.
The following poinls are worth noting:
- the generie mechanism of Ada provides a way to wrile the package so that it can be applied to
various cases; the same generic package can have many instances depending on what the type
SCALAR and the "+" operation, which corresponds to the operation written @ above, arc chosen to
be: for instance the type INTEGER and integer addition, a matrix type and matrix multiplication,
ete.
- The Ada generic mechanism is flexible but strictly syntactlical: Lhe language provides no way to
specify that the actual generic paramecters must have predefined semantie propertics, for instanrce
that "+" must be associative. A language such as LPG (Language for Generic Programming, [4])
makes it possible to impose such conditions on generic parameters.
- Procedure ADD_TO_VECTOR is the onc which performs the veetor operations (corresponding to
U, and D, as defined above). These operations must be expressed in scalar form, using loops (for ...
in ... loop ... end loop). Thus on a vector computer an Ada program such as this one will require
the intervention of a vectorizer, similar to those which exist for Fortran {e.g. CF'T on the Cray-1), in
order to take advantage of the vector computation facilities of the hardware.
~ The loop in procedure ADD_TO_VECTOR scems to involve a backwards dependency. Tlowever,
this is only an apparcnt dependency, as delined in section 3.1, since the loop updates s and usces s -
offset, but these two slices are disjoint whenever offset 3 s.step; which is the case for the two calls to
ADD_TO_VECTOR in the package. This implies, however, thal a vectorizing Ada compiler would
still have to provide some kind of "vectorize at any risk"” dircetive similar to Cray Fortran's IVDEP.
The fact that vector programmers should still resort to such low-level and error-prone techniques in
Ada is all the more disappointing that Ada comes close to providing adequate notations for true vector
programming; it has vector opcrations such as vector assignment (used below in the initializing statement
z := a of function TOTAL_REDUCTION) and the notion of slice; however, an Adz slice must be a con-
tiguous subarray, whereas the slices which we nced here are not contiguous, which is why we must use
loops.
On the other hand, a language such as Actus [16], explicitly designed for use on vector computers,
readily allows for non-contiguous slices, but lacks the generic [acility of Ada.

generic
type SCALAR is private ;
with function "+" (X, Y : SCALAR) return SCALAR is <> ;
package CYCLIC_REDUCTIONis
type VECTOR is array (NATURAL range <>)of SCALAR ;
function TOTAL_REDUCTION (a : VECTOR) return VECTOR ;
private
type SLICE is record low, high, step : NATURAL end;
end CYCLIC_REDUCTION ;

N i 5

package body CYCLIC_REDUCTION is

procedure ADD_TO_VECTOR (z : in out VECTOR ;
s :in SLICE

offset :in NATURAL)
--z(s)i=1z(s)+ 2 (s- offset)

is

bottem : constant NATURAL = s.low ;

top : constant NATURAL := s.high;

stride ! constant NATURAL := s.step ;

last : constant NATURAL := (top - bottom) [strde ;
begin

for {in 0..last do
z (bottom + i¥stride) = z (bottom -+ 1 *stride} + z (bottom + i*stride - offset)
end for ;

end ADD_TO_VECTOR ;

function TOTAL_REDUCTION (a : VECTOR) return VECTOR is
initial ; constant NATURAL = o’FIRST ;
final : constant NATURAL := ¢’'LAST ;
size : constant NATURAL := initiel - final + 1 ;
z: VECTOR == a;
step : NATURAL := 2; half_step : NATURAL := 1 ;

begin
(927
while step < stze loop
ADD_TO_VECTOR (z, (initial + step, final, step), half_step} ;
half_step := step ; step := 2 *step :
end loop UP ;
-« here {1 < half_step < size < step = £*half_step}
DOWN :
while step > 1 loop
ADD_TO_VECTOR (z, (initiel + half_step, final, step), helf_step) ;
step = half_step ; half_step == half_step / 2;
end loop DOWN ;
return z ;

end TOTAL_REDUCTION ;
end CYCLIC_REDUCTION ;

8. CONCLUSION

Transformational programming has been advocated by several nuthors, e.g. '[1,2,9,3,8].
whereas other researchers in sofware design methadalogy prefer a more direct approach Lo the syn-
thesis of programs from specilications [10, [1]. Although we do not wish to enter this debate here,
the derivations oblained in this papee may bring some interesting elements,

Isven though the sequence of transformations needed to produce the final program may seem
overly long and complex, we do not know of any other rigorous wuy to derive that program. We
would be interested Lo learn of o more dircct argument, il there is one.

On the other hand, it 15 not elear Lo us whether any of the existing program Lransformaltions
systems (where the term "system” is taken to denole coherent sets of tools and/or methods) may
indeed support the Lmnsform:\tions.dcxrribctl here.

In any case, we feel that the development presented here is another example of the need for
applying systematic techniques Lo the design of vector programs. [Seclive sapercaomputer program-
ming requires a wide range of modern soflware engincering tochiniques; program transformation may

be one of Lthem.

Acknaowledgement
We are grateful to Alan Wilson for the useful conuneats he made as n referee for this paper,

-19-

References

It Tacques Arsie, "“Syatactic Souree to Source Transformation and Program Manipulation,” Communi-
cations of the ACM, vol. 22, no. I, pp. 13-54, January 1979.

2. Robert Bualzer, Neil Goldman, and David Wile, “On the Transformational Implementation Approach
to Programming,” in Proceedings Second International Conference on Software Engineering, pp. 223-
234, 1976.

3. L. Bauer, M, Broy, W. Dosch, R. Gnatz, F. Qeisclbrechtinger, W. esse, 3. Krieg-Brilckner, A.
Laut, T. Matzner, B. Maller, F. Nicki, IL Partsch, P. Pepper, K. Samelson, M. Wirsing, and 11,
Wassner, The Munich Project CIP, Tochnische Universitiit Miinchen, Munich (Germany), December
1983,

Didier Bert, “Manuel de Reférence du Langage LPG, Version 1.2, Rapport R-108, IFIAC, IMAG
Institute {Grenoble University), Grenoble, December 1983, .

5. Alain Bossavit and Bertrand Meyer, “The Design of Veetor Programs,” tn Algorithmie Languages, od.
Jaco de Bakker and R.P. van Viict, pp- 99-114, North-lIlolland Publisking Company, Amsterdam
(The Netherlands), 1981.

6. Alain Bossavit, “The Vector Machine: An Approach to Unsophisticated Programming of Linear
Algebra Algorithms on Vector Computers,” in Proceedings of IFIP TC2 WG 25 (Numerical
Software) Working Conference on PDE Software: Modules, Interfaces and Systems, Sixherkoping
(Sweden), August 1983,

7. Alain Bossavit, “Programming Discipline on Veetor Computers: 'Vectors' as a Datatype and Veetor
Algorithms,” in Proceedings of Conference on The Use of Supercomputers in Theorelical Seience,
Antwerpen (Belginm), July 30 - August 1, 1984.

8. James M. Boyle and Monagur N. Muraiidharan, “Program Reusability through Program Trausfor-
wation," [EEE Transactions on Software Engineering, vol. SI:-10, no. 5, ppe STI-HR8. September 1081,

9. John Darlington and Red M. Burstall, “A System which Automatieally Improves Programs.” Acta
Informatica, vol. 6, pp. 41-60, 1976.

10 Edsger W. Dijkstra, A Discipline of Programming, Prentice-1lall, Englewood Chills (New-Jorsey), 1076,

1. David Grics, The Science of Programming, Springer-Verlag, Berlin, 1981,

12. C.AR. Hoare, “Procedures and Parameters: An Axiomatic Approach,” in Symposium on the Seman-
tics of Programming Languages, Lecture Notes in Mathematics, cd. Urwin Ingeler, vol. 188, pp. 103-
116, Springer-Verlag, Berlin, 1971,

13 C.W. Ilockney and Christopher R. Jesshope, Parallel Computers, Adam Hilger, Bristol (Greiit Brj.
tain}, 1981,

1. Bertrand Meyer and Glaude Baudoin, Methodes de Programmation, Eyrolles, Pauris, 1978,

15 Bertrand Meyer, “Ua Caleulateur Veetoricl: Le Cray-1 et sa Programmation (Version 2)," Alclier
Logiciel no. 24, HI-34552/01, Blectricitd de France, June 4, 1980

6. Ron Perratl, “A Language for Veclor and Array Processors,” ACM Transactions on Programming

Languages and Systems, voi. 1, no. 2, pp. 177-195, October 1979.

On Formalism in Specifications-

Bertrand Meyer, University of California, Santa Barbara

A critique of a natural-language specification,
followed by presentation of a mathematical
alternative, demonstrates

the weakness of
natural language
and the strength
of formalism

in requirements
specifications.

6 : 0740-7459/85/0001/0006501.00 © 1985 {EEE

Speciﬁcation is the software life-
cycle phase concerned with precise
definition of the tasks to be performed
by the system. Although software en-
gineering textbooks emphasize its ne-
cessity, the specification phase is often
overlooked in practice. Or, more pre-
cisely, it is confused with either the
preceding phase, definition of system
objectives, or the following phase, de-
sign. In the first case, considered here
in particular, a natural-language re-
quirements document is deemed suf-
ficient to proceed to system design—
without further specification activity.

This article emphasizes the draw-
backs of such an informal approach
and shows the usefulness of formal
specifications. To avoid possible mis-
understanding, however, let’s clarify
one point at the outset: We in no way
advocate formal specifications as a
replacement for natural-language re-
quirements; rather, we view them as a
complement to natural-language de-
scriptions and, as will be illustrated by
an example, as an aid.in improving the
quality of natural-language specifica-
tions.

Readers already convinced of the
benefits of formal specifications might
find in this article some useful argu-
ments to reinforce their viewpoint.
Readers not sharing this view will, we
hope, find some interesting ideas to
ponder,

The seven sins .
of the specifier

The study of requirements docu-
ments, as they are routinely produced
inindustry, yields recurring patterns of

IEEE SOFTWARE

deficiencies. Table ! lists seven classes
of deficiencies that we have found to
be both common and particularly
damaging to the quality of require-
ments.

The classification is interesting for
two reasons. First, by showing the pit-
falls of natural-language requirements
documents, it gives some weight to the
thesis that formal specifications are
needed as an intermediate step be-
tween requirements and design. Sec-
ond, since natural-language require-
ments are necessary whether or not
one accepts the thesis that they should
be complemented with formal specifi-
cations, it provides writers of such re-
quirements with a checklist of com-
mon mistakes. Writers of most kinds
of software documentation (user man-
uals, programming language manuals,
etc.) should find this list useful; we'll
demonstrate its use through an exam-
ple that exhibits all the defects except
the last one.

A requirements document
The reader is invited to study, in
light of the previous list, some of the
software documentation available to
him. We could do the same here and
discuss actual requirements docu-
ments, taken from industrial software
projects, as we did in a previous ver-
sion of this article.! But such a discus-
sion is not entirely satisfactory; the
reader may feel that the examples cho-
sen are not representative. Also, one
sometimes hears the remark that noth-
ing is inherently wrong with natural-
language specifications. All one has to
do, the argument continues, is to be

January 1985

Requirements \'

\ Spacification \

The \ Global

life cycle Detailed

This “water- \ 5
software life cycle
originated with W. W. \ »

Validation
Development of Large Soft- \
ware Systems: Concepts and \
Y=y g

1970), but many varlants have been o Piskibution \V
published. A well-known one is in - \

software \l-- DESIGN --- \ ST B
fall model" of the Implementation \

Royce ("Managing the

Techniques,” Wescon Proc., Aug.

Boehm (1975). The IEEE Standard on Soft-

ware Quality Assurance (Standard P732) also Operation

defines a variant.-

Formalism

Table 1.
The seven sins of the specifier,

Noise: The presence in the text of an element that does not
carry information relevant to any feature of the
problem. Variants: redundancy, remorse.

Silence: The existence of a feature of the problem that 1s
not covered by any element of the text.

Querspecification: The presence in the text of an element that cor-
responds not to a feature of the problem but 1o
features of a possible solution.

The presence in the text of two or more elements
that define a feature of the system in an incompati-
ble way.

Contradiction:

The presence in the text of an element that makes it
possible to interpret a feature of the problem in at
least two different ways.

Ambiguity:

Forward reference: The presence in the text of an element that uses
features of the problem not defined until later in
the text.

Wishful thinking: The presence in the text of an element that defines
a feature of the problem in such a way that a can-
didate solution cannot realistically be validated

with respect to this feature.

careful when writing them or hire peo-
ple with'good writing skills. Although
well-written requirements are obvious-
ly preferable to poorly written ones,
we doubt that they solve the problem.
In our view, natural-language descrip-
tions of any significant system, even
ones of good quality, exhibit deficien-
cies that make them unacceptable for
rigorous software development.

To support this view, we have cho-
sen a single example, which, although
openly academic in nature, is especial-
ly suitable because it was explicitly and
carefully designed to be a “good”
natural-language specification. This
example is the specification of a well-
known text-processing problem. The
problem first appeared in a 1969 paper
by Peter Naur where it was described
as reproduced here in Figure |,

Naur’s paper was on a method for
program construction and program
proving; thus, the problem statement
in Figure | was accompanied by a pro-
gram and by a proof that the program
indeed satisfied the requirements.

The problem appeared again in a
paper by Goodenough and Gerhart,
which had two successive versions.
Both versions included a criticism of
Naur’s original specification.

Goodenough and Gerhart's work
was on program testing. To explain
why a paper on program testing in-
cluded a criticism of Naur's text, it is
necessary to review the methodologi-
cal dispute surrounding the very con-
cept of testing. Some researchers dis-
miss testing as a method for validating
software because a test can cover only
a fraction of significant cases. In the

8

words of E. W. Dijkstra,2 “Testing
can be a very effective way to show the
presence of bugs, but it is hopelessly
inadequate for showing their absence.””
Thus, in the view of such critics, tes-
ting is futile; the only acceptable way
to validate a program is to prove its
correctness mathematically,

Since Goodenough and Gerhart
were discussing test data selection
methods, they felt compelled to refute
this a priori objection to any research
on testing. They dealt with it by show-
ing significant errors in programs
whose ““proofs” had been published.
Among the examples was Naur's pro-
gram, in which they found seven er-
rors—some minor, some serious.

Goodenough and Gerhart
found seven errors—some
minor, some serious—in
Naur’s program.

Our purpose here is not to enter the
testing-versus-proving controversy.
The Naur-Goodenough/Gerhart prob-
lem is interesting, however, because it
exhibits in a particularly clear fashion
some of the difficulties associated with
natural-language specifications. Good-
enough and Gerhart mention that the
trouble with Naur’s paper was partly
due to inadequate specification; since
their paper proposed a replacement for
Naur’s program, they gave a corrected
specification. This specification was
prepared with particular care and was
changed as the paper was rewritten.

Apparently somebody criticized the
initial version, since the last version
contains the following footnote:

Making these specifications precise is

difficult and is an excellent exarnple of

the specification task. The specifications
here should be compared with those in
our original paper.

Thus, when we examine the final
specification, it is only fair to consider
it not as an imperfect document writ-
ten under the schedule constraints
usually imposed on software projects
in industry, but as the second version
of a carefully thought-out text, de-
scribing what is really a toy problem,
unplagued by any of the numerous
special considerations that often ob-
scure real-life problems. If a natural-
language specification of a program-
ming problem has ever been written
with care, thisis it. Yet, as we shall see,
it is not without its own shadows.

Figure 2 (see p. 11) gives Good-
enough and Gerhart’s final specifi-
cation, which should be read carefully
at this point. For the remainder of this
article, numbers in parentheses—for
example, (21}—refer to lines of text as
numbered in Figure 2.

Analysis of the specification
The first thing one notices in look-
ing at Goodenough and Gerhart’s
specification is its length: about four
times that of Naur’s original by a sim-
ple character count. Clearly, the au-
thors went to great pains to leave noth-
ing out and to eliminate all ambiguity. "
As we shall see, this overzealous effort
actually introduced problems. In any
case, such length seems inappropriate

|EEE SOFTWARE

Rococa interior with fashionable parr dancing;
engraving by Gravelot, 1770,
The Betimana Archive

. for specifying a problem that, after all,
fooks fairly simple to the unprejudiced
observer.

Before embarking on a more de-
tailed analysis of this text, we should
emphasize that the aim of the game is
not to criticize this particular paper;
the official subject matter of Good-
enough and Gerhart’s work was test-
ing, not specification, and the pre-
scription period has expired anyway.
We take the paper as an example be-
cause it provides a particularly com-
pact basis for the study of common
mistakes.

Noise. “‘Noise” elements are identi-
fied by solid underlines in Figure 2.
Noise is not necessarily a bad thing in
itself; in fact, it can play the same role
as comments in programs. Often, how-
ever, noise elements actually obscure
the text. When first encountering such
an element, the reader thinks it brings
new information, but upon closer ex-
amination, he realizes that the element
only repeats known information in
new terms. The reader must thus ask
himself nonessential questions, which
divert attention from the truly difficult
aspects of the problem.

Here, a fraction of a second is needed
to realize that a ‘‘nonempty sequence”’
of characters (8) is the same thing as
“‘one or more”’ characters (9). These
two expressions appear within a line of
each other; the authors’ aim was, pre-
sumably, to avoid a repetition. One is
indeed taught in elementary writing
courses that repetitions should be
avoided, and no doubt this is a good

rule as far as literary writing is con-

January 1985

risles: ™ Gt 31,:1 SIS uun :
(1) liné breaks must be made only wl ereiheglven texl has BLANKor NL,

~{*{2) each line s filled as far as possible, as long as .-
. (3) no Ilne wnll con!aln more than MAXPOS c_haraciers

leen a text conslstlng of Words saparated by BLANKS urby NL(new tlne) i
characters convert it to aline-by-ing form Inaccordance wlth the following
LAY

Original reference, Naur: . atiios uv

250-258. S nime

First version, Goodenough and Gerhart: B,
John B. Goodenough and Susan Gerhart, “Towards 2 “Theory of T at
Selection,” Proc. Third Int'l Cony. Re[table Software, Los Angeles, 1975, pp.
493-510. Also published in JEEE Tmru Sof/wareEngmeenng, Vol SE-1, Ni
Junc 1975, PP 156—173 e §

(U9
Revnsed versxon Goodenough and Gerhan Lo laha msrde
John B. Goodenough and Susan Gerhart, *“Towards a Theory of Test: Data
Selection Criteria,”” in Current Trends in Programming Methodology, Vol. 2,

Raymond T. Yeh, ed Prentice-Hall, Englewood C]]ffs. NJ 1977 PP 4#79
Another paper that uses the same problcm as an example cqrys T

Glenford J. Myers, “A Controlled Expenmcm in Program Tcstmg and Codc

Walklhroughs/lnspecuons," Camm ACM 21, N

760- 68. ! =

Peter Naur, “Programmmg by Acuon Clustcré,” BIT Yol. 9 . No. i 1969 pp. "
ME] o0t ¥i2 0 10}

Formalism

cerned. In a technical document, how-
ever, the rule to observe is exactly the
opposite—namely, the same concept
should always be denoted by the same
words, lest the reader be confused.

An interesting variant of noise is
remorse, a restriction to the descrip-
tion of a certain specification element
made not where the element is defined
but where it is used, as if the specifier
suddenly regretted his initial defini-
tion. An example here is “the output
text, if any” (20). Up to this point, the
specification freely used the notion of
output text (12,17); nowhere was there
any hint that such a text might not ex-
ist. If the reader wondered about this
problem, the specification did not pro-
vide an answer. Now, suddenly, when
the discussion is focusing on some-
thing else, the reader is “‘reminded”’
that there might be no such thing as an
output text, but no precise criterion is
given as to when there is and when
there isn’t.

Another instance of remorse is the
late definition of the “line” concept
(24), to which we will return. We will
meet again the tendency to say too
much, which generates noise, as a
source of contradiction and ambiguity,

Silence. In spite of all his efforts, the
specifier often leaves, along with over-
documented elements, undefined fea-
tures. Commonly, these features are
fairly obvious to a community of ap-
plication specialists, who are close to
the initial customers, but they will be
more obscure to those outside this cir-
cle. An example is the concept of
“line,” which is not really defined ex-

10

cept in a parenthetical bit of remorse
toward theend of the text (24), where it
is described as a sequence of characters
“between successive NL characters.”
(By the way, are those characters part
of the line?)

An interesting point here is the cul-
tural background necessary to under-
stand this concept. In ASCIl-oriented
environments, “New Line’’ is a char-
acter; thus, people working on ASCII
environments (DEC machines, for ex-
ample) will probably understand easily
the specification’s basic hypothesis
—narnely, that NL is treated as an or-
dinary character upon input but trig-
gers a carriage return upon output.
These concepts are foreign, however,
to somebody working in an EBCDIC
environment, especially on IBM OS
systems, on which files are made up of
a sequence of “‘records” (correspond-
ing, for example, to lines), each made
up of a sequence of characters. A per-
son coming from such an environment
would not have written the above speci-
fication and will probably have trouble
understanding it.

Besides, the late definition of line is
plainly wrong. It applies only to lines
that are neither at the very beginning
nor at the very end of the text. In both
these cases, a line is not *‘between suc-
cessive NL characters” but between
the beginning of the file and an NL, or
between an NL and the end of the
file—that is, between an NL and an
ET. If we accept the authors’ defini-
tion, the first and last lines of the out-
put may be of arbitrary length; in fact,
an output containing no NL at allis ac-
ceptable regardless of its length, since

it does not have lines according to the
definition given! This is obviously ab-
surd and not what the authors had in
mind, but the use of natural language
leads naturally to such slips of the pen.

Another interesting silence concerns
the variable Alarm. Line 16 specifies
that this variable should be set to
TRUE in case of an error, but nothing
is said about what happens to it in
other cases. The answet is obvious, of
course; but the matter can only be
brushed aside as minor by program-
mers who have never run into a bug
due to an uninitialized variable. . .

It must be pointed out that Good-
enough and Gerhart corrected a nota-
ble silence in Naur’s original descrip-
tion. Naur’s text does not explain what
should be done with consecutive groups
of more than one break character; this
is one of the seven errors analyzed in
Goodenough and Gerhart’s paper.
Their specification’ corrects it by re-
quiring that such groups be reduced to
a single break character in the output.
Although something had to be done
about the problem, note that this solu-
tion is, to some extent, obtained at the
expense of simplicity. Eliminating re-
dundant break characters and dividing
a textinto lines are two unrelated prob-
lems; merging them into a single specifi-
cation complicates the whole affair.

It is probably better to deal with
these two requirements separately, and
this 1s what we do in the formal
specification given below., Some of the
current trends in programming meth-
odology emphasize this approach—
most notably under the influence of
the Unix programming environment,

IEEE SOFTWARE

84ll at the heme of a German baren’
engraving circa 1750,

The Bettmann Archive

which, at least in principle, favors
tools that are simple and composable
rather than large and multipurpose.

Contradictions. There is another
problem with the concept of line.
Given a type 1, one should distinguish
between the types seq[f], whose ele-
ments are finite sequences of objects of
type ¢, and seq [seq [¢]], whose ele-
ments are sequences of sequences of
objects of type t. Such a confusion can
be found in Figure 2, where we are first
told (1) that the inputis a “‘stream,”’ or
sequence, of characters and later (10)
that it “‘can be viewed’’ as a sequence
of words and breaks. As any Lisp pro-
grammer knows, the sequences *

<abacca>
[sequence of objects]

and

<<a>» <ba> <cca>>
[sequence of sequences of objects]

are not the same. Note that the same
problem with respect to the output is
redeemed only by ambiguity; the type
of the output is not clear:

¢ Isit seq (CHAR)] as (21-22) seems
to imply?

s [s it seq [WORD]—that is, seq
[seq [CHAR]}—as (12-13) in-
dicates?

* Oris it even seq [LINE] —that is,
seq(seq(seq{CHAR]]}—if we con-
sider a line as a sequence of words
and breaks?

Thus, asentence that at first appears
to be only noise (9-11) yields a con-
tradiction within a few lines (13-14):
“The program’s output should be the
same sequence of words as in the in-

January 1985

The program’s input is a’§iréam of charactars whqge end is

signaled with a special end-of-text charastar, ET. Thera |s exactly
one ET character in each input stream Gharacters ara classified

3
2

3

4 as
5 * break characters—BL (blank) and NL (new line},
] * nonbreak characters—all others except ET,

7 ¢ the end-of-text indicator—ET.

8 A word is a nonempty sequence of nonbreak characters. A
9 break is a sequence of one or more break characters. Thus, the

10 Input can be viewed as a Sequence of words Séparated by breaks,
1t with possibly leading and tralling breaks-and.ending with ET.
2quence of words:

12 The program's output should be the sam
ol .
13 as in the input, with the exception that an.oversize word (i.e., a
-
14 word containing more than MAXPOS characters, where MAXPOS
I

16 Is a positive integer) should cause an error exit from the program
4 f—— e

16 (i.e., a variable, Alarm, should have the value TRUE). Up to the

e lk Z "
17 point of an error, the program’s output should have the following

18 properties: s

19 1. A new ITEé‘sh/ould start only between words and at the be-
20 ginn’mg?; the output text, if any.

21 2..A break in the input is reduced to a single break character in
22 in the output.

23 3. As many words as possible should be placed on each line
24 (i.e., between successive NL charac[ers).

25 4. No liné r-nay congai} Fnore than M;\XPOS characters (words
26 and BLs).

Figure 2, Goodenough and Gerhart's final specification of the origi.nal prob-
lem statement in Figure 1. Analysis of this text, overprinted in blue, is accord-
ing to the following key:

Ambiguity
Overspecification
Forward reference =

Noise
Remorse‘ o e
Contradiction *—

Formalism

put.”” This last comment is remarkable
since neither the input nor the output
is a sequence of words. Worse yet,
even if we parse the input into 2 se-
quence of words, this sequence is not
sufficient to determine the output—
one also needs two binary informa-
tions: whether thereisa leading and/or
a trailing break.

The same sentence (9-11), in its
overzealous effort to leave no stone
unturned, ends up introducing another
contradiction. An. unbiased reader
would be puzzled. How can the input
“end with [the character] ET" (11
and at the same time have a “trailing
break” (11)? “Trailing,” precisely,
means “at the end”’! What's the last
character if there is a “trailing” break:
ET or a break character?

A more experienced reader, such as
a programumer, will have no difficulty
resolving this contradiction; his experi-
ence will tell him that “‘end” markers
follow *“trailing”” characters. But this
reliance on intuition and kn owledge of
the application domain can be par-
ticularly damaging when transposed to
large requirements documeats, which
will be handed down to a group of
system designers and implementors of
diverse backgrounds and abilities.

Overspecification. Overspecifica-
tion in requirements can be annoyingly
close to silence. The reader is told too
much about the solution while he is
desperately tryingto grasp the problem
and figure out—by himself—features
not covered by the text. Overspecifica-
tion is typically, aithough certainly not
exclusively, found in requirements

12

documents written by programmers.
Psychologically, this is understand-
able. Animplementation-level concept
is good, concrete, technical stuff,
whereas true requirements deal with
much less tangible material. To a com-
puter specialist, a stack is easier to
visualize than, say, the flow of infor-
mation in a company or the needs of a
radar operator. Thus, many specifiers
have a natural tendency to cling to pro-
gramming concepts. There is a price to
pay for this: Implementation decisions
taken too early may turn out to be
wrong, and important problem fea-
tures can be overlooked.

The example text contains an over-
specification right from the first
sentence: the notion of the end-of-text
character ET. The only reason for the
presence of this notion is Goodenough
and Gerhart’s desire to correct Naur’s
priginal program. Input-output facili-
ties of the version of Algol 60 used by
Naur (and, for fairness, by Good-
enough and Gerhart) do not provide
for end-offile detection when reading,
50 one must assume the presence of a
special character at the end of the file
to make up for this deficiency. But ET
is an implementation detail and should
not be included in an abstract specifi-
cation. Conceptually, the input is a fi-
nite sequence of characters; it should
be transformed into an output that is a
sequence of lines or, depending on the
interpretation chosen, a sequence of
characters. Itis a programmer’s vice to
insist that finite sequences be specially
marked at the end.

Why does the ET character receive
such emphasis in Goodenough and

Gerhart's specification? The reason is
one of the errors in Naur’s original
program, which would go into an in-
finite loop unless the input was incor-
rect (that is, contained an oversize
word). Upon closer examination, how-
ever, a case can be made for Naur’s
solution (without the other errors, of
course). It is not so unrealistic to con-
sider the required program as a poten-
tially infinite process, which takes
characters as input and produces lines
as output, working somewhat like a
device handler (for instance one that
drives a printer) in an operating sys-
tem. Such an interpretation should, of
course, be clearly described in the
specification, which was not the case
with Naur’s text. That decision would
be less arbitrary than the one taken by
Goodenough and Gerhart: their inclu-
sion of ET changes the data structure
at the specification level to accom-
modate the programming language
used at the implementation stage.
The unacceptability of the change is
further evidenced by the fact that the
output does not satisfy the require-
ment on the input. Is it realistic to ex-
pectan existing file to be terminated by
an explicit marker? If it is, the output
produced by the program should satis-
fy thai condition; however, examina-
tion of the specification, which is not
completely clear on this matter, and,
as a final criterion, of the proposed
program, shows that ET will nor be
passed on to the output file. Assume
that we want to write another pro-
gram, for, say, right-justifying the
text, that will take Goodenough and
Gerhart’s output (in “pipe’” mode & la

IEEE SOFTWARE

Dancing the minuel in the open alr,
copper enggaving by Charles Eisen
The Beltmann Archive

Unix). In designing that program, we
will not be able to make the same
assumption on its input. Thus, the
overspecification has opened the way
to serious inconsistencies.

Another overspecification in the
text is the concept of “‘error exit” (16),
which causes a “‘variable,”” Alarm, to
have the value TRUE. Clearly, the no-
tion of a variable belongs to the world
of programs, not specifications. This
piece of overspecification would have
been less shocking if the problem had
been defined as the task of writing a
procedure, with Alarm as one of its
parameters, or as one of the ‘“‘excep-
tions” (in the sense of Clu or Adaj it
might raise. A variable is internal to
the program unit to which it belongs,
whereas the specification of a param-
eter or an exception can be given rela-
tive to the environment of that unit.

The problem of the Alarm variable
is less innocuous than it seems. One
reason for shock at meeting the refer-
ence to this variable in a sequential
reading of the text is that the definition
of the error case (the one in which there
is an oversize word) looks like over-
specification until one sees the fast sen-
tence (25-26), 10 lines down, which
gives the basic line-size constraint,
MAXPOS. The world is really stand-
ing upside down here. Clearly, the
constraint on word size is a conse-
quence of the constraint on line size,
and the definition of the error case
cannot be understood until the latter
constraint has been introduced.

We see here one of the major defi-
ciencies plaguing requirements docu-
ments of more significant size: early

January 1985

Figure 3. Output requirement (MAXPOS = 10).

inclusion of detailed descriptions of er-
ror handling, interwoven with descrip-
tions of normal cases, which are usual-
ly much simpler. Here the matter is
even worse; error processing is de-
scribed before the reader has had a
chance to recognize the problem—that
is, before gaining an understanding of
normal processing. Failure to clearly
separate normal cases from erroneous
ones makes the document much harder
to understand.

Mathematically, a program that
performs an input-to-output transfor-
mation often corresponds to the im-
plementation of a partial function,
which is not defined for some argu-
ments of the input domain. Error pro-

cessing then consists in “‘completing”
the function with alternate results,
such as error messages, for those
arguments. This completion should
not be confused with the definition of
the function in its normal cases. Here,
as we'll see later in a formal specifica-
tion, failure to accommodate words
larger than MAXPOS is a conse-
quence of the requirements for normal
processing, which can be proved, as a
theorem, from the definition of the
function.

Ambiguities, Error processing raises
an ambiguity in the example text (Fig-
ure 3). The requirement that the out-
put text satisfy properties 1 to4 “upto

13

Formalism

the point of an error”’ is susceptible to
at least two interpretations.

The text says that up to (and pre-
sumably including) the point of the er-
ror, the program’s output should cor-
respond to the input. But where is the
“point of the error”” in Figure 32 Is it
{line 4, column 10}, last acceptable let-
ter, or [3, 7], end of the last acceptable
word? Nothing in the text allows the
reader to decide between these two in-
terpretations.

Another interesting ambiguity is
connected with the basic constraint on
acceptable solutions (23): *‘As many
words as possible should be placed on
each line.” If we have, say, MAXPOS
= 10 and the input text

WHO WHAT WHEN

there are two equally correct two-line
solutions (WHAT may be on either the
first or second line}. This ambiguity
may be acceptable since neither solu-
tion appears superior to the other; the
specification as such is nondeter-
ministic. We suspect (perhaps wrong-
ly) that this nondeterminism was not
intentional and that there was an im-
plicit overspecification in the authors’
minds: they considered it obvious that
the input would be processed sequen-
tially, so any ambiguity, as in the ex-
ample above, would be solved by plac-
ing as many words as possible on the
earlier line (giving line WHO WHAT
followed by line WHEN). In this inter-
pretation, property 3 (23-24) actually
means, “‘As many words as possible
should be placed on each line as it is
encountered in the sequential con-
struction of the output.” If this is the

14

case, the specification should state it
precisely.

Another potential source of am-
biguity is the use of imprecise or poorly
defined terms—for example, the use
of “‘stream’’ (I) rather than the more
standard “sequence.” The expression
“error exit” (15), stemming from the
overspecification seen above, is am-
biguous, and the reader is not com-
forted by the explanation that follows
it (“i.e., a variable, Alarm, should
have the value TRUE"); the notion of
assigning a value to a variable does not
by itself imply the idea of an *exit,”
which also means that the program
stops in some fashion. We have seen
that the concept of “line’” is not well
defined (24). Also note that the expres-
sion ‘‘new line” is to be parsed as a
single entity (the new fine character) in
its first appearance (5) and as separate
words (*‘a new fine should start. . ")
in its second (19).

Forward references. In a require-
ments document, not all forward
references are bad. Some, corre-
sponding to'a top-down presentation
of the concepts (“‘the notion of . . .
will be studied in detail in sec-
tion . . .""), might even be considered
good practice, provided there are not
too many. But implicit forward refer-
ences (that is, uses of a concept that
come before the proper definition of
the concept, without particular warn-
ing to the reader) can present much
more of a problem. They make adocu-
ment extremely hard to read, especial-
ly in the absence of the technical ap-
paratus (index, glossary, etc.) that

should be a part of all requirements
specifications and other software
documents.

Here, of course, the text is very
short, so the annoyance caused by
forward references is nowhere near
what it can be with full-size docu-
ments. Note, however, that ET is used
three times (2, 3, 6) before it is defined
(7), that the notion of line, defined not
quite satisfactorily (24), has been used
earlier (19-20), and that MAXPOS is
used just before its definition (14).

So what? In dissecting Goodenough
and Gerhart’s specification, we iden-
tified a significant number of prob-
lems in a text that may seem innocuous
to a superficial observer. Not all the
problems were equally serious, and the
reader may have felt that we were a bit
pedantic at times. We submit, how-
ever, that one must be pedantic in deal-
ing with such matters. Inconsistencies,
ambiguities, and the like may not war-
rant the gallows when the problem is to
split up a sequence of characters into
lines. But keep in mind how the above
defects transpose to more serious mat-
ters—a nuclear reactor control system,
amissile guidance system, or even just
a payroll program. The computer that
executes the code resultiug fiowt a faui-
ty specification is moere pedantic than
any human referee could ever be.

Thus, we should consider Good-
enough and Gerhart’s specification
not only as an object of study in itself
but also, and more importantly, as 4
microcosm for conveniently observing
deficiencies typical of more mean-
ingful requirements documents. Al-

{EEE SOFTWARE

Two peaple doing the minuet;

copper éngraving by Nilsson.
The Bettmann Archive

—

though the text was written with great
care, we have witnessed how the au-
thors, who started out to improve
upon Naur's terse but simple text,
sentence after sentence became a little
more entangled in their own rosary of
caveats. This says a lot about why in-
terminable manuals occupy so much
shelf space in programmers’ offices
and computer rooms.

In our opinion, the situation can be
significantly improved by a reasoned
use of more formal specifications. But
again, let’s emphasize that such speci-
fications are a complement to natural
language documents, not a replace-
ment. In fact, we’ll show how a detour
through formal specification may
eventually lead to a better English de-

D= e

ST

sbeclﬂcétlon

Rod M. Bumall and Joe A Goguen " Pumng Theories Tbgether to Make ¥
'Speqﬁmuons " Proc. Fifth Inl'l Joint Cory’ Art(ﬁcml latelllgencr, Cambndge. e
971, pp: 8. i f ; 5

David R. Musscr “Abstract Data Type Specification in the AFFIRM Systcm
IEEE Trans. Software Englneenng, Val. SE6, No 1, Jan. 1980, pp. 2432,

3 Robmson and Olmcr Roubme, Specuzl Rg/erence Manual, Stanford mch

scription. This and other benefits of
formal approaches more than com-
pensate for the effort needed to write
and understand methematical nota-
tions.

We will now introduce such nota-
tions, which will allow us to give a for-
mal specification of the Naur-Good-
enough/Gerhart problem.

Elements for a
formal specification

Many formal specification lan-
guages have been designed in recent
years (see box). Choosing one of these
languages would force the reader to
learn its particular notation and would
obscure the essential fact—namely,
that their underlying concepts are, for
the most part, well-known mathemat-
ical notions like sets, functions, rela-
tions, and sequences. We thus prefer
to use a more-or-less standard mathe-

January 1985

Gt
R Ipcasso JohnScheld Vl.lSchorre, and PaulR Eggerl “Thelnn.lo Specli‘m-
tion Language Reference Manual Y Tech.nical Repon '1M-(L)-16021/001/00

matical notation. The style of exposi-
tion will be similar to that found in
mathematical texts; translation to a
specific formal specification language
should not be hard, provided the lan-
guage supports the relevant concepts.

Overview. Perhaps the only difficult
part of the Naur-Goodenough/Ger-
hart problem is that the processing to
be performed on the text involves three
aspects: reducing breaks to a single
break character, making sure no line
has more than MAXPOS characters,
and filling lines as much as possible. If
these three requirements are sepa-
rated, things become much simpler.
Consequently, we will define the prob-
lem formally by considering two sim-
ple binary relations, called short_

breaks and limited_length, and a
function called FEWEST_LINES.
(Throughout the discussion of the for-
mal specification, the reader may wish
to refer to Figure 4 for a picture of the
overall structure of the relations and
functions involved.}

Relation short_breaks holds be-
tween two sequences of characters a
and b if and only if b is identical to q,
except that breaks in a (i.e., successive
break characters) have been reduced to
single break characters in b.

Relation limited_length holds be-
tween two sequences of characters b
and ¢ if and only if ¢ is a “limited
length version” of b: that is, no line in
¢ has length greater than MAXPOS,
and c is identical to b except that some
blanks may have been replaced with

15

Formalism

new lines and/or some new lines with
blanks.

By applying these two relations suc-
cessively, we associate with any se-
quence of characters g all sequences of
characters that are “made of the same
words,” separated only by single
breaks, and fit on lines no longer than
MAXPOS. Given such a set of se-
quences, say, SSC, then FEWEST._
LINES (SSC) is the subset of SSC
containing those sequences that con-
sist of a minimum number of lines and
thus are acceptable outputs for the
program.

We'll now define these notions for-
mally, but a few simple conventions
are needed first.

Basic form of the specification. Asa
general convention, we use uppercase
for sets and for functions whose results
are sets and lowercase for other func-
tions, elements of sets (except for
MAXPOS, which we write in upper-
case as in the original specifi Tcation),
sequences, and relations.

The program to be written is the im-
plementation of a function

=% Consider two sets—for example,
INPUT and OUTPUT. A binary
mlatlon bctwecn thesc two sets lS a

4 ,(<l, o,> <lz o;>
where each i, belongs to set [NPUT
and each o, belongs to set OUT-
“PUT. Such a relation is represented
pictorially at right. If goalis a rela-
tion, then we write goal (i, 0) toex-
press that the pair <i, 0> belongs
to the relation, . jxts S

A remmder on Functions and relatxons A7

. ¢«The domlnnfsuch a relatlou. written don- (grmu’l. LN. 1 subsez of[N—‘ y
PUTcontaunmg only those elements i such that goal (1, @) halds for at least
one element 0 in OUTPUT. Thus, in the sxample pictured, 7, i,, and |
but not iy, belong to the domain of the relation. v 3

A function is a relation f such that for any i there is al most one ¢ for
which £ (i, 0) holds; if o exists, then orie may write 0=£{i), The relation

pictured above is not a function, since i1, for instance, has twa buddies o
and o,. Note that the domain of a function is made of thase elements o]f
INPUT for which there is exactlyone cormesponding element in OUTPUTJ

sol: INPUT — QUTPUT

where INPUT and OUTPUT are the
sets of possible inputs and outputs,
which we will describe below as sets of
sequences. Function sof must satisfy
certain constraints, which it is the role
of the specification to express.

As noted above, there may be more
than one carrect output for a given in-
put; in other words, a truly general
specification of the problem should be
nondeterministic. We will represent
this fact by defining a binary relation
between sets INPUT and QUTPUT.
We call goalthis binary relation; then a
function so/ will be a correct solution if
and only if the following two condi-
tions are satisfied (readers who are not
50 sure about functions and relations
are referred to the refresher in the ad-

jacent box):

* function sof is defined wherever
relation goal is defined—that is,
sol (i) exists for any 7 in the do-
main of goal;

¢ forany i for which goat is defined,
then sof (i) yields a “‘solution’ to
goal—that is, goal (i, sol ())
holds.

This definition is expressed in math-
ematical notation by writing that sof is
an acceptable function if and only if
vi € dom (goal),

i € dom(sol) and goal (i, sol (i))
where dom (sof} is the domain of
function sol. Note that there may be
some inputs for which there is no ac-
ceptable solution (those not in the do-
main of goal), so sol may be a partial
function. Also, in more concise nota-
tion, the above property can sim ply be

{EEE SOFTWARE

Le Bal Paré: Typical Louis XVI
court scene of the {8th century.
The Betimann Archive

expressed by writing that the domain
of sol is at least as large as the domain
of goal, and that sol is included in goaf
(both being defined as sets of pairs):

dom (goal) C dom (sof)
and sol C goal

This way of presenting a specifica-
tion is of very general applicability for
programs performing input-to-output
transformations. Such a program may
be viewed as the implementation of a
certain function (sof) which must en-

... short_breaks (1) “,j.vn limited_Jength (ty
- COMPACTED () o TRIMMED (F),—

e

puLvite e

;. (acceptable

N @ PP 1 outputs)

e o . tr(n) v " adlhe Vi gt She
e ——— TRANSF(F)— B e

sure that a certain relation (goal) is

satisfied between its argument and its
result; in mathematical terms, the
function is included in (is a subset of)
the relation. To specify the problem is
to define the relation; to construct the

Figure 4. Overail structure of the specification: (r) indicates a relation, (F) a
function.

program is to find an implementable
function sof satisfying the above con-
ditions.?

Characters and sequences. The
principal set of interest in our problem
is the set of characters, which we de-
note by CHAR. The only property of
CHAR that matters here is that
CHAR contains two elements of par-
ticular nterest, blank and new.line.
We call BREAK_CHAR the subset of
CHAR consisting of these two ele-
ments:

BREAK_CHAR = |blank, new_line}

The basic concept in this problem is
that of sequence. If X is a set, we
denote by seq [X] the set whose ele-
ments are finite sequences of elements
of X. Such a sequence is written, for

example, as

"Basic set ana logic notatlons I

whlch may have value “‘true” or “false’?,, ST SV
[a, b, ¢,] the set made up of elements a, b, c. s
X€A: x is an element of A(*).

XgA: xis not an element of A (*).

A C B: Ais asubset of B (all elements of A are elemems of B) (*}

[xeA | P(x)): The (possibly empty) subset nf A made up of those
elements x which satisfy property P. 3

ment of A violates P); holds in particular whenever A is empty (#).

axeA, P(x): Thereisat leasr. one element.x in A which sat:sf 3 pmp:rty B,
may only hold if 4 is nonempty (*).

a=b: a implies b. ; = P
a..b: the integer Interval contammg all the integers lSUChthalaSle
empty 1f a>b. This notation is borrowed from Pascal

The symbol = means '‘is defined as.’

<a b,a,¢cd>

January 1985

The definitions marked (*) introduce ﬁr:dlca:ts that !s, ﬂ(P!’ﬁﬂGI‘LS

vxed, P (x): All elements x of A, if any, satisfy prnncer(ar' no clc‘ .

_____Formalism

and has a length that is a nonnegative
integer; thus, length is a function from
seq [X] to the set of natural numbers,

Elements are numbered starting at 1;

the i-th element of a sequence s (for
l=<i<length(s)) is written s(i). A
subsequence of sis a sequence made of
2ero or more of the elements of s, in
the same order as in s; for example, if s
is the above sequence, then some of its
subsequences are

<a, b, ¢, d>
<b, ¢, e>

On the other hand, <, d, ¢> isnot a
subsequence of s because the original
order of its elements in s is not pre-
served.

The set of subsequences of s will be
written SUBSEQUENCES (s).

The concept of sequences is well
known, and we rely on the reader’s
understanding here. A formal defini-
tion of sequences and of the above no-
tions is given in the box on the adjacent
page.

Minima and maxima. If X is a set,
and fis a function from X to the set of
natural numbers,

MIN_SET (X, f)

denotes the subset of X consisting of
the elements for which the value of f
is minimum. For example, if X is the
following set, containing four se-
quences
X = (<a0cba>,<ab>,
<b, a, b>, <c, >}

and fis the length function on se-
quences, then MIN_SET (X, f) will
be the set consisting of the shortest of

18

these sequences, namely, the second
and last.

In the same fashion, we denote by
MAX_SET (X, f)

the subset of X consisting of the ele-
ments for which the value of fis max-
imum; thus, in.the above case, MAX_
SET (X, f)istheset [<a, c, b,a>),
containing just one sequence.

MAX_SET, however, is not always
defined; we have to be careful to apply
it only to sets X which are fi inite; other-
wise, there might be no maximum
value for f. Note that the results of
MIN_SET and MAX_SET are a
subset of X rather than a single ele-
ment, since there may be more than
one element with minimum or max-
imum f value. These subsets are non-
empty if and only if X is nonempty.

We will also need a way to denote
the minimum and maximum elements
of a set of natural numbers SN, They
will be written, in the usual fashion,
min (SN} and max (SN). Thus, if SN
is the set

SN = (341,7, 3, 654}

then min (SN) is 3 and max (SN) is
654. Note that min and max, contrary
to MIN_SET and MAX_SET, yield a
natural number, not a set. Also in con-
strast to MIN_SET and MAX_SET,
which are defined for empty sets (they
yield an empty result), both min and
max are defined only if the set SNV is
not empty; max further requires that
SN be finite. It is essential to check for
these conditions whenever using these
functions,

Input and output sets. In the prob-
lem at hand, the input is a sequence of
characters; we choose to describe the
output as a sequence of characters as
well. Thus, we define the two sets:

INPUT = seq [CHAR]
OUTPUT = seq [CHAR]

Note that, as mentioned above,
another interpretation could have
defined the set of possible outputs as
seq [LINE], with LINE itself being
defined as seq {CHAR] (or possibly
seq [WORD] with WORD = seq
[CHARY, plus information on leading
and trailing breaks).

We will now define the relations
short_breaks and limited_length and
the function FEWEST_LINES.

The formal specification

Short breaks, Let @ be a sequence
of characters. We define SINGLE_
BREAKS (a) as.the set of subse-
quences of & such that no two con-
secutive characters are break charac-
ters:

SINGLE_BREAKS (a) =
(s € SUBSEQUENCE (a) |
Vi€2. . length (s),
s(i~1) € BREAK_CHAR
= 5(i) ¢ BREAK CHAR)|

Note that we use the Pascal notation,
a..b, to denote the (possibly empty)
set of integers i such that e <i<p.

Next, we define COMPACTED (@)
as the subset of SINGLE_BREAKS (a)
containing those sequences of maxi- +
mum length:

COMPACTED (a) = MAX _SET
(SINGLE_BREAKS (a), length)

{EEE SOFTWARE

Asstated above, MAX_SET (X, [}
may be be undefined if X is an infinite
set. This cannot occur here, however,
since SINGLE_BREAKS (a) is a
subset of SUBSEQUENCES (a)
which, for any sequence of characters
@, is finite.

Note that any sequence b in COM-
PACTED (a) must have retained
from aall nonbreak characters (if such
a character had been omitted, it could
be inserted into b and yield a longer
element of SINGLE_BREAKS (a)),
and has a single break character where
a had one or more consecutive break
characters.

Thus, the relation short_breaks (a,
b), which holds between aand bif and
only if and b are made of the same se-
quences of words and breaks but the
breaks in b consist of a single break
character, can be expressed simply by

short_breaks (a, b) =
b ¢ COMPACTED (a)

Limited length. The relation fim-
ited_length (b, ¢) holds between se-
quences & and ¢ if and only if

s cis the same sequence as b, except

that it may have a new_line wher-
ever b has a blank, or conversely;
and

e the maximum line length of ¢,

defined as the maximum number
of consecutive characters none of
which is a new_line, is less than or
equal to MAXPOS.

This is expressed more precisely as

follows:

A definition of sequences it
The following presentation is based on the formal specification o
sequences given in the Z reference manual.!!

N will denote the set of natural numbers.

Definition: r al
the set of finite sequences of elements of X, is defined as the set of parti
mﬁﬂm from N to X whose domains are intervals of the form 1..7 for some

natural number n.

So a sequence is defined as a partial function; for example lhc se-
quence s= <4, b, a, ¢> is the function defined for arguments 1, 2, 3,
and 4 only, and whose value is a for 1 and 3, b for 2, and ¢ for 4. The -
following is a pictorial representation of s _ iy

1 2 3 4 567 ... N
.3 ! ! | | : 4
a b a $ X

Note that the above definition allows n=0 (erpgty i'nterval, thus
empty function — that is, empty sequence) and that it justifies the nota-
tion s(i) for the ith element of sequence s (which is the result of apply-
ing function s to element i).

grhc length of a sequence is defined as the largest integer for which
the associated partial function is defmed (i.e., nin the above def ini-
tion). i
Now letsbea sequence of elements of Xand gbea (total) funcnon
from X to some set Y. The composition

: geS
is a partial function from the set of natural numbers to ¥, Whlf:h has
the same domain as s; thus, it is a sequence of elements of ?’. with the
same length as 5. This sequence is obtained from s by applym[g gtoall
the elements of s. Again, a picture may help (we set g(a)=a’, etc.):

1 2 3 4 567 ... N
s | | | |

e b a ¢ Pl ot
g b1 ="

P - y

“Now take for X the set N of natural aumbers. A sorted sequence of
natural numbers is an element s of seq [V] such that
vi€2. . length (s}, s(i—1) =s(i)
With this definition, it becomes easy to formally define the notion of
subsequence used in the text.
Definition:

Let s be an element of seq [X] for some set X. A subsequence of s is a se-
quence of the form seu where u is a sorted sequence of natural numbers.

The fotlowing picture shows how <aa b ¢> is obxalined as a subse-
quence of <a b a 2 b d ¢ d> using the above definition. The sorted
sequence u of natural aumbers used hereis <34 S 7>; <1357>or
<14 57> would also work.

1 2 3 4 S oy
u) /

1>3 4 5{7 8910 ...
s [i

abaabdcd

limited_length (b, ¢) =
¢ € TRIMMED (b)

January 1985

Formalism

where

TRIMMED (b) =
{s € EQUIVALENT (b) '
max_line_length (s) < MAXPOS}

EQUIVALENT (b) =
{s € seq[CHAR] |
length (s) = length (b) and
(V i€l length (b),
S(i) # b(i) =
s(i) € BREAK_CHAR and
b(i) € BREAK_CHAR) |

max_line_length (s) =
max ({j~i|
O<isj<length (s) and
(Ykei+l. j,
s(k) # new_line) })

A few explanations may help in
understanding these definitions. If sis
a sequence of characters, max_line_
length (s} is the maximum length of a
line in s, expressed as the maximum
number of consecutive characters,
none of which is a new line. In other
words, it is the maximum value of j—
such that s(k) is not a new line for any
kintheinterval i+1.. /. (We will have
more to say about this definition
below.) EQUIVALENT (b) is the set
of sequences that are “‘equivalent”’ to
sequence & in the sense of being iden-
tical to b, except that new_line charac-
ters may be substituted for blank
characters or vice versa. Finally,
TRIMMED (b) is the set of sequences
which are “‘equivalent” to b and have
a maximum line length less than or
equal to MAXPOS.

Fewest lines., Let SSC be a set of se-
quences of characters. These se-

20

quences can be interpreted as con-
sisting of lines separated by new_line
characters. We define the set FEW.
EST_LINES (SSC) as the subset of
SSC consisting of those sequences that
have as few lines as possible:

FEWEST_LINES (S5C) =
MIN_SET (SSC,
number_of_new_lines)

where the function number_of_new_
lines is defined by:

number_of_new_lines (s) =
card ((i € 1. length (s5) |
s(iy = new_line})

and card (X), defined for any finite
set X, is the number of elements {car-
dinal) of X.

. The basic relation. The above defi-
nitions allow us to define the basic re-
lation of the problem, refation goal,
precisely. Relation goal (/,0) holds be-
tween input / and output o, both of
which are sequences of characters, if
and only if

0 € FEWEST._LINES (TRANSF (1))
TRANSF (i) is the set of sequences
refated to / by the composition of the
two refations short_breaks and lim-
ited_length:

TRANSF (i) = |s € seq [CHAR] |

ris))

with

tr = limited_length e short_breaks

The dot operator denotes the composi-
tion of relations (see box). A look at

Figure 4 may help explan the role of
the various functions and relations in
the above specification.

Existence of solutions. Once we
have a formal specification, what can
we do with it? Relying on the specifica-
tion as a basis for the next stages of the
software life cycle—program design
and implementation (e.g., translating
¥s into loops) is the most obvious use.
However, we'd like to emphasize two
others. One use, studied in the next
section, is as a starting point for better
natural-language requirements. The
other, to which we now turn, is query-
ing the specification to learn as much
as possible about properties of the
prablem and valid solutions.

What can the given specification
teach us about the Naur-Goodenough
/Gerhart problem and its solution?
First, let’s determine when solutions
doexist. Itistrivial to prove that, given
a sequence of characters @, there is
always at least one sequence & such
that relation short_breaks (a, b)
holds. Given b, however, the necessary
and sufficient condition for the ex-
istence of at least one sequence ¢ such
that limited_lengih (b, ¢) holds is that
b contains no word (i.e., contiguous
subsequence ot non-break characters)
of length greater than MAXPOS. This
follows from the definitions of
TRIMMED and max_line_length vsed
in the definition of limited_length.

Thus, the domain of definition of the,
relation tr, which is also the domain of
the function TRANSF and thus of the
relation goal, is the set of input texts
containing no word longer than MAX-

{EEE SOFTWARE

*'The Cempleat Figure of the Minuet,"
an engraving from George Bickhams's
An Easy Introduction to Dancing,

shows the basic spatial shapes

used in the minuet; 1738

From the library of Christena L. Schiundt,
University of Calflornia, Riverside

POS. This can be formulated as a
theorem:

dom (goal) =
{s € seq [CHAR] |
vie |, length(sy —MAXPOS,
3j€i i+MAXPOS,
$(j) € BREAK_CHAR}

The property expressed by this
theorem is that the domain of relation
goal consists of sequences such that, if
a character ¢is followed by MAXPOS
other characters, at least one character
among ¢ and the other characters must
be a break.

An important problem, not ad-
dressed here, is how the specification
deals with erroneous cases—that is,
with inputs not in the domain of the
goal relation—like sequences with
oversize words. Clearly, a robust and
complete specification should include
(along with goal) another relation, say,
exceptional_goal, whose domain is /N-
PUT—dom (goal) (set difference);
this relation would complement goal
by defining alternative results (usually
some kind of error message) forer-
roneous inputs. Formal specification
of erroneous cases falls beyond the
scope of this article, but a discussion of
the problem and precise definitions of

terms such as “‘error,”” **failure,’” and
‘‘exception’’ can be found in a paper
by Cristian.*

Discussion. What we have obtained
is an abstract specification—thisis, a
mathematical description of the prob-
lem. It would be difficult to criticize
this specification as being oriented
toward a particular implementation: if

January 1985

Composition of relations

Let r and ¢ be two relations; ris
from X to Yand ¢is from Yto Z
(see figure). * =0y ol e

The composition of these tw
relations, written fer (note the
order), is the relation w between
sets X and Z such that w (¥, z)
holds if and ohly if there is (at
least) one element y in Y such that
both r (x, y) and ¢ (x, y) hold.

Thus, in the example illus-
trated, w holds for the pairs <x,
71>, <X, 23>, and <x5, 23>
(and for these pa_irs only).

21

Formalism

followed to the letter, the specification
would lead to a program that (as illus-
trated in Figure 4) would first generate
all possible distributions of the input
over lines of length less than or equal
to MAXPOS and then search the re-
sulting list for solutions with minimum
number of rew_line characters—not a
very efficient implementation!

An element that does seem to point
toward a particular implementation
technique is the composition of rela-
tions short_breaks and limited_length,
which seems to imply a two-step pro-
cess (first remove break characters,
then cut into lines). A first design
could indeed use a two-step solution.
The steps could then be merged using
coroutine-like concepts, such as the
Unix notion of pipe or the “prograj
inversion”" idea of Jackson's program
design method. 5

We chose to model the problem’s
object and operations with very simpie
mathematical notions (sets, relations,
functions, sequences). Because of the
specific nature of this problem, an-
other approach would have been to re-
ly on a more advanced theory, such as
the theory of reguiar languages. As
emphasized below, a realistic specifi-
cation system should permit reuse of
existing theories. ¢

Starting from the above definition,
the specification should of course be
refined, taking into account the physi-
cal form of the data structure (in-
cluding, for example, the end-of-file
marker) and the particular response
that should be given by the program in
case of erroneous input.

22

Conclusion

Although natural language is the
ideal notation for most aspects of
human communication, from love let-
ters to introductory programming lan-
guage manuals, there are cases? where
it is not appropriate. Software specifi-
cations, for example, require more rg-
orous formalism.

The use of formal notation does
not, however, preclude that of natural
language. In fact, mathematical speci-
fication of a problem usually leads to a
better natural-language description.
This is because formal notations
naturally lead the specifier to raise
some questions that might have re-
mained unasked, and thus unan-
swered, in an informal approach.

Mathematical definition, Formal
specifications help expose ambiguities
and contradictions because they force
the specifier to describe features of the
problem precisely and rigorously. The
problem studied in this article contains
many examples of this. For example,
let us try to redefine the function
max_line_length using the definition
of “line” taken from Goodenough
and Gerhart’s specification (line 24:
“between successive NL characters™).
Writing this definition mathematical-
ly, we obtain someihing like

max_line_length (s) =
max (line_length (s, i} |
L i=length (s) and
$(i) = new_line})
where line_length (s, i), the length of
the line beginning after the new_line at

position 7 in sequence s, may be de-
fined as a minimum:
line_length (s, i) =
min{{k|
O0<k<length (s—i) and
s(i+k+1) = new_line})

However, as mentioned above, the
maximum or minimum of a set of
natural numbers is defined if and only
if this set is nonempty and, in the maxi-
mum case, finite; so using mathemati-
cal notation prompts us to check for
these conditions. Finiteness presents
no problem, but we see immediately
that the set whose maximum is sought
in the definition of max_fine_length
will be empty if the sequence s does not
contain any new_line character. Even
if it contains one, fine_length (s, i),
itself a minimum, will not be defined if
there is no other new_line further in
the sequence. This prompts us to look
for a better definitien.

A fairly natural reaction at this
point is to see that we really don't need
to define the concept of “line,” only
that of maximum line length. Once we
have noticed this, it’s easy to come up
with a correct definition: rhe max-
imum number of conseciitive char-
acters, none of which is a new line.
This is the definition that was given
above:

max_line_length (s) =

max ([j-i]
0<i<j< length(s) and
(Vkei+l. j
s(k) # new_line) })

Note that we have been careful to
apply maxto a set that always contains
at least one value (zero, obtained for

IEEE SOFTWARE

i = j = 0), even if s is an empty se-
quence (see box).

Natural language definition. Once
such a mathematical definition has
been produced, it may in return in-
fluence the natural language defini-
tion. In this example, the formal
definition suggests that we should
refrain from trying to define the con-
cept of ‘‘a line in the text” which,
although intuitively clear, is slightly
tricky when one attempts to specify it
precisely, as Goodenough and Ger-
hart’s text shows. Instead, we should
focus on the notion of ““maximum line
length,”” which is always defined, even
for a text consisting of new_line
characters only. Once we have ob-
tained the specification of max_line_
length, we can build onit and include it
in the English problem definition a
sentence such as

The maximum number of consecutive
characters, none of which is a new_line,
should not exceed MAXPOS.

This sentence, a direct translation
from the formal definition, is not, ad-
mittedly, of the mast gracious sytle;
but it is easy to remove the double
negation, yielding

Any consecutive MAXPOS + | charac-
ters should include a new_iine.

The main advantage of natural
language texts is their understandabili-
ty. One should concentrate on this
asset rather than trying to use natural
language for precision and rigor,
qualities for which it is hopelessly in-
adequate. Understandability is seri-

January 1985

The reasoning behind formal specifications:
the example of max__line__length

How does one obtain a formal expression such as the one deﬁmng
max_line_length? Let’s analyze the different steps involved.

We want to express the fact that max_line_length (s) is the maximum
{ength of alineins. A definition that avoids the pitfalls mentioned in the

analysis of Goodenough and Gerhart’s text is, informally, *‘the max- .
imum number of consecutive characters, none of which is a new line.”’ .

To translate this definition into a formal description, we have to ex- ~
press the notion of a contiguous subsequence of s that does not contain

a new._line. A contiguous subsequence can be given by its end indices,
say, fand j. The sequence compnsmg the elements between indices i and
Jwill have length j—i+1; if itis to yield a line length, then s(k) should .
be a character other than new_tine for any k between { and J j, mcluswe
Thus a first try might yneld e 2, 4

max Ime lengrlx (s) s max (LINE LENGTHS)
where the set LINE LENGTHS is deﬁ ed as

t LINE_ LENGTHS = !j i+l | 1 <l$jslength (s) and
3 o (vke: J.s(k) # new Ime)l

But beware! One should only apply max to nonempty sets. With the ™|
abové convention, we can end up with LINE_ LENGTHS being empty

if sis an empty sequence or all its characters are new_line; in either case,
no i, j pair satisfies the condition. Now, if we write a program for the

Naur-Goodenough/Gerhart problem and put'in mto a hbrary, sooner
or later someone will apply it to a sequence that is empty or entirely -
made of new_line characters, so we had better deal wuh these cases ina -

clean fashion. ., ioio.wesiien (i

The culpnt is the condmon i<j, which prevcnts us from finding a]

satisfactory # and j in the borderline cases mentioned. The problem
disappears, however, if we replace this condition by i—1 <. Then, for
a sequence having only new_fine characters or no character at all, the
set LINE_LENGTHS will contain one element, 0, obtained for i=1
and j=0. For these values, the interval i..; is empty; thus, the V.

clause is true. (Remember that a property of the form vx ¢ E, P (x) is’
always true when the set E is empty, regardless of whal propenA PlS) d

Thus we obtam the followmg replacement:

 LINE_LENGTHS = U—l+l [05,—1515"1eng:h (s) and
“ (vk €i..j, s(k) # new_ Ime)]

(The frst condmon has been written 071 instead of 1 <F 3T

We have chosen to simplify slightly the writing of this condition by a
change of variable (use i for i — 1, thus eliminating +1 and -1 terms):

LINE_ LENGTHS El [J—; \0<15/51ength (s) and Seake e
et Avkeitl., S(k) o new_. Ime)]
. This new version is defined i m all cases IR e

* It should be noted that this kind of analysls whnch at ﬁrst snght mlght h
seemn quite remote from programmers’ concerns, is in fact closely con-

nected to typical patterns of reasoning about programs. Anyone who
has tried to debug a loop that sometimes goes one iteration too few or
too many, or works improperly for empty inputs or other borderline
cases, will recognize the line followed in the above discussion. It is our
contention, however, that such analysis is better performed at the
specification level, dealing with simple and well-defined mathematical

concepts, than at program debugging time, when the issues are ob-
scured by many irrelevant details, implementation-dependent features,

and idiosyncrasies of programming languages

23

**The Compleat Figure of the Minuet,"
an engraving from George Bickhams's
An Easy Introduction to Dancing,

shaws the basic spatial shapes

used In the minuet; 1738.

From the fibrary of Chrislena L. Schiundt,
University of California, Riverside

POS. This can be formulated as a
theorem:

dom (goal) =
{s € seq [CHAR] |
viel..length(s) —MAXPOS,
aj € i i+MAXPOS,
s(j) € BREAK_CHAR}

The property expressed by this
theorem is that the domain of relation
goal consists of sequences such that, if
a character cis followed by MAXPOS
other characters, at least one character
among ¢ and the other characters must
be a break.

An important problem, not ad-
dressed here, is how the specification
deals with erroneous cases—that is,
with inputs not in the domain of the
goal relation—like sequences with
oversize words. Clearly, a robust and
complete specification should include
(along with goal) anotherrelation, say,
exceptional_goal, whose domain is IN-
PUT~dom (goal) (set difference);
this relation would complement goal
by defining aiternative results (usually
some kind of error message) forer-
roneous inputs. Formal specification
of erroneous cases falls beyond the
scope of this article, but adiscussion of
the problern and precise definitions of
terms such as “error,”” “‘failure,”” and
‘‘exception’’ can be found in a paper
by Cristian.*

Discussion. What we have obtained
is an abstract specification—this 1s, a
mathematical description of the prob-
lem. It would be difficult to criticize
this specification as being oriented
toward a particular implementation: if

January 1985

corﬁboéition bf reléftons

Let 7 and # be two relations; ris

from X'to ¥ and ¢is from Y to Z
(see figure), ' ~ R

The composition of these two
relations, written fer (note the
order), is the relation w between
sets X and Z such that w (x, 2)
holds if and obly if there is (at
least) one element yin Y such that
both r (x, ¥) and t (x, y) hold.

Thus, in the example illus-
trated, w holds for the pairs <x,,

2>, <xq, 23>, and <xs5,23> -

(and for these pairs only).

——y

Formdailism

followed to the letter, the specification
would lead to a program that (as illus-
trated in Figure 4) would first generate
all possible distributions of the input
over lines of length less than or equal
to MAXPOS and then search the re-
sulting list for solutions with minimum
number of new_line characters—not a
very efficient implementation!

An element that does seem to point
toward a particular implementation
technique is the composition of rela-
tions short_breaks and limited_length,
which seems to imply a two-step pro-
cess (first remove break characters,
then cut into lines). A first design
could indeed use a two-step solution.
The steps could then be merged using
coroutine-like concepts, such as the
Unix notion of pipe or the “‘program
inversion”” idea of Jackson’s program
design method. ¢

We chose to model the problem’s
object and operations with very simple.
mathematical notions (sets, relations,
functions, sequences). Because of the
specific nature of this problem, an-
other approach would have been to re-
ly on a more advanced theory, such as
the theory of regular languages. As
emphasized below, a realistic specifi-
cation system should permit reuse of
existing theories.6

Starting from the above definition,
the specification should of course be
refined, taking into account the physi-
cal form of the data structure (in-
cluding, for example, the end-of-file
marker} and the particular response
that should be given by the program in
case of erreneous input,

22

conclusion

Although natural language is the
ideal notation for most aspects of
human communication, from love fet-
ters to introductory programming lan-
guage manuals, there are cases” where
it is not appropriate. Software specifi-
cations, for example, require more rig-
orous formalism.

The use of formal notation does
not, however, preclude that of natural
language. In fact, mathematical speci-
fication of a problem usually leads to a
better natural-language description.
This is because formal notations
naturally lead the specifier to raise
some questions that might have re-
mained unasked, and thus unan-
swered, in an informal approach.

Mathematical definition. Formal
specifications help expose ambiguities
and contradictions because they force
the specifier to describe features of the
problem precisely and rigorously. The
problem studied in this article contains
many examples of this. For example,
let us try to redefine the function
max_line_length using the definition
of “line” taken from Goodenough
and Gerhart’s specification (line 24:
“between successive NL characters’).
Writing this definition mathematical-
ly, we obtain someshing like

max_fine_length (s) =
max ((line_length (s, iy |
l<i<length (s) and
s(} = new_line|)
where line_length (s, 1), the length of
the line beginning after the new_fine at

position / in sequence 5, may be de-
fined as a minimum:

line_length (s, iy =
min({k|
O0sk<length (s—i) and
s{i+k+1) = new_line))

However, as mentioned above, the
maximum or minimum of a set of
natural numbers is defined if and only
if this set is nonempty and, in the maxi-
mum case, finite; so using mathemati-
cal notation prompts us to check for
these conditions. Finiteness presents
no problem, but we see immediately
that the set whose maximum is sought
in the definition of max_line_length
will be empty if the sequence s does not
contain any new_line character. Even
if it contains one, line_length (s, i)y
itself a minimum, will not be defined if
there is no other new_line further in
the sequence. This prompts us to look
for a better definition.

A fairly natural reaction at this
point is to see that we really don’t need
to define the concept of “line,” only
that of maximum line length. Once we
have noticed this, it’s easy to come up
with a correct definition: rhe max-
imum number of consecutive char-

acters, none of which is a new fine.

This is the definition that was given
above:
max_line_length (s) =
max (|j—i]
O<i<j< length(s) and
(Vkei+l j,
s{k) # new_line)})
Note that we have been careful to
apply maxto a set that always contains
at least one value (zero, obtained for

|IEEE SOFTWARE

i =j = 0),evenif 5is an empty se-
quence (see box).

Natural language definition. Once
such a mathematical definition has
been produced, it may in return in-
fluence the natural language defini-
tion. In this example, the formal
definition suggests that we should
refrain from trying to define the con-
cept of ‘“‘a line in the text” which,
although intuitively clear, is slightly
tricky when one attempts to specify it
precisely, as Goodenough and Ger-
hart’s text shows. Instead, we should
focus on the notion of ‘‘maximum line
length,” which is always defined, even
for a text consisting of new_line
characters only. Once we have ob-
tained the specification of max_line_
length, we can build onit and include it
in the English problem definition a
sentence such as

The maximum number of consecutive
characters, none of which is a new_fine,
should not exceed MAXPOS.

This sentence, a direct translation
from the formal definition, is not, ad-
mittedly, of the most gracious sytle;
but it is easy to remove the double
negation, yielding

Any consecutive MAXPOS + 1 charac-
ters stiould include a new_line.

The main advantage of natural
language texts is their understandabili-
ty. One should concentrate on this
asset rather than trying to use natural
language for precision and rigor,
qualities for which it is hopelessly in-
adequate. Understandability is seri-

January 1985

The reasoning behind formal specifications:
the example of max__line Iength

How does one obtain a formal expression such as the one defir mng
max_line_length? Let’s analyze the different steps involved.

‘We want to express the fact that max_line_length (s} is the maximum
length of alineins. A definition that avoids the pitfalls mentioned in the
analysis of Goodenough and Gerhart’s text is, informally, *‘the max-
1mum number of consecutive characters, none of which is a new line. ’1

:To translate this definition into a formal descnpnon we have to i
press the notion of a contiguous subsequence of s that does not contain
a new_line. A contiguous subsequence can be given by its end indices,
say, iand j. The sequence compnsmg the elements between indices fand
Jjwill have length j—i+1; if it is to yield a line length then s(k) should
be a character other than new._line for any k between i and /, inciuswe
T'hus, a first iry might yield b -‘
nax_ Ime Ienglh (s) mnx (LINE_ LENG THS)

where the set LINE LENGTHS is defmed as o

(vkei g s(k)y # new.. line))

But beware' One should only apply max to nonempty sefs. With the
above convention, we can end up with LINE_LENGTHS being empty
ifsisan empty sequence or all its characters are new_line; in either case, -
no l, J pair satisfies the condition. Now, if we write a program | for ihe
Naur Goodenough/ Gerhart problem and put'in mto a hbrary, sooner

or later someone will apply it to a sequence that is empty or entirely
made of new_line characters, so we had.l better deal with these cases ina
clean fashion. .., ..fnwitsstres woieinds i

;. The culprit i is the condition i< Js which prevems us from finding a .
sausfactory i and j in the borderline cases mentioned. The problem
disappears, however, if we replace this condition by i — 1 <. Then, for
a sequence having only new_line characters or no character at all, the
set LINE_LENGTHS will contain one element, 0; obtained for /
and j=0. For these values, the interval i..j is empty; thus, the Y.
clause is true. (Remember that a property of the form vx € E, P (x) is
always true when ‘the set E is empty, regardless of what property Pis,)
Thus, we obtain the followmg replacement
LINE LENGTHS [/—1+1 \0<:—1<J<leng1h (s) and _

! T (VkEI..j.S(k) # new_ Ime)]
(The ﬁrst condmon has been wmten 0<i—1linsteadof 1<i) |
* We have chosen to simplify slightly the writing of this condition by a

change of variable (use i for i -1, thus eliminating +1and -1 terms):
I.INE_LENGTHS [j—l |0<i<j=length (s) and it
; b (vkEH—I _/,s(k);énew Ime)]

Wl R e

This ncw version is defmed in all cases.

" It should be noted that this kind of analys:s which at first sxght might
seem quite remote from programmers’ concerns, is in fact closely con-
nected to typical patterns of reasoning about programs. Anyone who
has tried to debug a loop that sometimes goes one iteration too few or
too many, or works improperly for empty inputs or other borderline
cases, will recognize the line followed in the above discussion. It is our
contention, however, that such analysis is better performed at the
specification level, dealing with simple and well-defined mathematical
concepts, than at program debugging time, when the issues are ob-
scured by many irrelevant details, implementaiion-dependeni fealures,
and idiosyncrasies of programmmg languages. Al

23

SHOWING PROGRAMS ON A SCREEN

Bertrand Meyer[

Computer Science Department, University of California
Santa Barbara, California 93106 (USA)

Jean-Marc Nerson'

CIMSA, 10 avenue de I'Europe
78140 Vélizy (France)

Soon Hae Ko

Computer Science Department, University of California
Santa Barbara, Calilornia 93106 (USA)

ABSTRACT

We present a strategy and algorithms for displaying a meaningful view of structured objects
such as programs on a screen of limited size. The methods introduced here are language-
independent; they were developed for the implementation of Cépage, a structural editor making
full use of modern display technology. The algorithms are linear with respect to the number of
nodes in the syntax tree.

We use a formal model of the screen allocation, the “calculus of windows”, which makes it
possible to reason about the display process at a proper level of abstraction. A systematic
approach was followed, in which a number of “invariants” and “attributes” were defined before
the actual construction of the algorithms and data structures, and served as a basis for their
development; the paper describes the methodology used and includes a semi-formal correctness
proof of the main algorithm, which involves mutually recursive procedures.

‘Thig paper appears in Sctence of Computer Programming, Vol. 5, no. 2, pages 111-142, 1985.

lWork begun at Electricité de France, Direction des Etudes et Recherches, | avenue du Général de Gaulle
92141 CLAMART (France)

[855‘]

Table of Contents

1 - INTRODUCTION

1.1 - The Need for Structural Views of Software Objects ..oovvivrvencneiesiriensnienns

1.2 - Relation to Previous Work
1.3 - Methodological Background ..
1.4 - Structure of the Paper

2 - CONTEXT: THE CEPAGE EDITOR ..

2.1 - Overview ...
2.2 - Language independence .
2.3 - Abstract SYNAX oo
2.4 - Program Display, Concrete Syntax and Tree Decoration
2.5 - USer INEErTRCE .ouvreecreennrrerir e remnisisnr sttt anes s

3 - DISPLAY STRATEGY ...
3.1 - Overview ...
3.2 - Four Principles .
3.3 - Efficiency Requirements .. e

4 - OVERVIEW OF THE DISFLAY PROCESS

5 - A CALCULUS OF WINDOWS

5.1 - Purposeccinennnns

5.2 - Basic Definitions
5.3 - Order Relation .,

5.4 - Concatenation ...

5.5 - Multiplication

5.6 - Division by an Integer; Fairness and Consistent Allocation Theorems

5.7 - Division by a Window ...

5.8 - Subtraction
6 - ATTRIBUTES, PRECONDITIONS AND INVARIANTS

6.1 - “Name’ Attribute ..

6.2 - Minimum Space ...
6.3 - “Window”

B:3s- “Processed ALTHBIE . rremssormmmsmimspmmmnss oo vsssnsppssssn s firssievmmens ove

- “Share” Attribute ;
6.6 - “Indented” attribute ..o
7 - THE BASIC DISPLAY ALGORITHM .

7.1 - Initializing the Tree With Dimension Informat.ion
7.2 - Outline of the Display Loop wveiiiininconicnns
7.3 - The Algorithm for Aggregate Nodescocevniina

EXY

Q@ @ L Gn v e A

ii SHOWING PROGRAMS ON A SCREEN

8 - CORRECTNESS, EFFICIENCY AND IMPROVEMENTS ...

8.1 - Partial Correctness ..oooericeeernriinninernmnennecninon

8.2 - Termination
8.3 - Quality of the Result ...cccc.oee.
8.4 - Efficiency
8.5 - Dealing with Built-in Line Breaks
9 - QUTLINE OF THE ALGORITHM FOR LISTS ..
10 - PRAGMATICS AND CONCLUSION ...
10.1 - Usage
10.2 - FOCUS MBDAZEIMENL uvuiurririninrsiisessssssetiatssmsonisasesssnr s rssesreseame catebicesbottssisanssaasi shasass

10.3 - Implementation
10.4 - On Methodology .ueviricieveineinnniinns
Acknowledgment

Bibliography .cciicevecnnirarirennnsnsierserssssnassnsesiserenss

22
23
24
24
25
26
28
28
28
29
29
29
30

SHOWING PROGRAMS ON A SCREEN

Bertrand Meyerl

Computer Science Department, University of California
Santa Barbara, California 93106 (USA)

Jean-Mare Nerson'

CIMSA, 10 avenue de I'Europe
78140 Vélizy (France)

Soon Hae Ko

Computer Science Department, University of California
Santa Barbara, California 93106 (USA)

1 - INTRODUCTION

1.1 - The Need for Structural Views of Software Objects

One of the basic ideas which are making their way into advanced programming
environments is that software engineering tools should be able to deal with the various objects
they have to handle - programs, design documents, specifications, test data, schedules,
maintenance reports, user manuals, etc. - in terms of their structure, not just as if they were
mere sequences of characters. This is all the more important that these objects are often quite
complex. It is only through the application of this idea that one can lay the foundations for true
Computer-Atded Design of software.

Tools which manipulate objects through their structure make it possible, at least in
principle, to perform very sophisticated operations, affecting entire sub-structures. There is,
however, an important problem to be solved before such operations can be made usable in 2
safe, practical and efficient way: if the tools know about object structure, then so should the
users. This calls for providing users, at each step of the process, with a proper representation of
the objects being acted upon.)

Thus in a good software development system the users should “see’’ the structure of the
objects as clearly as possible; this will allow them to traverse the structure quickly, performing
“zooming” and “un-zooming” operations as they go along, moving and copying sub-structures,
ete.

The problem of providing users with a good structural view of the objects at hand also
exists in engineering CAD-CAM, where it is addressed through the use of powerful graphics
facilities. In soltware, although graphical representations may be envisioned, most objects are
essentially texts; but in many cases (notably, though certainly not exclusively, when dealing
with programs) these texts may have a deep or even intricate structure. It is thus essential to
find adequate structural views of these texts, even on character (non-graphic) terminals. This
paper presents a solution to this problem. '

IWork begun at Electricité de France, Direction des Etudes et Recherches, 1 avenue du Géneral de Gaulle
92141 CLAMART (France)

4 SHOWING PROGRAMS ON A SCREEN [= B}

The basic issue it addresses may be summarized as follows: given a structured document
and a screen of finite size, can one find a representation of this text which will fit on the screen
while providing the terminal user with a clear view of the text's structure?

In other words, the problem is to find the best possible mapping of an abstract structure
(that of the document being edited) to a physical area (the screen). A strategy and algorithms
will be described.

To avoid any confusion, we shall use the word document to denote the structured objects
which are to be displayed, reserving the word tezt for external representations built from
characters.

The ideas presented here have so far been spplied to the display of program texts - hence
the title of this paper. They may however be useful for other kinds of documents with a
sufficiently rich structure.

1.2 - Relation to Previous Work

In the case when the documents are programs, the problem studied here is of course close
to what is known as pretty-printing, i.e., printing program texts in a suitable way, using
indentation to exhibit their structure. Unfortunately, methods used for pretty-printing on paper
are of little use for interactive screen editors: a universal, albeit implicit, assumption in
descriptions of pretty-printers (see, e.g. Oppen (18)) is that, whereas the width of the page is
fixed, lines are an essentially infinite resource. With a screen, both lines and columns are limited
resources.

Apart from a very terse hint at the techniques used for INTERLISP in (3], the only
published zlgorithms we know for the problem addressed hete are those of Mikelsons [17];
although we were able to gain some fruitful ideas from this work, it could not be apptlied
directly, both because of differing assumptions (the environment described in Mikelsons' paper
has quite specific constraints) and because much of Mikelsons' method relies on a procedure
(called Measure in [17]) which is not described precisely.

1.3 - Methodological Background

The algorithms presented here were developed in a systematic fashion, using a semi-formal
approach in which a set of invariants played a fundamental role in defiring the purpose of the
algorithms and establishing their correctness. Similarly, for the main data structures, abstract
attributes were defined before representation issues were considered. Invariants and attributes
will be presented in section 6.

After our initial implementation was completed, we worked out a simple [ormal model of
the basic objects involved in the display process. We call this small theory the calculus of
windows; its discovery led to significant improvements in the algorithms and data structures.

1.4 - Structure of the Paper

The rest of the paper is organized as follows. In the next section, we explain the context
in which this work was carried out {the development of a parameterizable, visual and structural
editor). Section 3 introduces the basic display strategy used. Section 4 gives a first sketch of the
display process. Section § introduces the “caleulus of windows" which serves as a useful
mathematical model. Section 6 intreduces the attributes and invariants. The basic algorithm is
given in section 7. Section 8 contains & semi-formal proof of correctness of this algorithm,
followed by an analysis of its efficiency. Section 9 outlines the other important algorithm (for
list nodes) and is followed by a conclusion discussing the usage of the system, the problems
encountered, and the methodological issues involved.

14 © Introduction 5

2 - CONTEXT: THE CEPAGE EDITOR

2.1 - Overview

The system for which these methods were developed is Cépage [15,16], a parameterized
editor which is both structurel and visual

Structural editors (also called “structure”, “structured”, “syntax-oriented”, “language-
based” editors), such as Mentor (6], Gandalf {8] or the Cornell Program Synthesizer [20], were
the first tools which applied the idea that a program text may be operated upon in terms of its
structure, not as a flat sequence of characters. Many such tools have been developed by
researchers in the past few years; structural editors, however, have not yet been widely accepted
by industry. We feel that this is in part due to the insufficient quality of the user interface in
the first prototypes.

On the other hand, a “visual” or “full-screen” editor such as Vi [12], Emacs (19] or SPF
[11] provides the user with a good instantaneous view of the document being edited by devoting
the whole video screen to a display of part of the document; this relatively large “window” on
the document gives the user better control over the editing process than he may enjoy with the
more traditional line-by-line text editors.

The design of Cépage resulted from the belief that a powerful yet usable editor should be
both structural and visual. Such a decision (discussed in detail elsewhere (15, 16]) has important
consequences on the user interface. A good visual editor should make the best possible use of
modern display technology (within the constraints imposed by portability concerns). If the
editor is also structural, this view should rely on the structure of the document; in particular,
the system should show the hierarchical context of the current focus of interest (e.g. the
enclosing blocks in a block-structured language), whereas non structural full-screen editors may
only display a contiguous, linear excerpt of the document.

We now briefly introduce the characteristics of Cépage which are relevant for this study.

2.2 - Language independence

Cépage is entirely language-independent. The language, i.e. the description of the structure
of the documents to be edited, is a parameter of the system. This parameter is interpreted,
i.e. it is represented by a data structure, the grammar graph, which is used by the editor
along with the structure of the document being edited (abstract syntax tree).

2.3 - Abstract syntax

The most important part of a language description (grammar graph} is a representation of
the abstract syntax of the language. Such an abstract syntax consists of a set of syntactic
types and a set of productions.

The productions may be of three different kinds: aggregate, choice or list. These three
categories are illustrated by the example abstract syntax given on figure 1, where they are
distinguished by the labels [A], [C], [L] respectively; this example is the syntax of a fairly
realistic subset of Pascal and should be self-explanatory (elements which appear in square
brackets on the right-hand side of aggregate productions denote optional components; e.g. a
procedure, as defined in production 17, may or may not have a procedure_parameter_list).

8 SHOWING PROGRAMS ON A SCREEN r 2.3

1 [A) progrem = name ; progra:n_paramctar_liat ; block

2 (L) perameter_list = variable

3 L block = [label_part] ; [constant_part] ; [type_part] ;
fvar_part] ; [procedure_part] ; compound

4 (L} label_part = label

5 [A] label = constant .

6 (L] constant_part = constant_decl

7 (A constant_decl = name ; constant

8 [L] type_part = type_decl

9 [A) type_deel = name ; type_description

10 [C] type_description = record | name

11 [A] record = var_part

12 [L) var_paert = var_deel

13 (A] var_decl = variable_list ; type_description

14 [L] variable_list = variable

15 [A] variable = name

16 [L] procedure_part = pracedure_decl‘ .

17 [A] procedure_decl = name ; [procedure_parameter_list/ ; block

18 (A] procedure_parameter_list = var_part

19 [compound = statement

20 [C} statement = assignment | conditional | laop | compound

21 [A] assignment = variable ; ezpression

22 [C] ezpression = variable | constant | binary

23 [A] binary = ezpression ; operator ; ezpression

24 {A] conditional = statement ; ezpression ; statement

25 [A] loop = ezpression ; statement

Figure 1: An Abstract Syntax

In such an abstract syntax, a syntactic type may appear on the left of at most one
production. Those which do appear on the left of production are called non-terminals; those
which do not are called terminals (here name, constant, operator).

The documents handled by the editor conform to an abstract syntax such as this one; they
may be partially refined documents containing non-terminals yet to be expanded.

A partially or totally refined document will be represented by an abstract syntax tree
having four kinds of nodes: “aggregate”, “choice”, “list” and “terminal’ nodes, corresponding
to the four categories of syntactic types in the abstract grammar. Chotce nodes may only
appear as leaves in the tree represeating a partially refined document: they correspond to
elements which have not yet been refined, e.g. a statement for which the user has not yet decided
between assignment, conditional, loop and compound {when this choice is made, the statement
node will be replaced with an aggregate node in the first three cases and a list node in the last).

Figure 2 gives an example of such an abstract syntax tree, representing a partially refined
program document in the syntax of Figure 1.

, : aggregate node
* ¢ list node

| : choice node
: terminal node

23w The Cépage editor
block
;
* var_part * compound
assignment statement loop
; I ;
var_deel var_deel
; ;

5 ; !

z integer z binary ezpression statement
#
z + g

Figure 2: An Abstract Syntax Tree

8 SHOWING PROGRAMS ON A SCREEN o 2.4

2.4 - Program Display, Concrete Syntax and Tree Decoration

To display the current state of a document, the system needs to know the concrete
syntax of the language. The concrete syntax can be given as a set of additions to the
productions of the abstract syntax, containing the information necessary to construct the
external (“'concrete) form of the expansion for each production. Two kinds of elements are
needed for the addition of concrete syntax to an abstract production:

- references to constituents of the right-hand side of the abstract production, called
operands (e.g. the concrete syntax of a loop will contain an ezpression and a statement as
operands);

- elements which only appear in the concrete form, like programming language keywords
(if, repeat and the like) or, for languages with a strange concrete syntax like Fortran,
formating marks such as new line, tab positioning etc. These concrete elements are called
operators.

The concrete syntax information added to an abstract production consists of the
following:

- For a list production, three operators: a header, a terminator and a delimiter, e.g.

begin, end and the fon, respectively, for pound (production 19 on figure 1);

- For an aggregate production, a sequence of operands and operators, as in the following
concrete syntax for condstional (production 24 of figure 1):

if %2 then %1 else %9 end if
where %+ denotes the +-th operand on the right-hand side of the production (i.e. in this
case a conditional statement will appear as if ezp then stet! else stat2 end if);

- Choice productions do rot imply any addition.

When the program must be displayed, the abstract syntax tree is “decorated” with)

concrete syntax information, in the form of new leaves associated with operators. The resulting
decorated tree may be called a concrete syntaz tree and resembles the “parse tree' used in
compilersl. Note that all internal nodes of the concrete tree are operand nodes; its leaves
represent operators, terminal operands or unrefined non-terminal operands.

2.6 - User Interface

The abstract syntax serves as a guide to the editing process, which operates by cursor
movement and menu selection.

For example, Figure 3 shows a partially refined program obtained at some stage, using the
syntax of figure 1. Assume that the user has moved the cursor to a position marked
<statement> (indicated by *** on the figure). Ouly a statement may eventually appear at this
position. By choosing the “refine” option in the current menu, the user requests refinement of
this statement. A new menu will then appear, listing the possible choices for statemnent in this
language, i.e. compound, assignment, loop, conditional according to the given grammar. Assume
the user chooses conditional from this menu; the screen will then be upddted to reflect this
choice, with the proper syntax for the conditional statement inserted at the appropriate place
(Figure 4).

If the user requests refinement of an entity whose syntactic type corresponds to a terminal
in the grammar (e.g. name), then a new frame appears on the screen, on which text for the
terminal may be entered using a simple full-screen text editor included in Cépage.

! In Cépage, the concrete tres is never physically constructed; the concrete representation is generated from
the abstract tree and information contained in the grammar graph. It is conceptually useful, however, to think
of the concrete tree as if it actually existed.

2.5 € The Cépage editor 9
program <name> program <name>
(<program_parameter._list>) ; (<program_parameter_list>) ;
flabel_part]) [label_part|
[constant_part/ [eonstant_part]
[type_part] [type_part]
var var
z, y : integer ; z, y : integer ;
g, b : <type_description> a, b <type_description>
[var_part] ; [var_part] ;
procedure pri procedure prl!
[procedure_parameter_list] ; [procedure_parameter_hist/ ;
[label_part| [label_pari]
[eonstant_part] [constant_part]
[type_part] {type_part|
Jvar_part]) Jvar_part]
begin begin
<compound> <compound>
end procedure - - prl! end procedure ; --prl
begin - - Main program begin - - Main program
z =8,y = <Lezpression> ; z =8,y := <ezpression> ;
¥ statement>; **45f <ezpression> then
while <ezpression> do <statement>
y =y + 1; <statement> elae
end while <statement>
end program end if;

while <ezpression> do
y:=y+ 1; <statement>
end while
end program .

Figure 3: A Partially Refined Document

i : t
(*** indicates the cursor position) EiptieE Ssreeaneha

10 SHOWING PROGRAMS ON A SCREEN 2.5

3 - DISPLAY STRATEGY

3.1 - Overview

The previous section gives a rough idea of how Cépage works internally and interacts with
the user (for more details, see [15] or {16]). We shall from now on concentrate on the main prob-
lem addressed in this paper: how, in such a framework, is it possible to ensure at each stage
that the display presents the user with a good picture of his document?

The strategies used [or pretty-printing are, to some extent, a matter of taste. We have
found, however, that by sticking to some simple and reasonable principles pretty-printing can be
made fully automatic, which relieves the users from prescribing any specific options.

3.2 - Four Principles

The fundamental idea is that the way a document appears on the screen will be deter-
mined by its underlying abstract syntax. This may be stated more precisely through the follow-
ing principle:

Principle 1: The purpose of a display algorithm is to show a picture of the concrete
text of the program which is as reminiscent as possible of its abstract syntactic struc-
ture.

The main technique for achieving Principle | is indentation. Indenting part of 2 docu-
ment is a way to highlight it and thus to draw attention upon the fact that it constitutes an
entity. In view of the preceding discussion, it appears that the only subtexts which should be
candidates for indentation are the concrete representations of meaningful entities in the
abstract syntax, i.e. operands. Since on the other hand one should certainly not force all
operand texts to appear indented, we obtain the [ollowing second principle:

Principle 2: The concrete text corresponding to the expansion of an operand should
either:

-a: appear on a single line with some preceding and/or following text;

-b: beindented (alone) on one or more lines.

Note that principle 2 is recursive, i.e. it applies to all operands which will appear in the
expansion of an operand.

The following representations of the same program fragment all conform to principle 2:

if ¢ then st! else st2 end if

if ¢
then st1
else st2
end if

32w Display strategy 11

if

¢
then

st
else

st2
end if

if ¢ then
stl
else st2 end if

etc. The principles above may be applied either to screen display or paper pretty-printing.) In
the former case, further rules must be obeyed in order to make the best possible use of the lim-
ited available space. To economize on space, we thus add the following principle:

Principle 3: When applying principle 2, rule a should be chosen rather than b when-
ever both are applicable,

Even so, however, there will usually not be enough space on the screen to represent any
but very short programs. The technique to be used in such cases is called ellipsis or holo-
phrasting [9]. We apply it by representing some possibly large subtrees with just the name of
their syntactic types; aggregate and list nodes are treated in a different way.

An aggregate node may simply be replaced by the name of its syntactic type, in angle
brackets; e.g. & complex conditional statement may be displayed as just <conditional> if there
is not enough space to show more. This we call abstraction, Abstraction is also applicable to
a list node; if, however, there is a little more room (although not enough to show all list ele-
ments), we may try collapsing, which is abstraction applied to one or more sublists, each of
which will be replaced by <n t> where tis the name of the syntactic type of the elements and n
the number of elements in the sublist. For example, il we cannot show a whole compound state-
ment but have enough space to show the beginning and end, we might get (with an abstraction
on the third line):

begin

while ¢ # 0do

p = <ezpression>

end while;

< 28 statements> ;

a:=b;e=4d+1;

e:=f

end
This can be expressed by the following, last principle:

-

Principle 4: The concrete text for an operand may be replaced by the name of t.hg

operand’s syntactic type; the concrete texts of one or more non-contiguous sublists of

a list node may each be replaced by the number and syntactic type of their elements.

The specification of the display algorithms used in Cépage is based on principles 1 t,o. 4,
The algorithms will try to make the best possible use of the available display space by applying
principle 4 only when they cannot think any better.

12 SHOWING PROGRAMS ON A SCREEN @ 3.3

3.3 - Efficiency Requirements

Efficiency is an important criterion for an algorithm which, as in the case of Cépage, must
be used interactively to display adequate pictures of a document. [t was easy to foresee that, if
one was looking for the optimal solution to the display problem, one would run into combina-
torial algorithms, which seemed unacceptable. We felt necessary to try to find an algorithm with
time complexity O (N}, where N is the number of nodes in the concrete subtree to be displayed.

4 - OVERVIEW OF THE DISPLAY PROCESS

The basic loop of the system may be described 2s follows:

decode user request ;

perform the corresponding manipulation on the abstract syntaz tree;

update the display to reflect changes to the document

The last statement of this loop is the one of interest here. What the updated display will
represent is a certain subtree of the abstract syntax tree; we call the root of this subtree the
current focus. To update the display, the system first determines the new focus a from the user's
request, and then issues the procedure call

Show (s, a+—)
where Show is the basic display procedure and s is an abstract description of the available
screen.?

The Show (3, a) operation is performed, at least conceptually, in five stages:

Decorate (a+—);
- - builds the concrete syatax tree for a;

Measure (a+);
- - computes for each node of the subtree of root a
- - the size of the area which its representation would require
- - in the absence of any space limitations and further formating

Fit (area (3), et} ;
- - formats the subtree of root a so that it will fit in s.
-~ area (3)is the rectangular area associated with s,
- - described as a “window” (see below).

Buildtezt (a, s, window_table)’
- - interprets the formated tree to build a table
- - of displayable text-filled windows.

Display (window_table)
- - eflectively displays the result, using screen management routines
- - which, for Cépage, come from a screen package called Gescran [2]

The effect of the first three calls (to Decorate, Measure and Fit) is to add information to
the abstract syntax tree, in order to transform it gradually into a form from which the fourth
procedure {Buildtezt) may build a screen image, which procedure Display will actually output.

2? Por readability, we write actual argument, lists in such s way that arguments = which may be modified
by the procedure ace clearly marked: z4+—> if the corresponding formal argument is of mode in out and z+—
if it is out.

i Querview of the display process . 13

Decorate adds concrete syntax; Measure determines the space associated with the representation
of every subtree in the absence of any formating, assuming a screen of infinite height and width;
Fit transforms the representation so that it will fit in the given screen area.

As regards the problem of screen-oriented formating of structured documents, the key
stages in the process are procedures Measure and especially Fit. We shall thus concentrate on
them in the sequel.

5 - A CALCULUS OF WINDOWS

6.1 - Purpose

The aim of the display algorithms is to associate with each node of the syntax tree a rec-
tangular ‘“‘window” of text of the appropriate size. To understand how this is done, it is useful
to define a set of operations which apply to these windows. This has led us to define a “cal-
culus” of windows.

This caleulus is a small mathematical theory; as pointed out by a referee, it resembles
what in programming is called the specification of an abstract data type. A complete definition
of “window” as an abstract data type was not deemed necessary, however, since properties of
windows are readily expressed in terms of properties of integers and bocleans. On the other
hand, the development of the calculus, which only occurred after we completed our first imple-
mentation, strongly suggests that the ideas should be carried over to the program level, i.e. that
the program should contain an implementation of the calculus in the same [ashion that it might
contain the implementation of an abstract data type, especially with a language offering direct
support for such concepts, like Simula 87, Smalltalk, Ada, etc. This will be done in our next
implementation.

5.2 - Basic Definitions

Any window w is characterized (regardless of its contents) by attributes w.height, w.widtk,
w.line_break_before and w.line_break_afier. The height and-width are integers; they are either
both positive or both zero. Attributes w.line_break_before and w.line_break_after are boolean
and indicate whether the window must be preceded and/or followed by a new line,

To denote s window of height 4 and width w, we write
Gl
where h | w may be preceded of followed by * to indicate line breaks.
The special windows of height and width 0 are:
- the empty window, T d , written LT F
- the line break windows: {0 1 4 1,/ 2L a and |20 T 0 ; the last one will be

written simply as 1.

5.3 - Order Relation
There is a partial order relation on windows, which we write @, defined as follows:
&) yiff
(z.height < y.height) and (z.width < y.width) and
(y.height = 1 =>
(z.line_break_before => y.line_break_before) and
(z.line_break_ofter => y.line_break_after))

14 SHOWING PROGRAMS ON A SCREEN . o 53
The inverse relation is written @ Clearly, |- is a minimum element for @.

5.4 - Concatenation

Another important operation is the concatenation of windows, written @ . Intuitively,
concatenating two windows means displaying one after the other; if possible (see principle 3
above), they will be concatenated on the same line; otherwise, the second window will be
displayed below the first. More precisely:

Let z=2@ y;

ifzsu, then z=y;

ify=u, then 2 = =

otherwise:

z.line_break_before = z.line_break_before ;
z.line_break_after = y.line_break_after ;

if z.height = y.height = 1 and not z.line_break_after
and not y.line_break_before then

z.height = 1;

z.width = z,width + y.width + 1
else

z.height = z.height + y.height;

z.width = maz (z.width, y.width).

Note that windows of height greater than | will be separated by line breaks regardless of the
values of their line break attributes. The +1 term for the width in the first alternative accounts
for intervening blanks.

Concatenation has [] 2s zero element and further satisfies the following properties:

t @Dy

ISECH

z &) zand (z has no line breaks or z.height > 1) =
(®yQ):® yand (10:Q) 1@ 7

5.5 - Multiplication
From concatenation, we can define multiplication of a window by a non-negative integer:
i®uw=ifi=0then[Jelse (-) ®v® v
Muttiplication satisfies
i<y = ® w@j@ w
but is not distributive over concatenation, as the following counter-example shows:
o (dde I 1I)=20llzd-[2l 27, but
o0 de el I-UI AT 11=[e 21

5.6 - Division by an Integer; Fairness and Consistent Allocation Theorems

It turns out that multiplication is less useful for application to the display algorithms than
division of a window by an integer i > f, which we write w @ 1 and define as follows. If wis
one of the special windows (empty window, line break windows), then w (D i= w. Otherwise if {
< w.height, then given

h = |w.height /i

56 © A caleulus of windows 16

the result of the division is

w@ =[] wwidthl
with the same line break attributes as w. If ¢ > w. height | then given

¢ = [i/w.height] i
and

d= |{wwidth—c+1)/ ¢
then

w® i=if d=0then (01 0l etse T _dl
with, in both cases, the same line break attributes as w.

Division satisfies

w® i@ w
and

(®Wdi=w
but + & (v @ 1) is not necessarily equal to w, nor even @ to w. It may informally be said to
be “no greater” than w, however, in the sense that i windows of size w) 1 will fit (i.e. can be
concatenated with some intermediate line breaks) in the area of w. This property will make divi-
sion useful for allocating space to various parts of a document on the basis of their relative
importance (see procedure Split_a_line in section 7.3 below, and the algorithm for list nodes in
section 9).

More precisely, assume two elements compete for space in a window w. Each element has
an integer weight, or “share” (shares are described below in section 6.5); assume the sum of all
shares i3 v and the two elements have shares a and §, with a+ g < «. The policy used by the
algorithms below, when distributing space to elements on the basis of their shares, is to allocate
to the two elements windows w @ ([v/e])and w @ ([~/F]) respectively. That such an allo-
cation is consistent is expressed by the following theorem, whose proof, although not hard, is
tedious and thus not included:

Consistent Allocation Theorem: Let «, f, v be positive integers such that
a@+f <7 Let wbea window. Let w = w @ ([v/]) and Y= v (14751
Then wﬂ@ wﬂ©wor WDGBE[@ wﬂ®w.
That such an allocation is also “fair”, i.e. obeys the order implied by the shares, is expressed by
the following theorem:

Fairness Theorem: Let i, j be positive integers such that ¢ > j. Let w be a win-
dow. Let w=w @ fand wi=w @ j. Then w; @wf

5.7 - Division by a Window

Another kind of division operation is the division of a window by another window, written
w || w. If wand w’ are windows such that w’ @ w and w’is not empty, then w Z w'is an
integer, defined (using the previously defined division operation) as:

wm w=max({i>0]| v@® {®w’}}

Since this definition involves the maximum of a set of integers, we must check that this set
is always finite and non-empty (a necessary and sufficient condition for the existence of the max-
imum). This indeed the case since, whenever w’ w and w’is not_empty, then (w @ 1) w’
(so that the value 1 is always a member of the set) and w @ ¢ = [for sufficiently large 1 (so
that the set is finite).

By definition, v @ (w Z w’) @ wand v @ (w Z w' + 1}@0.'"

18 SHOWING PROGRAMS ON A SCREEN 5.7

it may be noted that the definition of the two division operations is consistent with the usual integer
division in the following sense: if n snd j are non-negative integers such that n 2> 7. then it is not hard to
prove that:

o 7= mas iz ol |n /72 5

5.8 - Subtraction

Lastly, subtraction, written z = w (9 w’ and defined for w'@ w, is such that, i w.height =
1, then
¥

2= { B 7 =

and otherwise

2= e w hehr] T
with the same line break attributes as w in both cases. Notc that w O w’ @ w; but (w O w')
@ w’is not necessarily equal to w, nor even @ to w.

6 - ATTRIBUTES, PRECONDITIONS AND INVARIANTS

8.1 - “Name" Attribute

For the algorithms to be able to perform abstraction and collapsing, it is necessary to
associate to every node of the decorated tree some string representing its name. More precisely,
we will assume that, associated with any node n in the decorated tree, there is an text attribute,
which we shall write n.name, which represents a displayable name attached to the node and is
determined in the following way:

- If nis a leaf associated with an operator, then n.name is the character string making up
the associated element of the concrete syntax (keyword, delimiter, etc.), e.g. ‘“begin’”,

="l retey
- If nis an internal node, i.e. an operand associated with a non-terminal in the abstract

syntax, then n.name is the character string making up the name of its syntactic type (e.g.
“statement);

- If nis a leaf operand (i.e. a leaf whose syntactic type is terminal), then n.name is as in
the previous case if the node has not been refined (e.g. “variable”, etc.); if it has been
refined into a character string, then n.neme is that character string.

8.2 - Minimum Space

We assume the existence of an integer constant MINSPACE such that, for any node n, its
name n.name can be written, possibly truncated, using MINSPACE characters without too
much loss of information (MINSPACE = 10 to 14 seems reasonable). We assume that Show (s,
g+) is always called with screen s having at least one line and MINSPACE columns; thus the
procedure will always succeed while conforming to the principles above, although it may do so
in a very degenerate way, by displaying <atype>>, where <atype> is the name of d’s syntactic
type (e.g. <program>), truncated to MINSPACE characters.

We call MINWINDOW the minimum window which may be associated with a node:

MINWINDOW = (I T MINSPACEL

6.3 © Attributes, preconditions and invariants 17

8.3 - “Window”

The role of the display algorithm is to associate with every node n & window, which will be
denoted by n.window and will be used to display the text associated with the node. The attri-
butes of this window will be written n.height, n.width, n.line_break_before, n.line_break_after (as
abbreviations for n.window.height, etc.).

The n.window attributes of all nodes n of the subtree which has the focus as its root must
eventually be such that the representation of this subtree fits in the given screen s. [nitially,
however, this will usually not be the case; procedure Fit must thus modify the windows associ-
ated with the nodes until the subtree fits. Throughout this process, it is necessary to make sure
that the n.window attributes of all nodes n of the subtree are meaningful and consistent; in
other words, they must be such that, given a screen of sufficient size, a representation for the
subtree could be produced in which each node would be assigned a window of size n.window.
This very important property, wrilien Representable (), must be initia ly ensured for each node
by procedure Measure, and maintained by procedure Fit througheut the space allocation protess
(however, we will see in section 8.5 that this restriction may be relaxed in some cases).

The property Representable (n) may be defined more rigorously as follows:
property Representable (a : NODE)

For all nodes n in the subtree of root a

a. If nis a leaf not representing a line break, then
window = L1 T eogth fnzamel

b. Il nis a leaf representing a line break, then

n.window =
¢. Il nis an interior node, then
n.window = D> ¢.window

¢ € children(n)
where the sum refers to the @ operation.

It is important to note that this property does not by itself involve the given screen s
@ may be “Representable” even though it does not fit in s. Representable (a} just means that the
position information associated with @ and all its descendants is correct and consistent, but not
necessarily that it is compatible with the space available on any particular screen.

8.4 - “Processed’” Attribute

We further assume that every node has a boolean attribute n.processed which will have
value true if and only if n has been visited by Fit (n.processed initialized to false for all nodes).
This attribute plays no role in the algorithm itself but is introduced as an auxiliary variable (7]
which will help us check that the algorithm is finear in the number of nodes of the subtree to be
displayed. Fit will be built so as to maintain the following invariant for all nodes n:

[IP] n.processed = n belongs to a line of length < w.width

where w is the window assigned to the pareni node of n by the algarithm.

6.5 - “Share” Attribute

Every node except the root has an integer attribute n.share which is assigned by the editor
and represents its importance relative to ita siblings. Space will be allocated to the children
of a node on the basis of this share. For example, in a list, the editor might decide to assign the
largest shares to the leading and trailing elements, so that even if collapsing occurs the user
may see some of the beginning and end of the list.

18 SHOWING PROGRAMS ON A SCREEN o 6.6

6.6 - “Indented’* attribute

The fact that an operand d needs to be indented from the immediately enclosing context is
represented by a boolean attribute d.indented.

7 - THE BASIC DISPLAY ALGORITHM

7.1 - Initializing the Tree With Dimension Information

As mentioned above, the task of procedure Measure is to ensure that Representable (n}is
satisfied for all nodes n. This is performed by & postorder traversal of the tree:

procedure Measure (in out a: NODE)

! a is a leaf other than line break —* a.window = [m
Da is a line break —> a.window = EZI
D a i3 an interior node —
a.window = E[;
for all ¢ in children (o) do
Measure (co—);
a.window = a.window @ c.window
end for
end if

end procedure

Note that when Measure is applied initially, it will always result in a.height = 1 if there
are no built-in line breaks in the concrete syntax of the language. For languages such as Fortran
whose concrete syntax includes built-in line breaks, a modification to Measure may be uselul (see
section 8.5 below).

7.2 - Outline of the Display Loop

The principle of the algorithm for Fit is as follows. Measure {a+—) has resulted in a state
such that Representable (a) is satisfied; i.e. attribute n.window is correct for all nodes n in the
subtree of a. In general, however, a.window will be too wide for the available window w, whereas
w may have more lines; if this is the case, we may try to trade width for height. The task of Fit
(v, a+=) is thus to add line breaks, set indent attributes, abstract operands and/or collapse
sublists until a.width becomes lesser than or equal to w.width, with a.height remaining no greater
than w.height. The decision process which is repeated by the algorithm is summarized below for
the case of aggregate (non-list) nodes.

72w The basic algorithm 19
a.width || < w.width > w.width
a.height
< w.height Try adding a line break.
Success
= woheight
Failure: abstract a (i.e. replace it by its name)
> w.height

7.3 - The Algorithm for Aggregate Nodes

Fit is recursive. The call

Fit (w, a+>)
must ensure the postcondition ¢.window @ w. We give below the algorithm for the case when
ais an aggregate node.

procedure Fit (in w: WINDOW;
in out a: NODE) :
- - Recursive precondition: w () MINWINDOW
- - Recursive invariant: Representable (a)
- - Recursive postcondition! a.window @ w

var success, failure: BOOLEAN;

success = false ; failure := false ;
repeat
if
¢ window @ w >
suceess == true
D a.height > w.height
or (a.height = w.height and not s.usndow Q) w) —*
failure ;= true
[l a.height < w.height and a.width > w.width —>

Split_a_line (w, a+, failure«); - - see below
end if
until
success or failure
end loop ;

if
success —> akip
[] failsre —> a.window .= {1 Lnin (length {g.name), MINSPACE]]
end if;
a.processed = true
end procedure

20 SHOWING PROGRAMS ON A SCREEN 7.3

The procedure Split_a_line (w, a+—) is detailed below. It uses an integer function
line_length which, when applied to a sequence z of operators and/or operands (not containing
any line break or other formating mark), yields the number of characters of its representation,
including provision for separating blanks:

line_length (z) = (3, o.width } + m-1
o€z

(m being the number of elements of 2). Split_a_line also uses the constant INDENT whose value
is the number of blanks used for cvery indentation step.

In the description of Split_a_line, d and [stand for operands; z, y, 2 stand for (possibly
empty) sequences of operands and/or operators.

Split_a_line may be expressed as follows:

739 The basic algorithm . 21

procedure Split_a_line { in w: WINDOW;
in out a : NODE,
out failure : BOOLEAN)
var w', wi: WINDOW ;
d: NODE ;
remaining_shares : INTEGER ;
faslure = false ;
Consider a as a sequence of lines ;
- - By hypothesis, a.width > w.width, so there is at least one line L
- - such that line_length (L) > w.width;
if
there is at least one line of length greater than w.width which does not end with an
operand —*
Let L be such a line ;
- - L will be cut, after an operand if it has one
if
L has only operators —>
- - (degenerate case: oversize line with operators only)
insert a line break somewhere in L
U L has at least one operand d ~—+
L is of the form zdy, y not emply ;
- - L will be cut after d
d.line_breck_after ;= true
end if ;
a.height := a.height + 1 ; update a.width
[] all lines of length greater than w.width end with an operand —>
Let L be such a line ;
L i3 of the form zd, d operand ;
- - If possible, indent d
- - First compute the window w’ which d may claim for indentation
remaining_shares := ¥ [.share;
| € operand children of @ on oversize lines
wl ;= e.window ; wl width := w.width; -
w'i=(w@ wl) @ ([remaining_shares [d.share]) ;
w'.width ;= maz (1, w'.width - INDENT) ;
- - Can d be indented 7
if
w‘@ MINWINDOW —=+
- - There i3 enough room to indent d
Fit (w', de—) ;
d.indent := true ; d.line_break_before = true ;
a.height = a.hesght+d.height ; update a.width;
[] not v’ (3) MINWINDOW —
T - There is not enough room to indent d, but perhaps it
- - may fit on g line with 7, posaibly in abstracted form
w = gtk - Ui -

if

w'@ MINWINDOW — Fit (v’, de—)
[] not w’@ MINWINDOW —> failure := true
end if
end if
end if
end procedure

22 SHOWING PROGRAMS ON A SCREEN | =8

8 - CORRECTNESS, EFFICIENCY AND IMPROVEMENTS

Although a complete formal proof of correctness has not been performed for this program,
it is interesting to note the following properties, which make it possible to check that it per-
forms its intended task and to assess its performance.

8.1 - Partial Correctness

The task which must be performed by Fit may be characterized by the following pair of
assertions:
Precondition:

Representable () and
Pl v & MINWINDOW

Postcondition:
Representable (a) and

Q] a.window @ w

The procedures Fit and Split_a_line being mutually recursive, a proof of their properties
requires a proof of the correspounding properties of their bodies, in which the properties of the
calls may be assumed {10]. It is in this sense that we have used above the expressions “recursive
precondition” for [P), “‘recursive posteondition” for [Q] and “recursive invariant” for Represent-
able (a) which appears in both the precondition and the postcondition.

Let us check that if Fit and Split_c_line are recursively assumed to satisfy the properties
mentioned, then their bodies also satisfy them. We first check that the actual parameters to
the internal calls to Fit satisly [P]; then that Fit ensures postcondition [Q]; finally, that it main-
tains invariant Representable (a).

The fact that both recursive calls to Fit from Split_a_line satisly [P] is readily checked:

both are part of if statements, executed under conditions written precisely to be equivalent to

P]-

Let us now check that Fit ensures {Q]. The body of Fil is a repeat ... until statement
which terminates when either success or failure becomes true; clearly these two cases are dis-
joint. In the first, the condition (Q] is satisfied since this condition is exactly the test for success;
in the second, Fit will devote to a & window no greater than mhl L. e. MINWIN-
DOW, a solution which satisfies [Q] since MINWINDOW@ w from the precondition [P].

We now check that Fit maintains the invariant Representable (a). The only place where
this property could be rendered invalid is the call to Split_a_line, so we must check the body of
this procedure. This body is an if statement. In the first alternative, a line break is added and
a.height is consequently incremented by one; a.width is also updated so as to maintain the
invariant (more details on the statement update a.width will be given below). In the second
alternative, two cases arise:

- if indentation is possible, the call to Fit may be recursively assumed to ensure that dis

adjusted to a window Ll ydth- . Attributes a.height and a.width are then

updated to take into account the space which has been allocated to d, so as to re-establish
the validity of Representable ().

- if indentation is impossible, the algorithm distinguishes between two subcases: in the

first, zd can be squeezed on a single line, so that an oversize line is transformed into a line

of length at most w.width; in the other case, Splt_a_line reports failure to Fit, which, as
we have seen, takes then a correct decision.

81w Correciness, efficiency and tmprovements 23

" Since we have written the conditional statements using Dijkstra’s non-deterministic if con-
struct [4,5], we must also make sure that at least one guard is satisfied whenever any such
statement is executed, Here only two conditional statements are not trivially equivalent to sim-
ple if ... then ... else ... statements:

- The outer if statement of Split_a_line is correct if and only if there is at least one over-

size line in the expansion of ¢; this property is the precondition of the procedure and is

indeed ensured by the call to Split_a_line in Fit.

- The conditional statement in the loop of Fit uses guards which have been designed to

cover all possible cases.

The if ... end if notation was not used for its non-determinism, but because it makes clear
under exactly what condition each branch of a condititional is executed. The reader may have
noted that there is non-determinism of another kind in the algorithm, since Fit may have to
select an oversize line (in two instances in the program text) or an operand on such a line {one
instance) in & way which has been left unspecified.

8.2 - Termination

Procedure Fit is indirectly recursive and contains a loop; both of these features might lead
to non-termination. To prove that any correct call to this procedure terminates, we will first
check that the mutual recursion between Fit and Splii_e_line may not lead to non-termination,
and then that the loop in Fit always terminates.

Termination of the mutual recursion results from the fact that each call to Fit in
Split_a_line has as its first argument one of the children of a, the node of the tree which is the
second actual argument in the call to Split_a_line. In other words, the variant of this recursive
scheme is

h - depth (a)
where h is the height of the syntax tree and depth (a) is the depth of a in that same tree.

To prove the termination of the loop in Fit, including the call to Split_a_line, we show
that this loop has the following quantity as variant:

v= NRL + NOL + NF
where

NRL = w.height-a.height (Number of Remaining Lines),

NOL = number of lines of length greater than w.width (Number of Oversize Lines),

NF = 1 if fatlure is false, 0 il true.

Indeed, at least one of the three terms of the sum v decreases whenever Split_a_line is executed:

- NFis incremented in the last alternative of the last innermost if statement.

- NOL is decremented in the first alternative of that same statement, which transforms an

oversize line zd into a line of length at most w.width.

- In all other cases, a.height is decremented by at least 1, without ever becoming greater

than w.height. The only non-trivial case is the one in which indentation is performed

(characterized by the guard w’ @ MINWINDOW). In this case, e.height is incrensed by

the value of d.height after the recursive call Fit (w’, d=—). The recursive postcondition [Q]

ensures that, after this call, d.window w’, It follows from the properties of the division
of a window by an integer (w(@ 1 @ w, see section 5.5), that w'@ w(Q e

In each of these cases the terms of v which do not decrease remain unchanged. Thus vis a
variant for the loop.

24 SHOWING PROGRAMS ON A SCREEN o 8.3

8.3 - Quality of the Result

The correctness criteria defined by the above precondition and postcondition require that
a correct representation be found for any g; they give no clue, however, as to how “good” 2
representation must be, so that a solution which would just abstract a in all cases would be con-
sidered correct. Evidence to the claim that the above solution is {much) better is given by the
Consistent Allocation Theorem (section 5.5), which guarantees that a conservative policy is used
for the allocation of windows to indented operands: when space is allocated to d using division
of the available window by [remaining_shares /d.share], it is & consequence of that theorcm
that no selfish operand d may use the whole window for itself if there remain windows to which
space has not been allocated. It is a conscquence of the Fairness theorem that the allocation
process will observe, at least for indented operands, the hierarchies implied by shares: no
“second-rate” operand will get more space than a “VIP”,

8.4 - Efficiency

As mentioned earlier, a basic aim was to obtain an algorithm of complexity O(N), N being
the number of nodes of the concrete subtree displayed. We now prove that the above algorithm
meets this requirement.

Let us first verily that Fit, although recursive, is never called more than once for the same
node of the tree. This follows from the fact that throughout the execution of any call to
Split_a_line (w, a+«) the following property consistently holds for all children d of a

[IP] d.processed => d belongs to a line of length < w.width.

Property [IP] is proved by noting that:
- whenever d.processed is false, which we assume to be initially the case for all nodes d,
[IP] is trivially satisfied;
- during the execution of a call Split_a_line (w, a+—), d.processed can only be set to true
for operands d which are children of g; for both recursive calls, the postcondition [Q] of Fit
implies that, upon return from Fit, any such d belongs to a line of length less than or equal
to w.width.

Since Fit may only be called recursively by Spiit_a_line for children d of the argument ¢
which belong to oversize lines, it follows from property {IP] that Fit can never be called for d
such that d.processed is true, and thus that it is called at most once for every operand.

This property is, however, not sufficient to prove that the algorithm is linear in the
number of nodes: the algorithm uses twice the statement update a.width which may seem to
imply that a traversal of all the lines of a is required every time a split {cut or indentation) is
performed, thus leading potentiaily to combinatorial explosion.

A simple data structure representation technique solves this problem. From the properties
of the @ operation, e.width is the maximum length of the lines of a. Thus when an oversize line
is split into one or more shorter lines, a.width will only change if the oversize line being split is
longer than all remaining oversize lines in the expansion of a.

We may thus represent the set of oversize lines of ¢ as a sequential list, in such a way that
the last element to be considered is the longest (it is not necessary that the list be otherwise
sorted). When a line is split, it will produce either one or two shorter oversize lines:

- in the “cut” case, a line zdy is split into lines zd and y;

- in the “indent” case, zd is split into line z, which may still be oversize, and operand d

which is passed to Fit and thus will not be oversize once indented.

Il the line which is split is not the unique element of the list of oversize lines of g, it is not neces-
sary to update g.width; the only constraint to be observed in this case is that the new oversize
lines may be inserted anywhere but at the end of the list, which is occupied by the longest
remaining oversize line. When, on the other hand, a unique oversize line is split, we must make

84 © Correctness, efficiency and improvements 25
y

sure that, il two oversize lines are created, the longer comes last in the list; this takes constant
time. So the penalty on the overall process is at most linear in the total number of nodes.

The last operation which might endanger the linearity of the algorithm is the computation
of total_shares, the sum of the shares of all remaining indentation candidates among the chil-
dren of a, before each tentative indentation. Clearly, total_shares can be initially computed by
Measure and updated every time the fate of one of a's operand children is decided.

Other optimizations are possible. In particular:

- The editor may try to minimize the amount of work performed by the display algorithm

by initially pruning of the syntax tree so as to & priori eliminate those subtrees which

stand no chance whatsoever of being displayed.

- In the basic loop of the system (see section 4), procedure Show will be called after every
change resulting from an operation requested by the user. Such a change may involve only
a small part of the tree and/or the screen. If this is the case, the editor should only call
the display procedure Show (s, a+—) on arguments s and @ which denote part of the screen
and the tree, respectively. This policy is commendable not only for program efficiency, but
also from the human engineering point of view: it improves the user interface by avoiding
drastic redisplay of the document and redistribution of its various components over the
screen every time a local change is made. Internally, it can be implemented by replacing
the n.processed attribute by an integer attribute giving the historical index of the last
modification (Mikelsons [17] uses a similar scheme}.

8.5 - Dealing with Built-in Line Breaks

One aspect of the above algorithm may seem annoying: displaying a long document in 2
language whose concrete syntax includes compulsory line breaks may result in a degenerate
(abstracted) form; this is because Fit quits (by faifure) il the number of lines associated with the
focus node, as computed by Measure, is initially too large - a condition which will frequently
occur for, say, long FORTRAN programs. In many cases, however, a better solution could be
found than just abstracting at the uppermost level.

This probiem is all the more serious that, when describing a language for Gépage, users
may be tempted to add compulsory line breaks in the concrete syntax even for free-format
languages, for instance by requiring that Pascal procedures be [ollowed by a break, even though
such an explicit addition is unnecessary in view of the algorithm above.

Fortunately, there is a nice solution to this problem. Fit does not need to be modified; we
just adapt Measure so that, in the postorder accumulation of windows which it performs, it
transforms non-linear windows into very long linear ones. Let us define the special window
WIDE_WINDOW as

WIDE_WINDOW = [L ool
where oo is & large enough integer (for our purposes, s.width + 1, where s.width is the width of
the available screen, is a good enough approximation of infinity). Now defining for any window
.

squeezed (w) = if w.height = 1 then w else WIDE_WINDOW
we Just replace c.uwtndow, in the for statement of the last branch of procedure Measure, by
squeezed (¢.window).

This modification solves the problem of built-in line breaks. Any child of a whose expan-
sion initially extends over more than one line will be considered by Split_a_line as constituting
an oversize line by itself and will thus be the object of a recursive call to Fitif its share permits.
When Fit and Split_o_line are first applied to a, only first-level line breaks (those which are part
of the concrete syntax for the production defining a, not those attached to its descendants) will
be considered.

28 SHOWING PROGRAMS ON A SCREEN [

9 - OUTLINE OF THE ALGORITHM FOR LISTS

The algorithm used for list nodes is a natural extension of the above one for aggregate
nodes. It is sketched below.

We consider a list node as equivalent to an aggregate node with one to three children: list
header {if present), list body and list tail (if present). The previous algorithm is applied to this
structure; only the body has to be subjected to the special treatment described below. We also
assume that each element of the list body, except the last, includes the following delimiter.

A new integer attribute is introduced for nodes which are list elements: d.collapsed has
value 0 if d is not is the first element in a collapsed sublist; otherwise, its value is the number of
elements in the collapsed sublist beginning with d. The head of the last collapsed sublist encoun-
tered so [ar is represented in the following procedure by variable starf. The fundamental pro-
perty of the algorithm is expressed by the loop invariant; note that the validity of this invariant
results from the Consistent Allocation Theorem. The Fairness Theorem implies that space is
allocated to the various elements in a manner which is compatible with their relative impor-
tance, as expressed by their “share” attributes.

9 The algorithm for lists

procedure Fit_list_body (in w: WINDOW;

in out a : NODE - - a represents a list body)
var collapsing, too_selfish : BOOLEAN ;
w’: WINDOW ; .
total_shares, remaining_shares, sublist_shares, mazimum_ratio : INTEGER ;
grouped : INTEGER ; start : NODE ;

collapsing = false ;
total_shares = M, d.share;

4 € children (a)
remaining_shares := totel_shares ;
mazimum_ratio = w Z MINWINDOW ;

for all children d of ¢ do

{loop invariant:
the space allocated so far does not ezceed w and

if d is not the last child of a, then
w @ ([total_shares [remaining_sheres])) MINWINDOW}
remaining_shares := remaining_shares - d.share ;
too_selfish := d is not the last child of ¢ and
([total_shares / remaining_shares]) > mazimum_ratio ;
if
not collapsing —*
w' = w@ ([total_shares [d.share]) ;
it
w’ &) MINWINDOW and not too_selfish —»
Fit (v, de);
grouped = 0
[J not v’ (5) MINWINDOW or too_selfish —>
collepsing := true ;
sublist_shares := d.share ;
start ;= d ; grouped := 1
end if
[collapsing —>
sublist_shares := sublist_shares + d.share ;
w' = w(® ([total_shares [sublist_shares]) ;
if
not w' @ 2 @ MINWINDOW or too_selfish
—+ grouped = grouped+1
0 v’ @ 2@E) MINWINDOW and not too_selfish —
. starl.collapsed := grouped ;
Fit (MINWINDOW, starte—);
Fit (w' ® MINWINDOW, des)
collapsing = false ; grouped := 0
end if
end if
end do ;
if
not collapsing —* skip
[coltapsing —
start.collapsed ;= grouped ;
Fit (MINWINDOW, start)
end if
end procedure

27

28 SHOWING PROGRAMS ON A SCREEN =g

10 - PRAGMATICS AND CONCLUSION

10.1 - Usage

The first version of the Cépage system was implemented on IBM 3081 hardware, under
MVS/TSO. It uses IBM 3279 terminals, and takes advantage of the seven colors and various
special effects (reverse video, etc.) available on these terminals to display a clear picture of the
document. For example, a syntactic type name like <statement> is displayed in a different
color depending on whether it represents a noo-refined operand or an operand which has been
refined but must be abstracted for lack of space.

The system is currently being rewritten and expanded for Vax-Unix and especially for SUN
workstations, which provide a nice environment for such software (high-resolution screen, avai-
lability of various type fonts, mouse, etc.).

The IBM version uses the display algorithm described in this paper (with some minor
differences for list nodes). We have found the results to be up to our expectations; the algo-
rithm displays what we would like it to. We feel that this is a strong case for the fully
automatic pretty-printing strategy which we adopted when designing Cépage: the display policy
is determined by the system solely from the grammar, using universal rules {of course, the
designer of a grammar may add provisions corresponding to special formating requirements).

10.2 - Focus Management

The only serious problem which appeared in actual usage of the display algorithm was
connected not with the algorithm itself, but with the way it is used by the rest of the system.

The display procedures are called by the editor with two arguments: a screen area s and a
focus f. Sometimes the focus chosen was not the best possible one. This is because the focus was
determined rather conservatively by the editor, so as to be close or identical to the user’s logical
“focus of interest” (e.g., if the user requests a refinement, the node being refined). In some cases
this results in the display not providing enough context. In principle, the solution is simple:
choose a focus higher in the tree. The reason a more conservative policy was used was the fear
that, in some cases, the user might get stuck by being unable to force the display algorithm to
show details he needs to see (e.g. an operand which he wants to refine or explore but whose
father in the tree always gets abstracted).

The solution which is currently being implemented relies on the following two techniques:

- Using more boldly the possibility of assigning widely differing ‘‘shares” to the various

nodes (section 6.5), so that a node can become a “VIP”, even if it is far down from the
focus, by receiving a high share;

- Dividing the display process into two phases; the first (see section 4) calls procedures
Decorate, Measure, Fit; the second, Buildtest and Display. The editor will perform the first
phase using an “optimistic” focus, high in the tree. Before performing the second phase,
i.e. the actual display, it will test whether any “VIP" node has been abstracted and, if so,
will go down to a more conservative focus. Of course, care should be taken to adopt a
strategy which will result in the target being hit on the first try most of the time.

10.3 © Pragmatics and concluston 29

10.3 - Implementation

Cépage has been implemented in Pascal; the resulting program includes about 6200 lines,
of which about one third are devoted to the display algorithms sketched here. There is also
about 4000 lines of supporting software, essentially the Gescran package for screen management
[2] and associated tools, mostly in Fortran 77.

We have not performed precise time measurements on the algorithm; in practical usage,
the real-time response o all requests was immediate, with no observable delay.

10.4 - On Methodology

One of the essential driving forces in the design of the algorithm described here has been a
constant concern for simplicity. We hope this goal has been reached.

The algorithm was conceived as the system was still at the specification and global design
stage and described in a first version of this paper [13], written long before any code was pro-
duced. The only new concept added since then is the formalization of the “calculus of windows™
(section 5) which occurred to us as we were writing this second version. The various invariants
and abstract properties were there from the beginning, and we feel that they helped us
significantly in getting the design and the code right.

The “calculus” was initially added just for explanatory purposes, but took more impor-
tance as we were improving this paper and in fact made it possible to find the solution to the
problem of languages with built-in line breaks (section 8.5). This problem had not been evi-
denced by the first implementation, which we only tested on free-format languages, 2nd when
we first discovered it we feared it might require complete re-design of the algorithm; it was thus
a relief to find that the simple solution of section 8.5 is obtained by a minor change to pro-
cedure Measure and fits well into the overall picture. The calculus also allowed us to simplify
and improve the algorithm for lists (section 9).

The approach followed for the design of this algorithm might be called “the poor man's
formal specifications”; it entails using semi-formal assertions and invariants for the design ol
algorithms; for the design of the system as a whole, we also used pieces of formal specification,
using elements first from the Z specification language {1}, then from the M Method (14], which
emphasizes modular descriptions (since the first implementation was completed, an almost com-
plete formal specification has been written in M and will serve as a basis for the next implemen-
tation).

When describing our approach as “semi-formal”, we mean “as formal as one needs to be
to get the job done well”; the aim is to obtain the best possible cost-benefit ratio, where the
cost is the effort put into specification and global design, and the benefit is quality of the result-
ing software and speed of implementation (the detailed design and coding of Cépage were per-
formed by one of us, JMN, in ten weeks).

We think that such a moderately formal approach is representative of what can be
achieved today, without undue effort, in applying modern software engineering techniques to the
design of realistic software.

Acknowledgement

We are grateful to the Editor-in-Chief of SCP for his advice on the paper, which turned
out to have a beneficial effect on the algorithm as well, and to Helmut Partsch for his useful
role as a referee.

30 SHOWING PROGRAMS ON A SCREEN
References
I. Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer, “A Specification

10.

11,

16.

Language,” in On the Construction of Programs, ed. R. McNaughten and R.C. McKeag,
Cambridge University Press, 1980.

Eugéne Audin, Gérard Brisson, Bertrand Meyer, and Francoise Vapné-Ficheux, “Gescran,
Manuel de Référence (Reference Manual for a Screen Handling Package),” Atelier Logiciel
22, Electricité de France, Clamart (France), 1980.

David R. Barstow, “A Display-Oriented Editor for INTERLISP,” in Interactive Program-,

ming Environments, ed. David R. Barstow, Howard E. Shrobe, Erik Sandewall, pp. 288-299,
McGraw-Hill, New York, 1984.

Edsger W. Dijkstra, “Guarded Commands, Nondeterminacy, and Formal Derivation of
Programs,” Communications of the ACM, vol. 18, no. 8, August 1975. Also in R.T. Yeh
(ed.), Current Trends in Programming Methodology, Volume 1, Prentice-Hall, 1976, pp.
233-242, and in D. Gries (ed.), Programming Methodology, Springer-Verlag, 1978, pp. 166-
175.

Edsger W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs (New-
Jersey), 1976.

Véronique Donzeau-Gouge, Gérard Huet, Gilles Kahn, and Bernard Lang, ‘“Programming
Environments Based on Structured Editors: The MENTOR Experience,” in Interactive Pro-
gramming Environments, ed. David R. Barstow, Howard E. Shrobe, Erik Sandewall, pp.
128-140, McGraw-Hill, New York, 1984.

David Gries and Susan Owicki, ‘Verifying the of Parallel Programs: An Axiomatic
Approach,” Communications of the ACM, vol. 19, pp. 279-285, 1976.

Nico Habermann et al., The Second Compendium of Gandalf Documentation, Carnegie-
Mellon University, Pittsburgh (Pennsylvania), 1982.

Wilfred J. Hansen, “Creation of Hierarchic Text with a Computer Display,”" ANL-7818,
Argonne National Laboratory, Argonne (Ill), 1971. (Also as dissertation, Computer Sei-
ence Department, Stanford University, June 1971)

C.AR. Hoare, “Procedures and Parameters: An Axiomatic Approach,” in Symposium on
the Semaniics of Programming Languages, Lecture Notes in Mathematics, ed. Erwin
Engeler, vol. 188, pp. 103-118, Springer-Verlag, Berlin, 1971.

IBM, “System Productivity Facility for MVS - Program Reference,” SC34-2038-0, IBM,
December 1980.

William Joy, An Introduction to Display Editing with Vi, Computer Science Division,
Department of Electrical Engineering and Computer Science, UC Berkeley.

Bertrand Meyer and Jean-Marc Nerson, “Showing Programs on 2 Screen,” Internal Report
HI1/4590-01, Electricité de France, September 1983.

Bertrand Meyer, “A System Description Method,” in International Workshop on Models
end Languages for Software Specification and design, ed. Robert G. Babb II and Ali Mili,
pp. 42-46, Orlando (F1.), March 1984. (also more detailed internal report available from
the author).

Bertrand Meyer and Jean-Marc Nerson, “Cépage : Un Editeur structurel Pleine Page,” in
Second Colloque de Génie Logiciel (Second Conference on Software Engineering), pp. 153-
158, AFCET, Nice (France), 1984. English translation: "CEPAGE, & full-screen structured
editor” in Software Engineering: Practice and Ezperience, North Oxford Academic, Oxford,
1984, pp. 60-65.

Bertrand Meyer and Jean-Marc Nerson, “A Visual and Structural Editor,” Technical
Report TRCS84-03, Computer Science Department, University of California, Santa Bar-
bara, March 1984,

19.

20.

Bibliography 31

M. Mikelsons, “Prettyprinting in an Interactive Programming Eavironment,” SIGPLAN
Notices, vol. 16, no. 6, pp. 108-116, June 1981.

Derek C. Oppen, “Prettyprinting,” ACM Transactions on Programming Langucges and
Systems (TOPLAS), vol. 2, no. 4, pp. 465-483, October 1980.

Richard M. Stallman, “EMACS: The Extendible, Customizable, Self-Documenting Editor,”
in Interactive Programming Environments, ed. David R. Barstow, Howard E. Shrobe, Erik
Sandewall, pp. 300-325, McGraw-Hill, New York, 1984.

Tim Teitelbaum and Thomas Reps, “The Cornell Program Synthesizer: A Syntax-Directed
Programming Environment,” Communications of the ACM, vol, 24, no. 9, pp. 563-573, Sep-
tember 1981.

[85¢]

CONTROL STRUCTURES:

FUNDAMENTALS

(Chapter 3)

Bertrand Meyer

_9.

This is a first draft of Chapter 3 of a book in preparation. The working title of the book is Applied
Programming Methodology.

The book follows the spirit of Méthodes de Programmation, which I co-authored with Claude
Bandain (from Schiumberger); this text was published in 1978 by Eyrolles in Paris. The present work is
nol, however, a translation of the former one; shortly after publication of the French book, we did con-
sider translating it into English, but for various reasons this project was delayed and it soon became clear
that an cntirely new design was needed. Claude did not wish to participate in such an endeavor; what
follows is thus my sole responsibility.

The projected audience of the book includes practitioners (engineers, programmers, etc.) who are
loaking for a readable survey on modern programming concepts, as well as students, for whom it is
intended as a textbook to be used in connection with courses on programming methodology, programming
languages, programming techniques or software reliability.

The book uses several programming languages as a means to exemplify the programming concepts
discussed and to deepen their analysis. The languages studied include Fortran, Pascal, Simula 67, Ada,
Modula, Lisp and, to a lesser extent, PI/I, Cobol, Algol W, Smalltalk and APL.

The tentative plan of the book is as follows.

Chapter 1: The challenge of software engineering
A short introduction recalling the basic problems of software engineering, summarizing the
current state of the art, and describing the “"two schools” of software engineering.

Chapter 2: The structure and role of programming languages
A description of the structure of programming languages, introducing the basic issues in
language design and discussing the role of languages in programming.

Chapter 3: Control structures: Fundamentals (This Chapter).

An introduction to the basic control structures of sequential programming, using from the
outsct a systematic, semi-formal approach. Includes a discussion of specification-directed program con-
struction.

Chapter 4: Control structures: Techniques

All elaboration on the concepts introduced in the previous Chapter: variants of the basic pat-
terns; control stuctures as implemented in various languages; technical problems associated with pro-
cedures. '

Chapter 5: Data structures and their description

An introduction to the practical use of abstract data structure descriptions. Emphasizes
hicrarchical definition of types and reuse of previously written descriptions (through mechanisms of
enrichment and restriction derived from those of Simula, Z and Clear). Offers three levels for the descrip-
tion of data structures: implicit (i.e. by one or more abstract data types), constructive, physical.

Chapter 8: Modularity

A discussion of some of the main requirements for modular programming and of existirig tech-
niques. Presents a comprehensive definition of modularity through a set of “criteria”, "principles” and
"keywords", and shows how modular designs can be obtained. Emphasizes the object-oriented approach

and its implementation in such languages as Simula, Smalitalk, Ada and Modula.
Chapter 7: Recursion and Functional Programming

An introduction to the "other culture” of programming, with hints for the practitioner as to
how Lo use its concepts.

[nelusion of the next two Chapters is still a matter of discussion.

Chapter 8: Some fundamental data structures

A systematic presentation of some of the most useful data structures, from specification to
implemcentation, the latter including coding examples in various programming languages.
Chapter 8: Some fundamental algorithms

A systematic presentation of some important algorithms, chosen both for their methodological
interext, clogance and practical usefulness,

... The second [precept I devised for myself] was to divide each of
the difficulties which I would ezamine into as many parcels as &t would be
possible and required to solve it better.

The third was to drive my thoughts in due order, beginning with
these objects most simple and easiest to know, and climbing little .by little,
30 to speck by degrees, up to the knowledge of the most composite ones:
And assuming even an order between those which do not naturally precede
one another.

Descartes, Discourse on the Method (1637)

8.

3.1. - CRITERIA FOR CONTROL STRUCTURES

In the previous Chapter we have introduced the basic duality of programming: control vs. data.
The present Chapter is a study of the first term in this opposition.

The question at hand is simple: how should we organize the operations of a program?

More precisely, we are looking for a set of mechanisms which will make it possible to construet com-
plete programs by various combinations of the basic statements studied in the previous Chapter, such as
assignment, input, output, etc. Such mechanisms, allowing the programmer to prescribe the execution-
time sequencing of these basic statements, are called control structures.

In the search for a good set of control structures, we shall be guided by four basic criteria: simpli-
city, clarily, hierarchy and provability.

« Simplicity. We are looking for a small set of constructs, easy to understand and remember, yet
capnble of describing any useful arrangement of operations.

e Clarity. A program has a finite text; the object which this text describes is 2 very complex one,
consisting of all the possible runs of the program, that is to say all the possible sequences of execu-
tions of its operations {(depending upon the input data); this usually includes many repetitions
(loops). In other words, the program text is a static description of 2 set of highly dynamic
phenomena. It is crucial that the constructs used for this description give to the reader the clearest
possible image of these phenomena.

o Hierarchy. It is well-known (at least since Descartes’ Discours de la Méthode) that & complex
abject, be it natural (as the system of plants on earth) or human-made (as a mathematical theory}
mny be understood and mastered only through decomposition. Programs are no exception and the
constructs we are looking for should lend themselves to the process of combination and decomposi-
Lion,

o Provability. If "reliable software” is to be more than a catch phrase, one should only write pro-
grams whose precise behavior can be unambiguously and easily predicted. This is true of the basic
statements described in the previous Chapter: we can rest assured that execution of the assignment
y:=2—1 will lead to a state where y > 0 if an only if z was initially greater than or equal to 1 (at
least assuming perfect arithmetic, no overflow, etc.). It should be possible to draw the same kind of
conclusions for actual programs built with control structures. Note that we shall be less interested
in proving that programs are "correct” after they have been written than in constructing pro-
grams in such a way that this correctness becomes obvious.

3.2. - SPECIFICATION OF ACTIONS

3.2.1. - Assertions
By insisting on provability we have hit upon one of the basic problems of software engineering: if we
want to be able to check that our programs are correct, we must be able to express what they are sup-
posed to do. The task of defining the function of a programmed system is known as specification; we
mentioned in Chapter 1 the importance of this step, and now is our first opportunity to study it con-
cretely.
lHow can we specify the effect of programming constructs, such as basic statements or control struc-
tures? In other words, quoting the title of a classical paper in this field (by R.W. Floyd), how can we
assign meaning to programs? One popular answer i3 based on the notion of assertion. An assertion is a
property involving the objects of & program, such as
[ta sorted
>0
C is busy

gedfz,y) = ged(a,b)
m is definite positive

(assuming i.e. that f is a file, z,y,2,b are integers, C is a communication line, m is & matrix).

3.2.2. - Annotated programs

To express the meaning of a program statement, we may give the relationship between assertions
which are true before and after execution of this statement. For example, if the assertion z > 1 is true at
some point and the statement y:=z—1 is executed, then the assertion y > 0 will be true subsequently.

\We shall express such facts by writing the assertions in the programs themselves, as special com-
menis delineated by braces:

{...assertion...}

{n this way our program will be annotated by arguments (assertions) pertaining to show their
correctness. For instance, we shall write the annotated program

{given z> 1} y == z-1 {then y > 0}

to express the above property z > 0, assumed to be true before exccution of the statement y:=z—1, is
cilld the precondition of this statement in the case considercd here; y > 0 is the corresponding
postcondition.

In order to fully understand an annotated program, it is important to see clearly which properties
are wssimed to be satisfied before ils execution begins, and which one will be guaranteed to hold after its
esecution; hence Lhe keywords given (for preconditions) and then (for postconditions) in our notation for

assertions,

3,2.3. - Strongest postcondition, weakest precondition

In the example above, y > 0 is not the only postcondition we may attach to y:=z -1 given the
precondition 2 > 1; we may as well write the correct annotated program elements

{givenz > f} y:=z -1 {y> -1}
{givenz> 1} y:=z -1 {y# 0}

cte. It is clear, however, that they are not as interesting: the postcondition y > 0 embodies the maximum
wformation we may assert to be true after execution of y:=z—I, starting in a state where 3 > 1. Asser-
fion g > 0 is thus called the strongest postcondition of the statement with respect to the given precon-
ditian

«T-

Similarly, if we take 2 > 2, 2 =T etc. as preconditions in this example, with y > 0 as postcondi-
tion. we still get correct annotated programs. However, z > 1 is the least constraining precondition
which will ensure y > 0 as postcondition after execution of y:=z—1. It is thus called the weakest
precondition of this statement with respect to the given postcondition.

An important property of annotated programs is that, starting from a correct annotated program,
we may always replace the precondition with a stronger one and/or the posteondition with a weaker one,
and still have a correct annotated program. That is, if

{given P} A {then @}

is a correct annotated program, and if P/ and Q' are such that P/ => P (P’ implies P) and Q@ => @/,
then the following are correct annotated programs:
{given P’} A {then Q}
{given F} A {then Q'}
{given P’} A {then Q'}
This property means that weakest precondition-strongest postcondition pairs contain more informa-

tion than other pre-post pairs and are thus to be preferred. Once available, they make it possible to
deduce many other pre-post pairs.

3.2.4. - Specifying statements
To specify the meaning of any statement A, we will use the above principles: i.e. we will try to
charnclorize statement A by a pair of assertions, P, Q, so that we may write

{given P} A {then Q}

where P is the weakest precondition of A with respect to @ and @ is the strongest postcondition of A
wilh respect to P; i.e. @ will be true after execution of 4 if and only if P was true before.

But in the example above the chosen precondition and postcondition, even though they form a
weakest-strongest pair, are not general enough yet: other weakest-strongest pairs seem just as informa-
tive, e.g.

{given2< 0} y:=2z-1 {theny< -1}
or

{given z =7} y:=-1 {then y = 6}, etc.

The rule should thus involve not just a pre-post assertion pair, but a whole class of such pairs. Here
the most general property we may express about the assignment y '= z-1 is that whatever condition we
choose on y will be true after execution of this statement if and only if it was true of z—1 before.

fn other words, for any assertion P, we may write

{given P71} y<z—1 (P}

where Py~ (read "P with z—1 for y") means "assertion P, with z—1 substituted for every occurrence of
y". For instance, if P is the assertion y > 0, then Pj~'is z2—1 > 0; if P is z+y > 0, Py, isz+z-1>0
fan aserlion which, because of the properties of numbers, is equivalent to 2 X z > 1); ete. Thus, the rule
for the assignment y:=z—1, as evidenced by the previous examples, is that one gets the precondition from
the posteondition by substituting z—1 for y. Note that this mechanism gives a weakest precondition-
~trongest posteondition parr.

‘This rule is a particular case of the general rule for assignment, namely: for any statement of the
forme v-=e, where v is a variable and ¢ an expression, and for any assertion P, we may write

{given Pf} vi=e {thenP}

_8-

where P¢ means "P, with every occurrence of v being replaced by e".

Note that this holds whether or not the variable v appears in the expression e¢. The reader is
invited to apply this rule to the following annotated program examples, then check the results with his
intuilion about the effects of the statements.

{givenz >0} z:=z+1 ({thenz>1}

{givenz <0} z:=z+y {thenz <2Xy}
{given|zl¢[y|}z:=r:ﬂ:T{then z#1}

{given first non-blank character in file f is alphabetic}
z:= first non-blank character of f
{z is alphabetic}

{given 7} z := 2> - ¢* {then y = %} (find weakest precondition)

{given z > y} z 1= 2% — y* {then 7} (find strongest postcondition)

A very important point regarding the rule for assignment is that it works from right to left: the
precondition is obtained from the postcondition (through a substitution of variables), rather than the
opposite. This has important consequences on the way program correctness is checked in this method (see
seelion 3.2).

At this point, the reader may be little puzzled. What is the purpose of all this game with asser-
tions? What have we gained? So far, very little. Most of the properties of statements which we have
obtained are trivial. Yet we have established a framework which will enable us to assert more and more
intercsting facts about programs. By annotating programs, we further our goal of obtaining static
descriptions of dynamic phenomena: while a statement is an event, an assertion is a property; the
former is dynamic, the latter static, as a mathematical theorem which expresses that certain objects
satisfy certain conditions.

Thus there is an important conceptual difference between the statement z:=y and the assertion
z=y. The former is an instruction which is to be carried out by a computing system; the latter i3 a pro-
perty which may or not be satisfied by variables and y. This is why the pre- and posteonditions associ-
ated with a statement, or rather the relationship between them, may be said to give the meaning of that
statement

Any statement may thus be viewed as an assertion transformer; this is also true of any program,
as characterized by its precondition {hypothesis on the input data) and postcondition (conclusion, i.e.
requirements on the computed results). Explicit writing of these assertions will help remind us that a pro-
gram is not just a sequence of computer codes put together haphazardly, but the model of a process
designed to solve a definite problem. Here are some examples of how programs may be specified in this
fashion:

{given file [consists of records [y,...fn, and every record r has an integer key k(r)}
SORT

{then g consists of records gy,...¢, which are o permutalion of f\,...fn
and k(gh <+ < k(g)}

-9-

{given A is a non-singular (n.n) matriz; b is an n-vector; ¢ > 0}
LINEAR-SOLVER
{then z is an n-vector and I} Az—b | <€}

{given J is a finite sequence of user requests}
OPERATING_SYSTEM

{then all requests in J have been correctly processed}

As it is clear from these examples, we are not very firm about the language in which assertions are
cxprossed. Whenever adequate, we shall use predicate caleulus (i.e. logical formulae with symbols like
and, or, for all, for some, etc.); in many cases, however, we shall sacrifice rigor for ease of expression
and understanding, and use English phrases.

Having now introduced the framework which will enable us to reason about control structures, we
arc ready to study the basic set of structures which will be used in the rest of this book.

- 10-

3.3. - FOUR STRATEGIES
(‘ontrol structures are tools for constructing programs, that is, for solving problems.

When faced with & problem to solve, one may adopt several strategies. Four of the most common
ones are summed up in figure 3.1

A- Find somebody who will do it for you
B- Distinguish between cases
C- Decompose into successive subproblems

D- Find a tentative solution, then improve it if necessary

Figure 3.1: Four ways to solve a problem

Most people use these four strategies daily. In programming, they give rise to four fundamental con-
trol structures.

¢ A gives the procedure call
o [} gives the conditional
o C gives the sequence

o D gives the loop

We now study these four structuring mechanisms, in this order.

uiilE

3.4. - PROCEDURES

3.4.1. - Definition

A procedure is used whenever there is & need to refer to a certain action, the effect of which is well
defined, without giving the details of how it is to be carried oul.

A procedure is defined by a procedure declaration. It may be used through a statement termed a
procedure call.

A procedure declaration comprises two parts: a specification, which describes the effect of the
action associated with the procedure; and an implementation, which is a (possibly complex) statement
performing this action.

\ procedure call is 2 statement referring to a procedure specification; the effect of this statement,
ocewrring in any program unit which has access to the procedure, is to exccute the implementation of the
procedure,

The fundamental property of procedures is that calls only make explicit references Lo the
specifiention, not to the implementation. This means that the procedure is known to the outside world by
its effect, not by the way it achieves this cffect. Thus a procedure is the abstraction of a (possibly com-
plix) stiatement.

In general, the action associated with the procedure will compute a certain number of objects, called
outputs, using a certain number of objects, called inputs. The inputs may be diflerent in different calls
Lo (he same procedure; these calls will then in gencral yield different outputs.

The specification of a procedure thus comprises three elements:

o 1- The name of the procedure;

o 2- A set of requirements for the inputs to be given to the procedure in any csll,

e 3- The properties of the outputs computed by the procedure in any call.

In simple cases, the efiect of the action associated with the procedure call is entirely defined by (2)
and (3) above. (For more complicated cases, we shall introduce "inputs-outputs” below).

The implementation of the procedure will be a statement whose effect is to compute outputs as
required by (3), using inputs satisfying the requirements of (2).

The call to the procedure will include a reference to its name, a set of objects satisfying the require-
ments of (2), to be used as inputs, and a set of objects to be used as outputs; execution of the call will
cnsure that they satisfy properties in (3).

The inputs and outputs used in any particular call are called the actual arguments (or actual
parameters) for this call.

3.4.2. - Use of procedures; top-down, bottom-up

Procedures give a way of referencing a possibly complex course of actions by & single name. They
play'a fundamental part in the construction of programs; they may be used in two manners:

o A- In the design of a program, it frequently happens that the need for an action satisfying certain
requirements is recognized, but one does not want to spell out the details immediately. In such a
case, a sensible thing to do is to write 2 procedure specification corresponding to these requirements,
and use a procedure call in liew of the required action The implementation of the pracedure will be
written only later, alter the specification. This technique allows one to concentrate on what an
action results in rather than on kow it does it: it uses procedures as a mechanism of abstraction.

o I3 - When a certain problem which recurs frequently has been solved once, it is good practice to
recard the solution as a procedure, with a well-documented relationship between input and output,
so that it may be used again whenever a similar problem arises later. In this case, a complete
specilication may be written after the implementation. Procedures used in this fashion add new ele-
ments to the set of available operations, 2s offered by the programming language, operating system
and underlying hardware. This use of procedures may thus be characterized as a mechanism of

extenaion.

These two uses of the procedure concept correspond to two basic approaches to program design: the
so-called top-down and bottom-up strategies, respectively. A convenient way to describe them is to use a
dingram (fig. 3.2) which is ordered in levels of abstraction, the highest one being that of the problems to be
solved, the lowest one being that of the machine in terms of whose operations the solution will have to be
exprossed. Note that this machine is usually not the physical machine, but the virtual machine for
which programmers actually write programs. It is defined by the set of possibilities offered by the combi-
nation of 2 programming fanguage and accessible features of the hardware and operating system (e.g. the
"Fortran - MVS" machine, the "C + Unix” machine, the "Lisp + Lisp machine” machine, ete.).

PROBLEMS

S

u

Ae B® co 5

. R

® L]) L 0

s b) :

a

[] [) [[] E

/N AN A AN M

SN SN 7Y AN 5

AN S 0N/ LS A NN ;

TOP_DOWN
L] o © 8 @ 0 6 & © © 0 © ¢ © 0 O © © © O
ﬁ ¢ © &8 © © ® © ® & © © 9 &5 6 © O & © © & o @
® 6 & & 0 © &6 © © 6 ¢ ¢ © ©6 & @ & S & & ©
BOTTOM.UP
AELAN ERAAOOOO0DOOAIAN Y

VIRTUAL MACHINE
{Hardware , System, Language }
R

SAEARIMNEEN N

Fig. 3.2 - Top-down, bottom-up

In the top-down method, one starts from the specification of the problems to he solved and expresses
thetr solutions in terms of the solutions (yet to be worked out) of a small number of simpler problems
(A.B.C, on figure 3.2). The same process is then applied to these new problems, and repeated until one is
lefl with problems so simple that they may be solved by applying operations of the virtual machine, e.g.
programming language statements. The method is also called, for obvious reasons, programming by
stepwise refinements. It will only work if it indeed leads to the "bottom", that is to say, to a state
where everything is expressible in terms of the operations of the virtual machine: every refinement of a
p{nhl!‘m should yield one or more new problems which are actually simpler, i.e. belong to a lower level of
abstraction.

13-

The bottom-up method, on the other hand, builds on solid ground by starting from what already
exists - the virtual machine and previously written program elements - and combining existing elements to
yield more and more complex ones. It will only work if care is taken to ensure that these elements are
indeed composable, and that the "top" (a solution to the problems at hand) is indeed reached.

Bolh of the sbove schemes actually characterize general approaches to program design rather than
precise strategies which can be used as recipes. It would be foolish to dismiss either one.! The top-down
approach is a very rational way to start working on a problem and decompose it into simpler ones; it is
very clficient as a general design guideline. We will however discover, while studying modularity (Chapter
6) that its application meets some severe limitations. The bottom-up method, on the other hand, favors
the very important criterion of reusability of software, one of the key issues in software engineering.

Any reasonable design methodology should embody both a top-down aspect (which will put the
cmphasis on the new aspects of the problem to be solved every time the methodology is applied) and a
bollam-up one (which will emphasize re-use of ezisting hardware and software tools).

[n both cases, there is a need to name and specify solutions to subproblems; this can be done with
procedured.

3.4.3. - Notation for procedures: specification and implementation parts

We will use for procedures a notation which distinguishes between the "specification™ part of each
procedure and the "implementation” part.

The specification part describes the arguments that the procedure expects and those which it will
return, as follows:

procedure P specification
inz ¢, 29:8, ', Zn ity

{assume PRE} - - see below

out yrrtypitd vt by
{ensure POST} - - see below

end procedure apecification - - P

The names zj, 2o, *** Zm, Y1, Yo, ' * Yn represent objects or values that will be passed across
between the procedure and other program units. They are called the formal arguments of the pro-
cedure, Formal arguments stand for actual arguments which will be passed to the procedure in any par-
tienlar call. Note that each formal argument has o specified type, and that any corresponding actual
argnment should conform to this type.

The implementation part describes statements that fulfill the purpose of the procedure as described
i the specification part: :

procedure P (5; Ty .., Tu, Y1, Y2+, ' , Yo+ implementation
declarations |
statements

end procedure implementation - - P

! Lathusiasts of the top-down method sometimes refer to Descartes as having shown the way. The quota-
tion a1 the beginning of this Chapter (2 famous excerpt fram the preface to the Discours de la Méthode) shows
very elearly that Deseartes' approach to problem solving included both 2 top-down and a bottom-up com-
ponent. [t s interesting in this respect to compare his second and third “precepts’.

S 14-

As shown here, we repeat the formal arguments, in parentheses, in the implementation part, as a
reminder to readers of the procedure implementation. We include only their names, however, and do not
repeat their types. We mark the out arguments with en arrow, «—, to remind the reader that the pro-
codure must assign a value to the corresponding actual arguments.

In some cases, we may wish to give the specification and implementation together; we shall then
merge the two notations as follows (without repeating the formal arguments in the implementation part):

procedure P specification

inz b, 2008, **° Zniln
{ensure PRE} - - see below

out yrit, ypity, Y tn'
{assume POST} - - see below
implementation

declarations ;
statements

end procedure - - P

3.4.4. Notation for procedures: assertions

In accordance with the discussion at the beginning of this Chapter (3.2), we would like the
specification part to give not only the list of all in and out formal arguments together with their types,
but also an abstract description of the procedure's effect. Keeping in line with the above presentation, we
will characterize the procedure’s effect by assertions: a precondition, which will appear after the list of
formal input arguments, preceded by the keyword assume, and a postcondition, which will appear after
the Tist of formal output arguments, preceded by the keyword ensure. So the complete form of & pro-
cedure specification is as follows:

procedure P specification
inz sty 23ty 0y T i
{assume PRE (zy, 3, ..., Zn }};
out gy b, Y2ty oy Un Tl
{ensure POST (yy, Y2 s YniZ1s B0 s Zn J}

end procedure specification - - P

A procedure specified in this fashion, where PRE (...) and POST (...) are assertions, will yield, when
ealled with input arguments satisfying PRE, output arguments satisfymng POST.
Note that PRE may only depend on the input values, but POST will in general involve both output
and input arguments, since it is the procedure's purpose to compute the former from the latter.
For example, we could specify in the following way a procedure which computes the maximum value
contained in a file of real numbers:
procedure File_mazimum specification
in f: file of REAL
{assume f is non-empty}
out z : REAL
{ensure z = a for some ain fand z > b for all b in [}

end procedure specification - - File_mazimum

-15-

Note that by requiring precise assume and ensure clauses, and giving reasonably meaningful names
to pracedures, we do not need the header comment usually required by good programming practice for
cach procedure (e.g. "compute the maximum of file f, assumed to be non-empty, and return it via z").

The implementation of a procedure specified in this manner must be a statement IMP, such that the
following annotated program fragment is correct:
{given PRE (z,, zq, ..., zn)}
IMP
{then POST (ys, ya, ..y Yn, Z1y 22, -y Zn)}

In the implementation of the procedure (IMP), the names of the input arguments (z,, 2y, ..., Zp,) will
he considered to denote constants of the appropriate types (ty, ts, ..., tn) their values may be used, but
not changed. The output arguments (y,, ya, ..., o) Will be considered as variables of the appropriate
types (¢, &, ..., "), uninitialized upon activation of the procedure.

Note that the requirement that in arguments be left unchanged implies that the precondition
expressed in the assume clause still holds when execution of the procedure terminates (this will not be
true any more when we introduce in out parameters in 3.4.5 below). This requirement zalso eliminates
trivially wrong implementations, such as realizing file_mazimum above by assigning 0 to z and assigning
to / the value of a file with a single zero element.

Here is an example of a procedure specification and implementation (the example is trivial because
we have not yet introduced the other control structures necessary to describe interesting computations):

procedure Compute_account_balance apecification
in credst, debit: REAL
{assume credit > debit};
out balance: REAL
{ensure balance = credii-debii}
implementation
{given credit > debit}
balance := credit-debst
{then balance = credit-debit and balance > 0}

end procedure - - Compute_account_balance

To denote a procedure call, we will follow the Algol tradition by just writing the name of the pro-
cedure (without any special “call” verb as in Fortran, Cobol or PL/I) followed by a list of actual argu-
ments, ie objects of the calling program which correspond one by one to the formal arguments, as fol-
fows.

Plo,8g, - oy byemyboe—, o bye)

fivery actual argument must be of the same type as the associated formal argument.

The details of argument transmission are studied in Chapter 4. At this point, it suffices to note that
actual nrguments. corresponding to out formal arguments will be assigned a value by the procedure; to
miuke sure the reader of the program is aware of this important feature of the procedure call, we put an
arrow {denoting assignment) after the name of any such actual argument (e.g. b;+). Note that any pro-
gram object used as out actual argument must be assignable; thus it must be a variable or array element
cte, bul not a constant or an expression

A program calling the two example procedures specified above could have the form:

-16 -

variables g : file of REAL,

y: REAL,

b, ¢, d:REAL;
read g; - - the file read should be non-empty
File_mazimum (g, y=);

N
Compute_account_balence (¢, d, be)

3.4.5. - The case of in out arguments; anapshots

For some procedures, we need arguments of mode in out, i.e. arguments which stand for objects of
the cailing program whose value may be used and changed by the procedure. In theory, the in out mode
is superfluous, since an argument of this mode may always be replaced by two arguments of the same
Lype, one in and one out. When, however, it is known that after every call of the procedure the value of
the in actual argument will not be needed any more, then merging the two arguments into one will save
space in the calling program (and perhaps in the procedure as well, depending upon the passing mechan-
ism which is used: see Chapter 4).

In the same way that our notation draws the reader’s attention on out parameters in parame-

ter lists (both in calls and implementation parts) by drawing a simple arrow after the argu-

ment name (e.g. a+), we will signal in out parameters by a double arrow (e.g. a+—).

Arguments of mode in out raise some difficulties with respect to the specification of procedures. We
will include their list between those for in and out arguments. Their values will usually be needed for
reference in both the expected precondition (assume) and the guaranteed postcondition (ensure), so that
we shall write the former after the in out list and the latter after the out list, as follows:

procedure @ specification
inz) ity 298y, 2 tn;
inout zy : £y, 2o by 0y 5 1 8
{assume PRE (14,25, . . . , 2w, 21322, - - -, 5)} ;

out ¥ bhya ity .yt
{ensure POST (y1,y2 « - - YnsZ0sZ2 - -« ZmsBiZ2y « -, %)}

end procedure specification - - @

One should note, however, that the names of the in out arguments (2,25, . . . , z,) as they appear in
the ensure clause refer to the final values of the corresponding objects (i.e. the values which the pro-
cedure has assigned to them when it terminates its execution), whereas the same names denote the initial
values in the assume clause. Usually, one will want to characterize the new values in terms of the old
ones, so one should have some way of recording the latter.

For example, if we are specifying a procedure which writes an element at the end of & file, this file
will be denoted by an in out parameter; the specification should say that the new file has the same ele-
ments as Lhe old one, plus one at the end. So, in order to be able to write the postcondition, we need a
way of denoting both the initial and final states of the file,)

To he able to express such requirements, we introduce the notion of anapshot. A snapshot is a
name associated with the value which a certain object of a program (e.g., a variable, an argument, etc.)
lakes al a certain point in the execution of this program.

A value becomes associated with a spapshot in a certain assertion; to denote this association, we
will usc Lhe assignment notation in the assertion:

{.assertion...; s := v}

17 -

where v is an object of the program, and s is the snapshot. This will be called a anapshot assignment.
Note, however, that a snapshot is not equivalent to a variable; it is in fact a much simpler object. We
enforee the following rule, which seriously restricts the manipulations which may performed on snapshots:

Snapshot Rule

Let sn be a snapshot.
There can be at most one snapshot assignment to sn
in the program unit in which sn appears.

Thus 2 snapshot may only be used to record the value of a certain program variable or expression
at one point of the program, so that further assertions may refer to that value. None of the games per-
mitted with variables, like changing their values, passing them as actual parameters to 2 procedure, ete.,
is applieable to snapshots.

Snapshots will allow us to specify procedures with in out arguments, es in the following example
specifientions:

procedure Round_to_next_power_of_two specification
in out z : INTEGER
{assume z > 0 ; zp:=1z};
{ensure z < 2 X 70 < 2 X z and z=2" for some n in INTEGER}
end procedure specification - - Round_to_nezi_power_of_two

procedure Sort_file specification
(inout f :fileof T
{assume ... ; fo:= [}

{ensure [is a permutation of [and f is sorted}
end procedure specification - - Sort_file

Tt will also be convenient to use snapshots and snapshot assignment in assertions other than assume
and ensure clauses (provided there is only one snapshot assignment per snapshot). Procedure SORT,, for
instance, is a correct implementation of SORT if and only il the following is correct:

{given fo:= f}
SORT,

{then [is a permutation of fo
and [is sorted}

Snapshots are only needed in connection with in out parameters. An alternative to using them is to
have a slightly more complicated notion of assertions, so that postconditions involve not only the current
values of program objects, but also their initial ones. This is the solution used in |Jones 80| It is
mathematically more elegant than the use of snapshots, which are a kind of hybrid concept, halfway
hetween the notions of variable in mathematics and programming. This other solution results, however,
in assertions becoming longer (since objects will appear twice); moreover, it does not combine well with
the idea of annotated program, which we find very useful.

The reader should be warned that the difficulties encountered in dealing with procedures with in out
arguments do not just stem from technical problems connected with our (or another) notation for pro-
eedure specification, but have much deeper roots. They reflect the inherent complication of this notion,
having to do with the more general problem of side effects (see Chapter 4). In functional

- 18-

programming {see Chapter 7), every procedure is the implementation of a [unction in the mathematical
sense of this term, with only in and out arguments. One thus avoids all the problems encountered with
in out arguments.

The main reason for having in out arguments is one of efficiency: in most programming environ-
ments, we cannot accept that every execution of, say, a "write” operation relative to a file create a new
version of the file, or that any array be re-allocated each time it is sorted.

- 18-

3.5. - CONDITIONALS
\We now turn to our second basic structure, the conditional.

= nnnounced in 3.3, conditional statements, or just conditionals, correspond to the problem-solving
fechnique of reasoning by cases. It is useful when a problem to be solved, say P, is the "union” of a cer-
tuin nnmber of problems, say Py,Ps, ..., Py, in the sense that any instance of P is also an instance of
one {or more) P,. Moreover, each P, should be casier to solve than P, and there should be a simple way
of tinding, for any instance of P, what particular P, it belongs to. In practice, this means that we will
need to know, for every i, a computable condition ¢; which is true if and only if a given instance of P is
also an instance of P

Solving a problem conditionally thus consists in decomposing it into simpler subproblems and con-
structing solutions to each of these subproblems. The program obtained in this way will, for any instance
of the problem, determine which subcase holds, and apply the solution of the corresponding subproblem
(fizure 3.3).

Q R
¢
AL

Bl R P

¢

f

e - -al L
., e

-~ ¢

d LY

Figure 3.3: Solving a problem conditionally.

More precisely, assume problem P is characterized by precondition @ and postcondition R. A solu-
lion Lo this problem should be a statement S such that the following is a correct program:

{given @} S {then R}

We will have a conditional solution to P if we know some conditions ¢, ¢3, .. ¢,, and some state-

meats Sy, Sy, ... Sy such that the following two conditions are satisfied:

o A- At least one of the ¢, conditions holds whenever @ holds; i.e.:
@ => cyorcyor..ore,

e B- fach §; provides a solution to the subproblem of P corresponding to the case where ¢, holds
initially {on top of @); i.e. the following n annotated programs are correct:

{given (Q and ¢,)} S, {then R}

{given (@ and ¢;)} S; {then R}

{given (@ and ¢,)} S, {then R}

If these requirements are met, we can construct a program solution to P, which will work in the fol-
Jowing way: in any particular instance of the problem, find a ¢, which is true (there must be at least one);
then npply the corresponding S;. The resulting program will be written:

-20-

{given @}
if
¢ — S, []
€y —> S-;U
................. 0
e =+ Sy
end if
{then R}

In this if ... end if notation for conditional statements, horrowed from Dijkstra®, the symbol []
servex 08 a separator between the various branches of the conditional statement; within each branch, the
wrrow — scparates the condition ¢, from the assoc’ated statement S Fach ¢, is called the guard of
the corresponding statement S; since it controls the coadition under which this statement will be exe-
cuted.

It is important to note that the correctness of this program will only be guaranteed if both condi-
tions A and B above hold.

A few examples follow. The reader is invited to check their correctness, using the rule for assign-
ment (3.2.3) wherever appropriate.

procedure Absolute_value specification
in z : REAL;
out ¢ : REAL
{ensure a = | z|}

implementation

if
20 — ai=z []
z2<0 = a=—12
end if

{then ¢ =} z[}

end procedure - - Absolute_value

2\ e use end if rather than Dijkstra's fi {which is if spelled backwards).

a1

procedure Mazimum_of. three specification
in 2y, 22, 23 : REAL,
out y : REAL
{ensure y = maz (z, 2, z3)}
implementation
if
5y > zyand 3, > 25 = yi=z []
zy > zyand z, > 73 —> yi=z, D
z3 >z and 23 > 2, —> yi=2zy
end if
{then y > 2z, and y > z, and y > 7,3}

end procedure - - Mazimum_of_lhrce

The next example assumes the existence of three procedures, process_A, process_B, process_C, which
will eorreetly process a card of type A, B or C respectively, the type of a card being given by its first
churacter (the reader who finds cards a bit out of fashion may replace the word “card” with “user’s
request” or "mouse sclection in a menu”).

procedure Process_card specification
in cerd : array [1..80] of CHARACTER
{assume cardf1/ = 'A’or card[l] = 'B’or cardfl] = 'C};
outr: R
{ensure r is the rzsult of correctly processing card}
implementation
if
card(1f = 'A’ —> process_A (card, re=) {]
cardfl/ = 'B' —% process B (card, r+) []
cardfif = 'C’ = process_C (card, r+)
end if ’

end procedure - - Process_card

Note that the conditional construct in the last example is correct only beeause the assume eiause of
the: procedure specification guarantees that property @ in the definition above will hold (at least one of
the guards is true whenever this statement is executed). An tmportant leature of Lhe conditional as we
have introduced it is that a program containing & conditional statement

if
¢ = § D
¢a S]
................. D
e = 5
end if

i« incorrect il it may attempt to execute this statement in a state where none of the ¢; guards is true.
Such an execution is impossible; if one really wants to imagine what "happens” when it is attempted, one
may think of it as raising an error (as when attempting to compute a/b where b is zero), or proceeding

.92

indelinitely without ever yielding control back, let alone producing any result.

Another interesting (albeit surprising at first) feature of this construct is that the guards ¢; are not
required Lo be mutually exclusive; if more than one is true simultaneously, the rule is that one of the
corcesponding S; statements will be executed (and only one), but there is no way to tell which [rom the
program Lext (in particular, it does not have to be the first ¢, such that ¢, is true in the order 1, 2, ...n in
which the alternatives are listed. This rule follows from the fact that the n alternatives of the if...end if
play a symmetric role in the notation, and should thus be treated on a par at execution time. There are
other justifications, which will be discussed in Chapter 4.

These two conventions on the if statement (run-time error if no guard is satisfied, non-deterministic
choice if more than one is satisfied) contrast with what is found in conditional constructs of most pro-
gramming langueges. Their motivations should be clear: provability and reliability. This discussion will
be pursued in Chapter 4 when we look at the familiar if ... then ... else ... construct found in many
languages.

- 923.

3.6. - SEQUENCING

Sequencing is also 2 problem-solving technique which entails decomposing a problem into subprob-
lems. llore, however, a solution to the initial problem will be obtained by sequentially composing solu-
tions Lo the subproblems, rather than by choosing one of them as with the conditional.

Sequencing will be appropriate to solve a problem P whenever there exists problems
P, P -+, P, such that each of them appears easier to solve than P, and applying successively solu-
lions to Py, Py, +*+, P, yields a solution to P.

Mare precisely, let P be characterized by precondition @ and post-condition R; to solve P means to
find a statement A such that {Q} A {R} is a correct annotated program.

Figure 3.4: Solving a problem by sequencing

A solution to P by sequencing will be obtained if we know n statements Sy, Sy, ..., S, (n > 1) and

n + 1 assert'ons So, Sy, 82, -, S, such that Sy = @, S, = R, and the n annotated programs of the
following form are correct (see figure 3.4):
{given S;;} S {then §} (i=1,2 - - n)

The solution to P by sequencing will then be a program whose execution consists in executing state-

menls 8y, Sy, ...y Sy successively, in this order. We will write the resulting program using the semicolon
separator introduced by Algol 60:
{given @} 5;;82; ** ; S, {then R}

Il necessary, we will explicitly introduce intermediate assertions:

-24-

given Q
Si;

{then A}
Sai

{then Ay}
Saei s

{then A,_,}
Sn

{then R}

A few examples follow.

procedure Rectangle specification
in width, height: REAL;
out perimeter, area: REAL
{ensure perimeter = £ X (height + width) and area = height X width}
implementation
perimeter 1= 2 X (height + width);
{then perimeter = 2 X (height + width}}
area ;= height X width
{then perimeter = 2 X (height + width) and arec = height X width}

end procedure - - Rectangle

procedure Compiler specification
in sp: SOURCE_PROGRAM
{assume correct (sp)};
out oc: OBJECT_CODE
{ensure oc is a translation of s}
implementation

variables ts . TOKEN_SEQUENCE,
as : ABSTRACT_SYNTAX_TREE
st : SYMBOL_TABLE;

{given correct(sp)}
LEXICAL_ANALYSIS (st, ts «—);

{then [i3 the sequence of tokens from s}

SYNTACTIC_ANALYSIS (s, as «, st —);
{then a is the abstract syntaz tree corresponding to |,
and st the associated symbol table}

CODE_GENERATION (as, st, oc +)
{then oc is a translation of [a, stf}

‘end procedure - - Compiler

The next example, from numerical analysis, is a classical method of solving systems of linear equa-
tions. This example is typical of the way a problem may be solved by reducing it to a sequence of sirpler

- 95-

«itbproblems. The program below assumes the existence of two procedures: Triangular-solver, which solves
a linear equation @ X z = b where the regular matrix a is lower-triangular {which makes the task much
casier than in the gencral case), and Choleski, which, given a square matrix a, computes two fower tri-
angular matrices a; and ag such that ¢; X gy = a (this is called "Choleski factorization").

procedure Linear_solver
in a:array [L.n, 1.n,] of REAL,
b: array [I..nf of REAL
{assume a is non-singular};
out z: array [l.nfof REAL
{ensurea X z =b}

implementation

variables @, a.: array [1.n, 1.nfof REAL,
y: array [1..nf of REAL;

{given a is non-singular}
Cholesks (e, 21+, ag+—);

{then a; X ay=a and a, and ay are lower triangular, non-singular}
triangular-solver (a,, b, y»—);

{then a; X y = b and a, is lower-triangular, non-singular, and a, X ¢y =a}

triangular-solver (a,, y, z+—)
{thenay X z=yanda; X y=>banda X g;=0}
--Thusa; X ¢ X z=05,givinga X z=0.

end procedure - - Linear_solver

- 926-
3.7. - LOOPS

3.7.1, - Overview

Our fourth and last basic structure, the loop, is an application to programming of the fundamental
technique of solving problems by approximation. Approximation is a very natural way to procced when
one coes not sce a dircct way to solve & problem: make a guess; then look at the result; maybe you were
lucky enough to hit on a solution; if not, try to improve your current estimate, and repeat until you are
satisfied with it. '

Let us assume again that the problem to be solved is characterized by precondition @ and postcon-
dition R. @ is our hypothesis, or initial assumption, and R is our goal, describing the state that we hope
(o rench, We are looking for a statement § such that the following is carrect:

{given Q} S {then R}

In arder to find a solution S in the form of a loop, we need five ingredients:

e two conditions (boolean expressions), the invariant [and the exit condition £,
@ two statements, the initialization B and the transition T,
e an integer expression, the variant V.

These elements must have the following three properties.

e 1 - The invariant I and exit condition E must provide a decomposition of the posteondition R, in
the sense that

R=Iand E

o 2 - The "initialization” statement, B, must ensure, if executed in a state where the precondition @
is satisfied, that the invariant / becomes true and the variant V (an integer expression involving
some objects of the program) becomes non-negative; in other words, the following should be correct:

{given @} B {then [and (V >0)}

e 3 - The "transition” statement, T, when executed in a state where the invariant [holds and the
variant V is non-negative but the exit condition E does not hold, should yield a state where [is
still satisfied (hence the name "invariant”), and V is still non-negative but has decreased (hence the
name "variant™). This property may be expressed by the fact that the following annotated program
fragment, which uses a snapshot [or the initial value of V, is correct:

{given [and (not E)and (V> 0); V,:=V}

{then Iand (Vo> V2 0}

If we have found I, E, V, T and B with these properties, then we can construct a program solution
Lo our problem, which will work in the following way (see figure 3.5): starting from & state where Q is
sitisfied. exceute B, thus yielding a state where [is salisfied. Since R = [and E, we may say that [is
an "approximation” of the postcondition R. If E also holds, then the initial "guess” was correct. If not,
the pragram will try to improve it by executing T; this, always performed under falsity of E, will not
invalidate f. The process will be repeated until £ holds, thus R.

- 2T~

Figure 3.5 - Solving a problem with a loop

The termination of this process is guaranteed by the properties of the variant V- since V is non-
negative after the execution of B, and every execution of T (if any at all} will decrease it if started in a
state where E is not satisfied, this cannot go on forever (remember that V is integer-valued and T leaves
it non-negative). There must be & time when E becomes true after a finite number, say n, of executions
of T. Note that n may be zero and is less than or equal to the value V has after the execution of B.
“This initial value thus provides an upper bound on the efficiency of the algorithm used. For this reason,
when choosing among several possible variants, we will evidence the smallest one.

The process is very similar to that of computing an approximate solution to & numerical problem.
IMigure 3.5 is a symbolic illustration. In the "problem space”, assertions are identified to subspaces (sets of
points which satisfy them). We start from subspace @ and want to reach R, which is part of the larger
subspace [} it is the part of [where E holds. B first takes us to some starting position in /. We will then
use T to get closer and closer to R, without ever leaving I (the "convergence” region). The variant V may
be thought of as the distance to R from any point in [.

Of course, the main difference with mathematical approximation methods is that in programming
loopx must reach their limits. In mathematical analysis, they usually don’t: their variants take real,
rather than integer, values, and thus may become infinitely small. For the practical implementation of
numerical algorithms, a common practice which brings together the mathematical method and the compu-

tational rule is to take V = % , where d is a bound on the distance to the exact solution, and ¢, the
tolerance, & positive number (for any real number z, [z} denotes the largest integer smaller than or equal

to z)

3.7.2. - Notation

We now introduce a notation for the above process which includes all its "ingredients”. We shall
write the loop as follows:

- 28 -

{given Q}
from
B
keep
/]
decrease
v
until
g
loop
o
end loop .
{then R}

Woe illustrate this notation by a few examples before discussing it in more detail.

procedure Search_file specification

in & T,--Tis any type
[fileof T,

out isthere: BOOLEAN
{ensure (isthere <> g appears in f)}

implementation

var current: T

from

open(f); isthere = false
keep

isthere i3 true if and only 1f an elemernit equal to £ has been read
decrease

n-r

where n = number of elements in [,
r = number of elements read in f
until isthere or eof (f) loop

read (f) current;
isthere = (current = z)

end loop

{then
(isthere and (current = z}) or

{(not isthere) and [does not contain any element equal to =)}

end procedure - - Search_file

. 29-

procedure Search_ordered_file specification

in z: T, - - T is eny ordered type
ffleof T

{assume [15 sorted};

out isthere: BOOLEAN
{ensure isthere <> .z appears in f}

implementation

variables current: T,
one_non_less: BOOLEAN;

{given [is sorted}
from
open(f);
one_non,_less := false
keep
one_non_less is true if and only if ezacily one element has been read
which is greater than or equal to z
decrease
l-r+1
where I = number of elements of [less than z,
r = number of elements read in f
- - Note that the variant of Search-file s also correct here,
- - but this one gives some evidence of the efficiency improvement
- - resulting from the use of the fact that f1s sorted.

until eof(f) or one_non_less loop

read(]) current;
one_non_less = (current > z);

end loop ;

{then (one_non_less and the first element > z has been read) or
(not one_non_less) and [containg no element 2> zJ}

tsthere = one_non_less and then (current = z}

end procedure - - Search_ordered_file

-30-

procedure Smallest_integer_with_more_than_6_digit_factorial

out n: INTEGER
{ensure n!> 10° and (m! < 10° for all min O..n-1)}

implementation
var f: INTEGER;

from
= 0; If =11
keep
f=n!and {m! < 10° for all min 0..n-1}

decrease
maz (0, 10° - f)

until f > 10° loop
=+ Lif=fXn
end loop

{then j = n!and (m! < 10° for all m in 0..n-1) and f> 10°%
end procedure - - Smallest_integer_with_more_than_6_digit_factorial

230

procedure Compute_ged specification
in g, b: INTEGER
{assume a > O and s > 0};
. out g: INTEGER
{ensure g is the greatest common divisor (gcd) of a and b}
implementation
variables z, y: INTEGER;

from .
zi=a,y=1}%

ged (z,y) = ged (a,b)
decrease

maz (z, y)

until
z=y
loop

keep

{given z # y and ged (z2,y) = ged (a,b)}
if
z>y =* z=z-y|]
y<z = y=y-z
end if
{then 2> O and y > 0 and gcd (z,y) = ged (a,b)}
- - Note the importance of the assertion z # y

- - in the correciness of the if statement.
end loop .

{then ged (7,y} = gcd (e,b) and z = y}
- - Thus ged (a,b) =z =y
-
end procedure - - Compute_ged

3.7.3. - Discussion

With these examples in mind, we may ponder a little on the henefits and drawbacks of the notation
it rodneed above.

The reader will have noted the differences with the notations of common programming languages.
(Yae minar polnt is the use of

until ezit loop action
instend of the more famliar
while continuation loop ection

ax found in Algol, Paseal, PL/T ete. (the lormer is found, however in Bliss, Lis, and other languages). The
two constructs are equivalent in principle, with continuation = not ezit_condition. Choice between the
Iwes is mostly a matter of taste. The while form makes it immediately clear that continuation will be the
precondition of action; we prefer the until form beeause it emphasizes the exit condition which is true

-32-

afler exeention of the loop, as part of the loop postcondition ezit_condition and invariant®

Morc important is the explicit inclusion of the variant (decrease clﬂl.use) a.nd irfvaria.nv. (keep clau-se)
in the program text. This convention may seem a bit puzzling at first sight, since it makes the n.otahun
for loaps longer, and puts expression of facts about the program on the same step as the actfml mfat.ruc-
tions (“from B, "loop T') and test {until ezit_condition) which this program performs. Ye(.'. mclulsmn of
Ihese clausos is useful 2s & means to enhance clarity of programs. Clarity here is taken as including the
property that programs contain their own proof, so that their correctness (or lack thereoft) can be
cheeked without having to build a complete argument from scratch.

Although it is certainly possible to use a more traditional notation for loops and include the variant and invariant as

comments, we have found that making them a compulsory component of the notation for loops lorces one to think
aboul the variant and invariant associated with any particnlar loop: this, in our experience, gives the programmer a
Detter understanding of the loops he is writing. and enhances the readability of programs (the reader can easily deter-
e for himself the validity of this claim by assessing whether the systematic use of this convention does or does not
improve the understandability of the programs in this book and make their correctness easier to check).

it is more surprising that the "from B" clause is also novel if we compare the above not,at:lon with
existing programming languages. Every loop should have an initialization; the reason {’or this, as we
lave soen, is that the initial truth of the invariant should be established before any evaluation of t:ht.a .t.es.t,
(E). let alone execution of the loop body (7) may take place. It thus seems sen:?lb.le to mclud? tjh.e |p|t|z’al|-
sntion as a syntactically required component of the loop construct. Indeed, omission of loop initialization
is a common programming mistake, which may be hard to detect because the invariant may happen every
now and thep to hold initially, just by sccident.

The only cases for which explicit initialization is not needed are loops with true (c‘he .condicion
which nlways holds) as invariant, usually not very interesting, and loops written at tl}e beginning of Phe
body of another loop, whose invariant implies theirs. We will meet such an example in the next section
(:mrAi omit the from clause). This is, however, a rather special case.

One of the reasons why initialization has not become 2 syntactic part of while or until loops in programming

fanginges may be that the first exposure to loops of many people has been the indexed loop (for or DO}, studied in

the next Chapter, which carries its initialization with itsell. but in an implicit way, The other reason is that this syn-

Lactic extension is not strictly necessary since the initialization may always be written as an independent set of state-

ments before the loop (using sequencing). But it seems better to include in the loop those statements which really be-

long w it.

i Tamiline with the repeat...until... construct found in Paseal. C and ather languages should not
lo el <eh construets denote a loop whose hody 'is always execnted at least once. the test heing per-
famead o1 the eud. s opposed to the while loap which performs it on entry. Our from...until. Joop... .
aeie s like o while loop in this respects the only difference with the while loop is that one writes the exit
capfiticor ehtlier than the contimtation condition.

.33-

3.8. - ASSERTION-GUIDED PROGRAM CONSTRUCTION

3.8.1. - Overview

In the presentation of four basic control structures in the previous sections, an important part was
played by the assertions (pre - and postcondition) associated with each kind of statement. QOur motiva-
tion for this was to make sure that every programming construct (describing potential events) has a
mathematical explanation (in terms of properties). In an "annotated program", the assertions are just as
important as the statements which they accompany and justify.

We may give an even more fundamental role to assertions, and consider program statements as
dedueed, in a certain way, from their pre- and postconditions. This approach may be called assertion-
guided program construction; the idea is to try to build the program by working on the specification itself.
The important idea here is not that we start from the specification (after all, any program should be built
in order Lo fulfill some specification), but rather that we consider the specification as transformable
malerial of its own, and try to construct the program by first working on this material, transforming it in
virious ways so as to obtain a form which will more easily yield a program solution.

Such an approach obviously implies that specifications should be expressed in a sufficiently formal
way, so Lhat they can be manipulated systematically.

Befare we describe some of the techniques which may be used to construct a program by working on
its specilying assertions, we should warn the reader about the limitations of this approach: what this sec-
Lion introduces i3 not a set of recipes for constructing programs "sutomatically”. There is no miracle
powder to replace reflection and invention in designing programs. The concepts illustrated below are use-
ful as aids in understanding and explaining existing programs, and in guiding the search for new ones.

3.8.2. - Embedding

We shall concentrate on the systematic derivation of loop algorithms, since they require the most
invention an the part of the programmer.

When introducing loops, we defined the loop invariant as an assertion [such that the goal (postcon-
ditton) R may be expressed as

Tand ¢

where E is the exit condition. The invariant may thus be described as a "weakened version of the goal™: it
i weak enough so that it will be easy enough to ensure it initially; but it is strong enough to yield the
goal when combined with teh exit condition. Loop construction strategies are thus strategies for weaken-
ing the conclusion in a fruitful way.

This process may be visualized in the following way (see figure 3.6). When looking for a solution to
a programming problem, we are trying to find one or more objects satisfying the goal condition in a cer-
lain "sohilion space”. A loop solution, using an invariant which is a weakened form of the goal, may be
scen as Lhe result of embedding the solution space (whose “charactertstic function” is the goal) in a larger
one, corresponding to the invariant.

Such an embedding has the property that it is easier to find a starting point in the larger space, but
ol course Lhere 18 no guarantee that we wifl hit the actual solution space right away. The ioop solution
uses o transformation that, starting from an element in the larger space, will find a new one which closer
to the solution space. Figure 3.6 shows a pictorial representation of this strategy.

- 34 -

Gp (set of elements satﬁsfying
Generalized Postcondition)
x (so]ution : element space)
satisfying original
postcondition)

1
#
'
\ s
ol
|
\j
\\
& @, {initial estimate)”

GS) (Generalized solution space)

Figure 3.6 : Embedding

Figure 3.8: Embedding

Lel S be the original solution space, P the set of elements satisfying the postcondition in § (i.e. the
set of solutions), GS the generalized solution space and GP the generalized postcondition (which will serve
as invariant), The program resulting from Lhel embedding strategy will have the following form:

variable s: GS;

from

8 i="an element satisfying GP"
keep

GP
decrease

"distance to "
until s in S loop

bring s closer to S, preserving GP
end loop

{then GPand sin S} {i.e. P}

s (original
solution

- 35-

‘I'he remainder of this section will be devoted to the study of some varianls of the embedding stra-
lemv. We will foeus on two of them:
¢ constant relaxation;

e uncoupling.

3.8.3. - Constant relaxation: Non-ordered table searching
Our first example will illustrate the "constant relaxation” stralegy. Assume we have an array of ele-
wents of any type T, and an clement z of the same type, and we want to determine whether z is ~qual to

uny of the clements in ¢ (an casy enough problem, but more difficult ones will come). The specification of
the corresponding procedure may be written:

Deciding that the result of the search will be a boolean variable isthere, we write down the posteon-
dition as

isthere <> (z = t/if for some iin 1..n)
{where @ <=> b means “cither a of b are both true, or 4 and b are both false).

The specification of the procedure Find which we are trying to construct is thus as follows. The
dimension n of the array is assumed to be a coustant, its value ts irrelevant,

procedure Find specification
in t:rarray [t.nfof T;
z.s Tk
out isthere : BOOLEAN
{ensure isthere <= (z = tfi/ for some {in (.n)}
end procedure specification - - Find

The idea of assertion-guided program construction is that we look at the specification (the postcon-
dition) and see how it can be refined to yield a solution {program). If we are looking for a loop solution,
the refinement will take the form of a weakening.

Here the postcondition is

isthere <> (z = tfif for some iin 1.n) (PC)
Wo may note that the difficulty of ensuring the validity of PC stems from the presence of the interval 1..n
1f n was replaced with a smaller value, then the problem would be easier; in particular, if n was replaced
with 0, then PC would be trivially true by taking tsthere to be false. (note that the interval a.b is
empty il b < a).

We thus have our embedding, or weakening: introduce a {resh variable, say 7, which will take its
valnes in the interval 0.5, i.e. is declared as

variable j: 0.n

and rewrite the postcondition as .

= /i i i)l and = n
which is cortainly equivalent to PC. Now the first (boxed) part of this condition, say INV, has all the
quatifications of an invariant: it is easy to ensure initially (take false for tsthere and 0 for j}; it is a weak-
cned form of the postcondition PC, since it coincides with PC for j = n; and it is not too hard to maintain
it while bringing j a little closer to n, as will be seen shortly. Thus we look for a solution of the form:

=308z

from

7 5= 0, isthere = false {then INV}
keep

INV
decrease

n-g
until

j=n
loop

"Qet § closer to n, maintaining the velidity of INV"
end loop

{then PC}

I'he foop body is easy Lo obtain. It must be a statement. T such that the followiag is a correct anno-
tated program fragment:

{given INV and not E; V; = n-j}
T
{then INV and n-j < Vg}

where E is the loop exit condition j = n. Since j is declared as ranging from 0 to n, the condition not £
i~ eqnivalent to § < n

The simplest way to Get § closer to n is to increase it by 1. Thus we arc looking for a statement T
sueh that the following is correct:

{given
(isthere <=> (z = tfif for some {in 1.5}
and j < n}
J=g+l; T
{then
(isthere <= (z = tfi/ for some i in 1..j))}

The postcondition is very close to the precondition; more preciscly, the precondition implies that
after execution of the statement 5 := j+1 the following holds:
(isthere <=» (z = t[if for some ¢ in 1.j-1))}
w0 that the specification for T is:
’ {given (isthere <> (z = t]i] for some iin 1..j-1))}
8 {then (isthere <> (z = tfi/ for some iin 1..j))}

The obvious solution is to take for T/ the following statement:

1sthere == isthere or (tfy] = z)

wh'eh is ensily shown to satisly this specification by applying the substitution rule (3.2.4).
We thus get a correct implementation of procedure Find:

.37

procedure Find (1, z, isthere<—) implementation
variable j: 0.n;
from
7 = 0; tsthere = false
keep
{(isthere <= (z = t[i for some iin 1..j))}
decrease
n-y
until
j=n
loop
j=i+1y
isthere ;= isthere or (tfjf = z)
end loop
{then isthere <=> (z = tfif for some {in 1..n)}

end procedure implementation Find

The reader is invited to investigate for himself how the obvious improvement (stop the loop if isthere
' found to be true) may be carried out in the same rigorous framework.

The embedding method which we have evidenced on this example may be called constant relaxation:
it entails replacing & constant of the postcondition (n in our example) by a variable, thus "relaxing” the
gonl and making it possible to get started by assigning an appropriate initial value (usually far away from
the final one) to the variable.

This method is of very general applicability. In particular, it underlies the algorithms which may be
deseribed by "for” loops, as studied in the next chapter.

3.8.4. - Uncoupling: Searching sequentially an ordered table

Our second example is a variation of the first and will allow us to evidence another embedding stra-
tegy, which we call "uncoupling”. This time we assume that the array ¢ which we are searching for an
oceurrence of z is initially sorted (and will remain so since it is an in parameter that cannot be changed).
This requirement implies that there is an order relation on the type T, written <; by saying that the
array ¢ 19 sorted, we mean that

e < tfiffor 1< k<1< n

As belore, we decide that the result of the search will be a boolean vaciable isthere and the postcon-
dition is the same as with the non-sorted array example. The specification of the new procedure, which we
call Search, is thus:

procedure Search specification
in z: REAL, t: array {1..n} of REAL
{assume tjkj < tjljfor 1 < k<1< n};
out wsthere: BOOLEAN

{ensure isthere <> z = tfi/ for some i inl..n}

end procedure specification - - Search

.38-

Nole again that by specifying in z, t we require that z and ¢ be left unchaoged by Search, which
takes eare of some trivially wrong apparent solutions, like assigning the value of z to t{i] and the value
true 1o isthere. This also ensures that the precondition (¢ is sorted) will remain invariantly satisfied
thronghonut the program body.

{{ow should we proceed? The previous solution is of course still applicable, but here we would like
to take advantage of the fact that the array is sorted.

One rather natural remark is that, when fsthere is true, checking this fact is the same as looking for
the index § which appears in the postcondition. [f we know such an 1 in l.n, then isthere is true; ¢ is
then such that 3=t fil.

so when @ exists, it gives a simple way of computing isthere (by just checking whether z = #fif). It
wenild be quite nice to be able to extend the dcfinition of ¢ so that it always exists and isthere may be
computed in a simple way by just looking at this new 1, -

IT we use the precondilion, i.e. the fact that ¢ is sorted, and define ¢ as the largest index in L.n, if
any. such that i} < z, then z belongs to ¢ il and only if i is defined and z = tfi/. Since the latter condi-
tion is very simple to check, it is tempting to start from it when looking for an extended definition [¢,

t ax defined above does not exist only in the case when z is smaller than the minimum value of ¢,
ye. < #f1] It is quite natural in this casc to take 0 as the value for . In this way ¢ is always defined;
itx precise definition (which is equivalent to the previous one when { > 0) may be expressed as:

{t€ 0..nand
(z 2 t{k} for all kin 1..i) and
(z < tfk] for all kin t+1..n)}

{1t i essential here to recall that any property of the form "p(z) holds for all z in £" is trivially true
whenever B is empty, regardless of what the properly p(z) is, and that the interval a.b is empty for
a>h).
So the problem of writing Search may be replaced by that of writing Searchindez with the lollowing
specifieation:
procedure Searchindez specification
in z: REAL, t : array [1.n] of REAL)
{assume tjk/ < tfif for 1 < k<1< n);
out 4 0..n
{ensure z > t[k/ for all kin 1..{
and z < tfk/ for all kin 1 + f..n}

end procedure specification - - Searchindesz

Indeed, once we know such a correct Searchindez, the implementation of Seerch may be simply writ-

fen as:

procedure Search (=, ¢, istheres~ } implementation
variable i 0..n;

Searchindez (z, t, ie=) ;
isthere = (i # 0) and then (#fi} = z} }

end procedure Search

Nole how careful we must be in expressing the postcondition of Searchindez: by not giving the right
interval, O.n, for 1, or writing < at one of the places where < is required, etc., we would have obtained a

.39-

specification which either does not always have a solution, or does not uniquely determine a solution.
This. of course, does not mean that the specification above 1s the only possible one; the reader is invited
Lo derive for himself the specification obtained from initially defining ¢ as "the smallest index, if any, such
that z < ¢[d]".

ltow are we to build Searchindez? Looking at the postcondition, we see that it has the particular
form

p(t) and gq(f)
where

p(i)is tfe] < z for all kin 1.4

qft) is tfk] > z for all kin i+1..n

The "uncoupling” strategy applies to postcondition of this general form (p(i) and g¢(1)). It is based
ou the remark that the reason such & postcondition may be hard Lo ensure is that it is the same ¢ that
appeses in both p and ¢. The uncoupling idea thus entails replacing ¢ with two variables, say i and ;
("wncouple”) and looking for an algorithm which will, first, ensure separately the validity of p(:) and ¢{5);
then, bring © and § closer together while maintaining the validity of p(¢) and g(7), until § becomes equal
to 1.

In olher words, the uncoupling strategy means that we rewrite the postcondition in the exactly
equivalent form

Cafiland ¢fill and (i =j)

and choose the first (boxed) part of this new posteondition as the invariant, the second part as the exit
eondition, and the distance between i and j (defined in & suitable way) as the variant for a loop of the
following form:

from

Si=dg; j=1p
keep

p (i) and q(3)
decrease

distance (1,5)
until

i=j
loop

bring { and 3 closer

end loop

This program 15 correct il p(in, jo) is satisfied, the action "bring i and j closer” conserves
pii) and qf), and distance (1,j) is an integer variant.

Applying this strategy Lo our problem, we express the posteondition, using a second variable j, also
ol range 0.n, as

p(i)and g(;}2nd i =7

with

.40 -

p(i) = (t{k] £ z for all kin 1.7)

q(j) = (t[k] > z for all kin j+1.n)

laoking for a loop of type (3) above, we see that the initialization
ti=1dg;] = Jo
will be carrect by taking 0 for ig and n for jo, since p(0) and ¢(n) are trivially true.

Whal remains now is to find a way to "bring and j closer” while maintaining the truth of p(¢) and
q(7) il il is satisfied and the exit condition i = j does not hold.

Since we start from § =0 and j = n and we want to "bring ¢ and 7 closer” until + = 7, we shall
inelude the property 0 < ¢ < j < nin the invariant, which will thus be:

p(i)and ¢(j)and (0<i<j<n)

The most obvious way to shorten the inlerval is to increment ¢ by I, or alternatively decrement j
by 1, and sce what must be done in order that the invariant still be true. Since the problem is symmetric
in ¢ and j (or, more precisely, in ¢ and j—1) and there is no clear reason at this point to upset this sym-
metry, we will consider these two actions on a par,

Assume p(i} and ¢(7) is true, and that the exit condition is not true, i.e. { < j. Under what condi-
tions miy we execute ¢ o= { + 1 or y = § - 1 and preserve the invariant?

Clearly, we may execute the first of these operations if and only if p(i+1) is true, and the second if
andl only il g(7-1) is true,

Consider i first. Recalling that

pli) = (tfk] < z for all kin 1.1}
we see Lhat

p(i+1) = p(i) and thi+1] <z

Note that this is only meaningful if ¢[i+1] is defined, that is if + < n. Thus starting from a state
where p(f) is satisfied, we see that we may perform the assignment ¢ == 1 + 1 if and only if

i < nand then tfi+1/ < z
Stmilarly, by expressing q(;7—1) in terms of ¢(j), we find that the condition for the second assignment
(7 = j-1) to preserve the invariant is

7> 0and then tfj/ >z
The extra conditions (¢ < n and § > 0) are indispensable but it turns out that they are satisfied when the

loop botly is executed: the invariant includes 0<i<j<n, and the negation of the exit condition is § < j, so
it their combination implies that both 41 and 7 lie in the interval L.n. Thus we may use just
ti+l) <z
el
il >z
us respeelive guards for the two slatements. A tentative loop body is thus the following conditional state-

Hent s

.41 -

if
tivlj <z — i=i+1]
thl>z — §=j1

end if

We have almost found a solution, since we know that each branch of this conditional, executed
under the condition, that its guard is true as well as the invariant and that the exit condition is false, will
maintain the invariant and decrease the variant. But we have to be careful: as mentioned in section 3.5
when we introduced the conditional statement, a conditional is only correct if at least one of its guard is
salisficd whenever it is executed. Is it always the case that tfi+2] < z or #)3/ > z wheu the loop body is
exeeuted? The answer is yes: this property is implied by the fact that the array is sorted; since + < 7 in the
loop. the negation of the first guard, namely tfi+1) > z implies tfj/ > z, namely the second. Thus the con-
ditional statement is safe.

So we have a simple and correct version of Searchindez:
procedure Searchindez (z, t, ir) implementation

variable j: 0..n;

from
t=0;=n
keep
p(i)and ¢ffjand 0<i<j<n
decrease
R}
until
i=7
loop
if
tirl] <z — i=i+1]
thif >z —+ j=j-1
end if
end loop

end procedure implementation - - Searchindez

Now we are in for a small surprise: the program which we have obtaiced is not exactly the way
sequentinl search is usually writien! The reason is that we kept the symmetry between ¢ and j—1. If we
forart nhout this (esthetic) constraint. we may note that if the first guard is false, i.e. tfi+1/ > z, then the
invariant will still be preserved if we immediately assign the value of t to j. The loop body may thus be
replaeed byt

if
t/l‘+1/§ z =+ 1=+l []

thtl] >z —> j:
end if

i

t

S 42-

(of ennrse, we could have performed the symmetric change instead). Now we may dispense with variable
} aitagether, by noting that loop termination occurs when either ¢ =n or tft+1] > z, thus yielding the
following form, which is sequential search, written in the more usual fashion:

from =0

keep ... decrease ...

until { = n or else t/i+1/ > z loop

to=i+1
end loop

The reader is requested to complete the keep and decrease clauses of this loop.

3.9. Uncoupling revisited: binary search

The efficiency improvement which we obtained by removing the symmetry between 1 and j~1 was
marginal at best. There is & much more promising avenue for improving the efficiency of sorted table
searching based on the fact that t is an array. The basic property of arrays is "direct access™: any element
may he accessed or modified directly {in constant time) if its index is known.

The idea here, which you will have recognized as as the principle leading to the well-known idea of
binary search, is to try to "bring { end j closer” {aster than just one step at a time. Before reading the
rest of thix section, the reader is urged to try to write a simple binary search program and make sure that
it is correct. For a start, you may take a look at the four programs in figure 3.7; it turns out that these
four programs are ali wrong; you should convince yourself of this by finding, for each of them, a case for
which it fails to terminate, exceeds the array bounds, or yields & wrong answer.

The remark on the basic property of arrays can be interpreted in the framework of the previous dis-
cussion. Since the array is sorted, comparing z with any element whose index lies between i and j in ¢
(nol just t[i+1] or ¢[j—1]) makes it possible to discard a whole interval for the rest of the search. More
precisely, let m be such that

ism<y
Assume that ¢{m] is defined, i.e. m € 1.n. Thenif t[m] < z, we can infer that
tfe} < z for all kin 1..m

that is, p(m}is true. In the other case, t(m] > z, we have that
tfk] > z for all kin m..n

or, to put this in "¢" form:
tfk} > z for all kin (m-1)+1..n

That is, g{m — 1) is satisfied.

_ 43 -

Figure 3.7: Four programs for binary search

variable 1, j, m : INTEGER ;

from
i=1;j=mn
until
=y
loop
2
if
2< tfm] — j=m{]
> tm) —* i=m
end if
end loop ;

isthere := (z = tfif)

vzria.ble.i, 7, m : INTEGER ;
found : BOOLEAN ;

from

ti=1;7:=n, found := false ;
until

i = jor found
loop

— [m !
2

if
2<tfm| — j=m-1[}
z=tfif — found :=true [}
z>tm] — i=m+1

end if

end loop

isthere = found

variable 1, j, m : INTEGER ;

from
t=0;7=n
until
1=7
loop
el i B
2
if
2< tfmf — ji=m]
z>ifm] — i=m+1
end if
end loop ;

isthere := ¢ € L.n
and then (z = tfif)

variable ¢, 3, m : INTEGER ;

from
ti=10;]=mn+l
until
iy
loop .
e 1__‘*'.1 E
i 2
if
2L tfm) — ji=m{]
> tfm| — {=m+1
end if
end loop ;

tsthere :=={ € 1.n
and then (z = t[if)

- d4-

The following class of algorithms will thus be a correct implementation of Searchindez:

variable m: L.n
fromi:=0j=n

keep
pfi)and gff)and 0<i<j<n
decrease
j-t
until
j==x
loop
m .= "some value in 1..n such thai i < m < 7'}
if
Ymf <z — i=m{]
tfmj >z — j=m-1
end if
end loop

An important detail should be noted here: we have specified thal m should be such that ¢ < m < 3,
not anly + < m < j as was previously suggested. This is necessary to ensure termination: if both actions
i:=m and 7 :=m — | are to decrease the variant §—7, then m should be lesser than or equal Lo ; and
#lrictly greater than €.

Note that the requirement i < m < j entails that m indeed belongs to the interval l.n, since
<1 <3< nisinvarant.

Any policy for choosing m which meets this requirement is acceplabic. Two simple ones are.choos-
ing m = { + 1 and m = j respectively; both lead to variants of the above sequential scarch algorithm. A
more balanced choice is to take m as the average of ¢ and 7, Lo obtain a correct program, we should take

not | AEL] put %J- + | so that it is guaraniced that m > ¢ (sce cxercise 3.2 as to what

iy

7)

We thus obtain the following program for Searchindez, a version of the "binary search” algorithm:

maodifications will allow choosing m =

.45 -

variable m: I.n;

from
i=0f=m
keep p(t)
and ¢fj)and 0<i<j<n
decrease
-t
until
fi=1
loop
m = —'-%l +1;
if
tm| < z->i=m D
tm|>z->ji=m—1
end if
end loop

The advantage of this algorithm over sequential search, from the potnt of view of elficiency, comes
from the fact that the scarching intcrval is approximately divided by two, rather than reduced by one, at
cach pass through the loop: thus, the number of iterations will be bounded by logy n rather than a,

To verify that the loop ts executed at most llog._, nJ times, we prove Lhat llogg (5 — z)J is a variant.
I'or sy real numbers a and &, llog_»(a)l < llog-_:(b]] ilfa < % Here, 7 — 1 is indeed at least divided by
+in both possible eases in the loop, since whenever & < 7 (i and j being nlegers):

el B R

i+ <;’-i
2 = 2

(This is trivially seen by looking separately at the cases ¢ + 7 odd and s + ;7 even).

Some remarks
['rom the examples scen so far of assertion-guided program construction, the following points are
worlll pondering
e Several algorithms, quite different in their actual working, some sequential, some binary, were
derived in the same framework. Actually, it is only at the last step {choosing how to "bring ¢ and §
| closer”) that different design choices lead to different computing methods,
« The heuristics used, "uncoupling”, is very general and quite independent from the particular prob-
lem of table searching, as will be scen below when we apply it to » completely different problem,
array partitioning.

- 46 -

o Wr have built all versions in such a way that we can be convinced they are correct, 2nd know
exactly why they are. It may be noted that binary search, although quite simple in its principle, is
uot so easy to write down correctly; this has apparently been known for a long time, since Knuth, in
lis woll-known treatise in algorithmics [Knuth 73], felt it necessary to write: "Although the basic
tdenn of binary search is comparatively straightforward, the details can be somewhat tricky, and
miny good programmers have done it wrong the first few times they tried”. We now understand
that the reason for this is all the delicate ponts in the analysis above, in particular the care which
ninsl be exercised when writing < or <, when ensuring that j — ¢ actually decreases every time
thirough the loop, when assigning an interval {0..n or 1.n) to each variable. Typical programming
errars, for this problem, such as writing a loop which will yield an incorrect result when z does not
lic belween the minimum and maximum values of ¢, or wiil sometimes try to access an undefined
value such as t{0] or t{n+1], or will not always terminate, may be traced to such oversights in the
analysis, It is instructive in this respect to look at the programs of figure 3.7 (did you comply with
our request at the beginning of this section and tr: honestly to come up with your own version?).

.47 -

3.10. - AN EXAMPLE: ARRAY PARTITIONING

We will end this discussion of assertion-guided program construction with a slightly more difficuit
cxample, corresponding to a classical algorithm. We will show how the method can be applied to the
derivation of several variants of the same algorithm; the first variant is fairly simple but rot very
cfficient; we will then improve the efficiency in two successive refinements, while relying on the assertion-
guided approach to check at every step that correctness is preserved.

3.10.1. Specification and usage

The problem we study is array partitioning; it arises in connection with sorting and so-called "order
statistics”. Let z be an element of a certain type and ¢ an array of the same type, with size n. Every ele-
ment of the array has a key. For simplicity, we shall abbreviate the key of element 4, normally written
key (ifi]), as key;(t) or just key, il there is no ambiguity as to what array is meant.

eys are ordered, that is to say, we can compare keys of clements using an order relation written <
(less than or equal to; “greater than or equal to" is > and "less than” is <). We use the abbreviation

key, 4(t) < keye o{t)

to mean “all keys of elements in t [a..b] are smaller than or equal to all keys of elements in ¢ fe..d/" (true if
either interval is empty). Similarly, key, ;(t) < k means "all keys of elements in t [a..b] are less than or
equal to k" (true if a..b is empty). Again, we omit (¢) if the context makes it clear what array is meant.

The partitioning problem is to split the array in two parts, where the elements in the first part have
smaller or equal keys than the elements in the second part. The final state is described by figure 3.8.

elements with small keys elements with large keys

N FIR S | j
Figure 3.8: Final state of Partition

To reach this desired state, the partitioning algorithm will move around some elements and find an
index s such that, in the end, key; ,(t) < key,si ;(¢). The value of s will be computed by the program as
it reorganizes the array, since there is no way to know it in advance.

As it turns out, what will be required in most applications will be to partition some subarray of ¢,
not necessarily the whole of it, so that we will have a specification of the following form. We call the pro-
cedure Partitionl, reserving the name Partition for a slightly modified form, to be introduced soon.

procedure Partition! specification
ina b:1.n
in out ¢ : array [I..nfof T
out s:d.n
end procedure specification - - Partition

The problem may be solved trivially, if we have an array sorting program at our disposal, by writing
Sort (tfa..bje—);
Searchindez (k, tfa..bf, s+)
where Searchindez as given above is modified to search for an element with given key k.

We do not consider this solution acceptable, however, since partitioning is an inherently simpler.
problem than sorting. In fact, one of the best known sorting algorithms, Quicksort, has the following
reeursive form (for sorting array ¢ between indices ¢ and b):

.48 -

procedure Quicksort {a, b, t+—) implementation
variable s: 1..n;

if
b-a< 0 — skip]
b-a>0 —
Partition] (a, b,tes, s+—);
- - Do in some order:
Quicksort (t[a..s—1]),
Quicksort (t[s+1..5])
end if

end procedure implementation - - Quicksort

Another interesting application of Partition! is to compute an +-th smallest element of an array
without having to perform a complete sort!:

procedure Find_ith_smaller specification

in trarray [L.nfof T,
6:lan;
out z:T
{ensure z is an element of t with i-th smallest key}

implementation
variables t1 [I:nf: T,
g, b s:1.n;
t1 :=t ; - - Copy array parameter to local array

from
a=1;b=mn;
keep
t1 i3 a permutation of tand 1 < a < b < nand
there is an element of t with i-th smallest key in t1 fo. b and
keyy o-1(t1) < keyo o (t1) < keyyir o{1)
decrease
b-a
until
a=1b
loop
Partitionl (a, b, t1+—, s+—) ;
{then o < s <b and key, ,(t1) < keysry o(21)}

if
$<i = a=st+1]]
§2t — b=3s
end if
end loop ;
z = tfaf

end procedure - - Find_ith_smaller

We may now give the complete specification of ParfitionI:

! Tlie details of this procedure are far from trivial and the reader is invited to check its correctness. See
exereise .15,

S 40 -

procedure Partition! specification
in i, j: integer ;
in out t: array [1..nf of ELEMENT ;
{assume ;> i; ¢ty fijf =t [}
out s: integer
{ensure t/i.j/ is a permutation of t; fi.j/and i < s < jand
key, o(t) < key.dbyi ,(t)}
end procedure specification - - Partitionl

Note that on procedure rcturn ¢ should be such that ¢ < s < j, i.e. that none of the two slices is
empty. This is important in view of a requirement on Partstion? that the careful reader will have noted
when sceing the two applications mentioned (sorting and finding the ~th element): in both cases, the pro-
grams would fail to terminate if Partition! returned an empty slice. For procedure Find_ith_smaller, this
is readily seen by checking the variant (b-a); for Quicksort, this follows from the corresponding rule for
termination of recursive procedures, which will be studied in chapter 7.

In order to implement Partitionl, what is normally done is to choose a "pivot key" in the subarray
th.jf and to use it as a separator between "small" and "large" elements; in other words, Partition! is
implemented as:

choose indez pin iy ;
pivot = luyp ;
Partition (3, j, pivot, t, s)

where the procedure Partition, which is really the one of interest here, is specified by:

procedure Partition specification
in i, j: integer ;
pivot : KEY ;
in out ¢ array [1..n] of ELEMENT ;
{assume ;> iand
pivot = kcyp for some pini.j; tg fi.j] =t [i.j]}
out s: integer
{ensure tfi..j] is ¢ permutation of ¢, fi.j] and i < s < j and
key, , < pivot and key,,, , > pivot}

end procedure specification - - Partition

Note that the reason for taking as pot the key of some element in tfi.7/ is to make sure that pivot
is not outside the range of keys in #fi..7/, in which case there could be no solution satisfying the require-
weat, mentioned above as essential, that none of the two slices must be empty (f < s < 5).

3.10.2. Choosing an invariant .

Let us first remark that if the only changes ever performed on the array are element swaps, of the

[soniy
swap (v, v)for 1 < u, v <5

then the property that tfi.7/ is @ permutation of what it was siticlly will remain teue throughout the parti-
tioning process. We shall only use operations of this kind so that this part of the postcondition will hold.
Thus we won't consider it any more in the sequel.

A loop will clearly be needed for Partition. I[we look at the rest of the postcondition, we natice
another oxample of coupling: the hard part comes from the fact that s appears in both operands of the
and. Why not try uncoupling again?

250 -

The uncoupling heuristics prompts us-to associate two variables u and v to the out parameter s, and
Lo include the following assertion in the loop invariant:

key, v < pivot and key,yy , 2 pivot

In this formulation, we have chosen the bounds u~—1 and v+1 rather than u and v to make initiali-
uation casy; indeed, the above assertion is trivially satisfied alter the following initialization:

ur=i;ue=g
This invariant will coincide with the postcondition of the procedure if

vu=-fand i<uand v<j
and we take as value of s, to be returned by the procedure, the final value of v. It thus seems fit to add
the foliowing constraints to the invariant:

vu>-landi<uand v<j
The reason we had to choose < for the last two inequalities here, rather than < which would be more in
line with the postcondition of the procedure, is that that we want the invariant to be satisfied after the
initialization, when u = i and v = 1. For the procedure body to be correct with respect to the specification,

however, we shall have to make sure that s receives a final value strictly in the interval f.j-1 {(whereas if
the final value of vis assigned to s, the sbove constraints only guarantee that it belongs to §-1..5).

So we embark on the construction of the loop with the following tentative invariant, later referred
to as INV:

(INY) v-4> -1 and i< uand v<jand
key; 1 < pivot and key,,, ; > pivot
Since the invariant includes v-u > -1 and the exit condition will be v-u = -1, it is natural to use v-
u+1 as variant. Note that this implies that the two cursors u and v will "cross over” just before loop ter-
mination. The loop will have the form:

from .
u=1i;v=7
keep
v-u> -1 and i< vand v< jand
key, .1 < pivot and key, ., ; > pivot
decrease
v-u+1
until
vy = -
loop
BURN_CANDLE
end loop ;

The loop body BURN_CANDLE should be so designed as to maintain the invariaat (if the exit con-
dition is not satisfied) and to decrease the variant, kecping it non-negative. In other words, using 2
spapshat dg to record the value of the variant before an execution of BURN_CANDLE, BURN_CANDLE

should satisly the following precondition-postcondition specification:
{given INV and v-u+1 > 0}
BURN_CANDLE
{then INV and v-u+1 2> 0}

If we can invent a statement BURN_CANDLE which satisfies this specification, then the above loop
will result in a state in which the invariant INV and the exit condition v-u = -1 both hold. Their

.51 -

conjunction yields the following coundition:
=vy+Iland - <vand v<jand
key, ,— < pivot and key,., ; 2 pivot

If we take s = v, this almost yiclds the postcondition of the Partition procedure, with one small res-
triction, already mentioned: the actual postcondition requires i < s < j (because no slice should be
empty), whereas here we only have -1 < v < ;. Given the second line of the above assertion, v = j may
only occur if all the elements of £f:..5]/ have a key lesser than or equal to pivot. In this case, we may safely
take v-1 as the value assigned to s. Similarly, if v = i-1, i.e. u = ¢, then the pivot is & minimum key and
we may assign to s the value of . Thus if the above loop is followed by

s = maz (min (v, j-1), 1)

then we shall have obtained & correct implementation of Partition provided BURN_CANDLE satisfies its
specification. So we now turn to the refinement of BURN_CANDLE.

3.10.3. The loop body

The name which we have chosen for the loop body is suggestive of the method used for Pertition:
"burn the candle at both ends". In other words, BURN_CANDLE will contain two internal loops, say Lu
and Lv, one which will increment u, the other decrementing v:

(Lu) until ... loop 4 /= u+1 end loop
(Lv) until ... loop v := v-1 end loop

We must now see if more statements are needed in BURN_CANDLE and replace the dots with
actual conditions. It is easy to find exit conditions which are such that INV will be invariant for both
internal loops: just take conditions which will stop execution of either loop whenever the validity of INV
would be endangered. This yields:

(Lu) until ¥ = v+ or else keyu > pivot loop u = u+1 end loop
(Lv) until v = u-1 or else Iceyv < pivot loop v == v-I end loop

The or else connectives are necessary because of the conditions on u and v: in the last execution of
the outermost loop, v+1'or u-1 might run out of the interval i..j.

The above two loops maintain INV but are not suitable, if taken alone, as code for BURN_CANDLE
because they may fail to decrease the stated variant: if the exit condition v-u = -1 is not met but
keyu > pivot and key, < pivot, then both internal loops will be equivalent to null statements, which in
plain inglish means t.'fw.t nothing will happen. And rightly so: it would be an error to either increase u or
decrease vin this case. BURN_CANDLE has found an inversion, and the thing to do is to remove it. The
following statement should thus be added after the two internal loops:

if
v-u -1 —>
{then v-u > 0 and keyu > pivot and key, < pivot}
swap (4, v)]
y-u = -1 ==+ gkip
end if

Apparently, this statement still does not ensure that the invariant decreases, since nothing happens
to cither u or v when the swap is executed. One possible solution is to add the statements

u=u+l;vi=vyl

after swap (u, v) in the first branch of the if statement. Such an addition is permitted because it will not
invalidate INV; in particular, there is no danger that u and v might cross over "too fat”, i.e. that v-u+1

-52.

might become negative. To see this, note that if the following conditions are met

v-u > 0 and keyu > pivot and key < pivot
then uwand v cannot be equal (the key corresponding to their common value would then be both lesser and
greater than pivot), so that in fact v-u > 0in this case, implying

(v-1) - fu+1) > -1

So we may insert statements for incrementing u and decrementing v into the first branch of the if
statement, after the swap. We choose not to do it, however, in order not to complicate the program; it is

unicer to keep the incrementing of u in just one place, the body of the Lu loop, and similarly the decre-
menting of vin just the body of the Lv loop. We thus tentatively refine BURN_CANDLE as:

{given INV and v-u+1 > 0}
until ¥ = v+1 or else key, > pivot loop u = ut+1 end loop ;

until v = u-1 or else key < pivot loop v := v-1 end loop ;
4

if
v-uE-f —
{then v-u > 0 and key, > pivot and key < pivot}
swap (u, v) []
v-u=-1 — gkip
end if

{then INV and v-u+1> 0}

BURN_CANDLE as it stands now, with just the swap in the first branch of the if statement (and no
change to either u or v), clearly preserves the invariant INV. The reason it is also correct as & loop body,
with respect to termination of the loop, is, informally, that when the swap is executed the external loop is
not complete (v-u is not equal to -1 yet); so BURN_CANDLE will be executed one more time at least; next
time it is executed, the exit test for the first internal loop, Lu, namely

u = v+1or else Iceyu > pivot
must cvaluate to false since u - v > -f and an element of key less than pivot has been placed in position
u, s0 that the body of Lu will be executed at least once (and the body of Ly, too, unless u crosses v at the

end of Lu); thus the process won't stop. Formally, to prove that BURN_CANDLE terminates, we note
that its variant is not the one proposed initially, namely v-u+1, but

(v-u+1) + nbinv
where nbinv is the number of inversions in #/i..; 2n inversion is 2 pair of indexes ¢, b such that
1 < a<b§jandkcya> keyb
Every exccution of BURN_CANDLE decreases this variant, since whenever the exit condition is not

satisfied and both internal loops result in a null statement, BURN_CANDLE executes the statement
swap (u, v), which removes an inversion and thus decreases nbinv.

We have thus obtained now a correct version of Partition,

.53

procedure Partition specification - - Version 1
in 1, J: integer ;
pivot : KEY ;

in out ¢ array [1..nf of ELEMENT ;
{assume ;> iand pivot = keyp for some pini.j;

to fr.g] =t fi.jf}

out s: integer o
{ensure tfi.j] is a permutation of 44 fi. jf and

1< s<jand
key, , < pivot and key,,; , > pivot}

variables u, v: integer ;

implementation
from
u=f;v:=7]
keep

v-u> -land i< uand v<jand
key, «_y < pivot and
key,1 ; 2> pivet

decrease

v-u+l
until
v-u = -1

loop - - BURN_CANDLE
until ¥ = v+1 or else keyu > pivot loop u ;= u+1 end loop ;

until v= u- or else keyv < pivot loop v := v-1 end loop ;

if
y-th ¥ -1 =+
{then v-u > 0and Iuyu > pivot and keyu < pivot}
swap (u, v)]
v-u = -1 —> gekip
end if
end loop ;

3 1= maz (min (v, j-1),3);

end procedure - - Partition, Version 1

- 54-

3.10.4. Improvements needed

The above procedure body has been obtained naturally by working from the assertions; we might
Just be satisfied with it and, in many cases, the best thing to do is to stop here and code the algorithm as
wo have it now.

If, however, we are interested in getting the-most efficient (but still correct!) program, it is easy to
xee thal the above version is not optimal.

A minor remark is that, given the precondition of the procedure, the exit condition of the cutermost
loop cannot be true the first time it is tested, so that this first test is redundant. In other words, this
outermost loop is the equivalent of a Pascal repeat...until loop (the various kinds of loops will be studied
in detail in the next Chapter), where the exit test is performed after the execution of the loop body rather
than before. Following a C-like convention, we shall distinguish such a loop from the standard one by
just exchanging two clauses: we write

...loop...until...
instead of
..until...loop...

the other clauses (from, keep, decrease) being unchanged.? Thus we may write the body of Partition as
a loop...until... loop. This is 2 minor point, however. Two more serious complaints may be voiced against
the previous version:

- The test v-u = -1, which is the exit condition of the outer loop, is also performed in each of the
internal loops. Except possibly in the last iteration, the value of this condition in the internal loops
will always false, so that the internal tests are wasteful. This is worrying because these internal
tests will, of course, be executed much more often than the outer test. If key comparisons are not
particularly expensive, the overliead due to the almost redundant internal tests may be estimated to
be around 10-20%.

- The test in the if statement is again the same as the external loop exit condition. In fact, this
statement looks a little like a goto (out of the loop) in disguise.

Can we do anything about these problems?

3.10.5. Improving the internal loop exit conditions

L.t us first concentrate on the first deficiency, which is the most serious. It would be nice if we could
just remaove the tests on v-u from both internal loops. But would they terminate then? The answer with
BURN_CANDLE as it stands now is probably no: if we rewrite Ly, for example, so thal it reads

until kcyu > pivot loop u := u+! end loop

then this loop will only terminate if there is an element at position u or to its right with key greater than
pruot. To ensure this, we must choosc the pivot in a special way; but we may only do so under the
assumplion that not all elements of the subarray have equal keys. Although such an assumption will be
required for the next improvement of the procedure’s efficiency, we prefer to avoid the nced for it here.

What is much easier to casure, however, i1s that there is an element at position u or to its right with
key greater than or equal to pivet (and, similarly, an element 2t position v or to its left with key lesser
than or equal to prvot). Thus it seems interesting to see if we can remove the v-u tests from a slightly
hilferent version of BURN_CANDLE, where the tests on keys will stop the internal loops an equality as
well, Here s this new version:

* Nate that in general the proof rules associated with a true loop.,.until... loop are slightly different from
those swarinted with the loops which we write until...loop... (equivalent to Paseal while loops). In particus
lar. thes require that the invariant be true after each execution of the loop body, but not necessarily upon
entes, The ..loop.until.., lonps which we consider here, however, are just plain while-like foops with the ex-
tra praperty that the exit condition is always false right after the initialization

- 55~

until u = v+1 or else keyu > pivot loop u = u+I end loop

until v = u-1 or else keyv < pivot loop v := v-1 end loop ;

if
v-u# -1 —> gwap (u, vj; 4 = utl; vi=maz (v-1, u-1) [}
vy =-1 — sgkip

end if

This version is still correct as loop body, since it retains both the invariant INV and the variant v-
u+1; for the latter, however, we had to make the decrease of v in the first branch of the if staterrfent con-
ditional upon the fact that the two cursors do not cross over too far; the argument used. Erevmusly to
show that this could not happen does not hold any more with non-strict inequalities on keys
(key, < pivot and key > pivot is not a contradiction). Alternatively, we cguld have let the cursors cross
aver Tone too far”, i.e used v-u+£ as variant, v-u > -2 as first clause of the invariant and and v-u < -1 as
loop exil condition.

The main difference between the above version and the previous one is that the new one may per-
farm a fcw more swaps; these will only occur for elements whose key is equal to pivot, so that the foss may
he assumed not to be significant in practice {unless there is an significant amount of equal keys in the
weray).

This new version has a very interesting property in that it keeps invariant the following essertion:

there is at least one indez @ in v.v+1 N £.7 such that keya > pivot and
there is at least one indez b in u-1.v N i.f such that key, < pivol

Note that this assertion is initially satisfied since the pivot is chosen as the key of an element in £.7. It is
cnsy to see that the new version of BURN_CANDLE keeps it invariant.

The reason this property is interesting is that it makes the first part of the exit conditions for Lu
and Lv unnecessary, since it implies that both loops will encounter an element satisfying the other part of
their exit conditions (key, > pivot and key < pivot respectively) before they get a chance to make v-u+1

u - . 4 = P .
negative. We may thus dispense with the extra tests and rewrite BURN_CANDLE as just:
until key, > pivot loop u := u+I end loop ;

until key, < pivot loop v := v-1 end loop ;

if
v-u# -1 =k swap (4, v); 6= utl, v = maz (v-1, u-1)
v-u = - == skip

end if

Wae thus get our second version of Partition. It is interesting to note that in this version bath u and
¢ will lie in the interval i.j upon loop exit, so that the value assigned to s by the procedure may bejus.zt v,
wherens the first version required a final correction maz (min (v, j-1), 1). This property is readily derived
from the new invariant property emphasized above; it is equivalent to the fact that, in this version, the
Voo line nf hath Lu and Lu will be executed at least once

.56 -

procedure Partition specification - - Version 2
in 3, J: integer ;
pivot : KEY ;
in out ¢ array {1..n] of ELEMENT ;
{assume ;> iand
ptuot = iceyp for some pini.gy;
tg figf =t i3]}
out s: integer
{ensure tfi. j] is ¢ permutation of i fi..j/ and
(< s< jand
key, , < pivot and
key,.y ; 2 pot

variables u, v: integer ;

implementation
from
gr=g;v=7p
keep

v-u>-Iand i < vand v< fand

key, v—1 < ptvot and

key,+.; 2 pivotand

there i3 at least one indez a in w..v+1 N . such that Iccy“ > pivot end

there 1s at least one indez b in u-1..v N i.j such that k‘yb < pivot
decrease

Cv-utd

loop - - BURN_CANDLE

until kcyu > pwvot loop u = u+1 end loop ;
until key < pivot loop v = maz {v-1, u-1) end loop ;

if
v-u# -1 = swap (4, v ui=utl;ve=v-1]
v-u=-1 — gkip
end if
until
v-u = -1
end loop ;
3 1 ¥

end procedure - - Partition, Version 2

3.10.8. Getting rid of the internal if statement
lict us now deal with the problem of the internal if statement.
What we have here is a loop belonging to the category of so-called "n + —é-" loops, meaning that the

last iteration is not complete (we don't perform the swap last time through the loop). Some languages
olfer an "exit” construct which makes it possible to break a normal loop structure somewhere in the mid-
dless Tor example, in Ada, we would write:

{7 -

loop

nsLa?l.,

Ly

when v-u = -1 exit ; .

swap (u, v); u = utl; v.= maz (v-1, 5-1);

end loop

The problem of "n + -é‘" loops will be studied in the next chapter. Here, if we are concerned about

removing the conditional statement local to the loop body, there is a way to do it, but it will turn out

" that we need an extra hypothesis on the array and the pivot.

I"irst, we would like to get rid again of the operations on u and v in the body of the conditional
statement. The reason we reintroduced them in the last version was our concern about termination: the
loops on u and v, with their exit conditions rewritten with non-strict inequalities (i.e. key > pivot and
key < pivot respectively) would be equivalent to null statements after two elements whose #ey is equal to
ptvot had been swapped.

It is cnough, however, that one of these loops should be non-null. So far, we have been very careful
Lo keep the treatment of u and v completely symmetric; the only place where we had to breach this princi-
ple was in the last version, when we introduced a maz in the expression assigned to v in order to avoid v-
u+1 becaming negative. Let us see what happens if we introduce some more dissymmetry by writing
BURN_CANDLE as:

until keyu > pivot loop u := u+1 end loop ;
until key < pivot loop v := v-1 end loop ;

if
v-u# -1 — swap (u, v)]
v-u=-1 —> skip
" endif

Note that the use of maz (v-1, u-1) is no longer necessary when assigning v-1 to v in the second internal
loop (kcyu > pivot precludes luyu < pivot).

The only potential problem is termination of the loop on v. It is easy to see, for example, that this
loop may not terminate (and will try to access elements of the array outside the interval ¢.;) in the case
where all keys in the subarray are equal to pivot. This may not occur, however, il we add the following
assumption:

there is at least one indez q in i..f such that keyq < pivot

If this assumptian is satisfied when Pertition is called, then the following property will remain invari-
wnt throughout:

there is at least one indez a in u..v+1 N 1. such that keya > pivot and

there is at least one indez b in u-1..v M 1. such that key, < pivot

%o that the new version of BURN_CANDLE will terminate. Note that the variant, 2s in section 2, invelves
the number of inversions; here we have to use a slightly different definition: an inversion is a pair of
indexes a, b such that

i<a< b<jand keya > pivot and Iuyb < pivot

Ilow practical is the assumption that there is at least one indez g in i..j such that key < pivot? To
he able to use it, we must rely on the hypothesis that, whatever method is used to find the pivot, it does
not relurn an element with maximum key; if, when trying to find such a pivot, it discovers that none

.58

enixts, fe. that all elements have equal keys, then the new version of Partition should not be called at all
{which is not a problem since, in this case, any value s in the interval t.j-1 may be returned to Quicksort
or Find_ith_smaller). So, in practice, the extra assumption on the pivot means placing a small overhead on
the purt of the procedure that we have called Partition?, which is responsible lor finding a pivot. This
everhead will usually be acceptable unless there is a significant number of elements with equal keys in the
arriy, in which case it is better to forget about it and be content with the last version we have obtained
fov Partition. 1t should also be noted that Lhis new requirement on the pivot slightly complicates the
nimthematical analysis of the algorithm in the average case.

In the sequel, we assume that the assumption on the pivot not being an clement with maximum key
ity be made and that BURN_CANDLE has conscquently been rewritten as above. To avoid any conlu-
sion, we call Lu'and Lv’ the new versions of the internal loops.

An execution of Partition will consist of a certain number of exccutions of its loop body, thal is:
Lu'y Lo if v-u # -1 —> swap (u, v) [vu=-1 — skipendif ;
Lu’; Lo if v-u s -1 — swap (u, v) D vt = -1 = skipendif ;

Lu’s Lo if vu# -1 — swap (u, v) [] v-u= -1 — gkip end if ;
Note, however, that the last if statement is a null one (skip) because, on the last iteration, v-u has value
- {this is the loop exit condition). So we can remove it

Now let us see if we could add an instance of the conditional statement at the top of this execution
sequence. Since the condition v-u # -1 is initially satisfied, such an addition implies is that an extra
swap (i, 7) will be performed initially. If not immediately useful, such a swap is certainly harmless. So we
may insert an extra conditional swap at the top of the execution sequence; if we also remove the unneces-
sary one at the bottom, the execution sequence becomes:

ffv-us-1 — swap(u, v [] vu=-1 ~> skipendif; Lu’; Lv’

if v-u#-1 — swap (u, v) [J vu=-1 — skipendif; Lu’; Lv’;
ifvus#-1 —> swap (4, v) [] v-u=-1 — skipend if ; Lu'; Ly’

The point of this seemingly strange game is that the new execution sequence corresponds to another loop,
which may be written:

from
ui=i;vi=7g
loop
ifv-u# -1 = swap (u,v) [] vu=-1 — skipendif;
Lu'; Ly’
until
v-u=-1
end loop ;

But now we notice that the body of this new loop begins with a conditional statement whose condi-
Lional expression is the negation of the loop exit condition, which we know is not satisfied on loop entry;
the test in the if statement at the head of the loop is thus redundant. So swap (u, y) may be executed
nnconditionally, and the loop hody becomes simply

swap (u, v); Lu’; Lv’

.We thus get a final version of our Partition procedure; please note the new clause in the precondi-
tion. which restricts the applicability of this version. Also nate that, as with the previous version, the
invariant guarantees that v belongs to the interval i.7 on loop exit, so that no correction is necessary in
[he nssignment to s,

procedure Partition specification - - Version 8

in 1, j: integer ;
pivot : KEY ;

in out t: array [1..nf of ELEMENT ;

{assume ;> iand o
pruot = keyp for some p in 1.7 and
pivot > kzyq for some qini.j;
to fig] = t g}

out s: integer L

{ensure tfi.j/ is a permutation of ¢; fi.jf and
1< 3<jand
key; o < pivot and
keyo 1 , = proot

variables u, v: integer ;
implementation

from
=3, y=J
keep
v-u>-land i< uand v < jand

key, vy < pivot and key, ., ; > pivotand
there is at least one indez a sn u..v+1 (1 .7 such that key > pivot and
there is at least one indez b in u-f..v N i.j such that keyb < pivot
decrease
v-tu+1
loop - - BURN_CANDLE

swap (4, v} ;
until keyu > pivet loop 4 := u+! end loop ;
until keyv < pivot loop v := v-1 end loop ;

until
v-u = -1
end loop ;

g=1v

end procedure - - Partition, Version 8

[85d]

MODULARITY

(Chapter 8)

Bertrand Meyer

Pae - dse

.92

This is a first draft of chapter 6 of a book in preparation. The working title of the book is Applied
Programming Methodology.

The book follows the spirit of Méthodes de Programmation, which | co-authored with Claude
Biudoin (from Schiumberger); this text was published in 1978 by Eyrolles in Paris. The present work is
nol. however, a translation of the former one; shorlly after publication of the French book, we did con-
sider l,ra'nsla.ting it into English, but for various reasons this project was delayed and it soon became clear
that an entircely new design was nceded. Claude did not wish to participate in such an endeavor; what
follows is thus my sole responsibility.

The projected -audience of the book includes practitioners (engineers, programmers, cte.) who are
loaking for & readable survey on modern programming concepts, as well as students, for whom it is
intended as a textbook to be used in conncetion with courses on programming methodology, programming
languages, programming techniques or software reliability.

The book uses several programming languages as a means to excmplify the programming concepts
discussed and to deepen their analysis. The languages studied include Fortran, Pascal, Simula 67, Ada,
Modula, Lisp and, to & lesser extent, Pl/1, Cobol, Algol W, Smalltalk and APL.

The tentative plan of the book is as follows.

Chapter 1: The challenge of software engineering

A short introduction recalling the basic problems of software engineering, summarizing the
current state of the art, and describing the "two schools” of software engineering.
Chapter 2: The structure and role of programming languages

A description of the structure of programming languages, introducing the basic issues in
language design and discussing the role of languages in programming.
Chapter 3: Control structures: Fundamentals

An introduction to the basic control structures of sequential programming, using from the
outset a systematic, semi-formal approach. Includes a discussion of specification-directed program con-
struction,
Chapter 4: Control structures: Techniques

All elaboration on the concepts introduced in the previous chapter: variants of the basic pat-
terns; control stuctures as implemented in various languages; technical problems associated with pro-
cedures.
Chapter 5: Data structures and their description

An introduction to the practical use of abstract data structure descriptions. Emphasizes
hicrarchical definition of “types and reuse of previously written descriptions (through mechanisms of
enrichment and restriction derived from those of Simula, Z and Clear). Offers three levels for the descrip-
tion of data structures: implicit (i.e. by one or more abstract data types), constructive, physical.
Chapter 8: Maodularity {this chapter)

A discussion of some of-the main requirements for modular programming and of existing tech-
nigues,
Chapter 7: Recursion and Functional Programming

An introduction to the "other culture” of programming, with hints for the practitioner as to
how to use its concepts.

Inelusion of the next two chapters is still a matter of discussion.

Chapter 8: Some fundamental data structures

A systematic presentation of some of the most uselul data structures, from specification to
unplementation, the latter including coding examples in various programming languages.
Chapter 9: Some fundamental algorithma

A systematic presentation of some important algorithms, chosen both for their methodological
interest. clegance and practical usefulness.

-3-
NOTE ON CHAPTER 8

Conference of the Assoiston of Simas. Ussre. Aduptasion aud genaratisation of i pager 1o the
;:::rzxv(\:::ier:fnc(;eo‘b:;; “}\\:5::1:;01022 (iglnl:p?etcd, Besides filling some of the "blank” sections, the next
version will contain the following corrections:

o better balance between Simula and other languages, in particular Ada and Smalltal}(;

s better distinction between type and object, on the one l’u.nd, and bctw!:cr.l alg:]ntlhmlan:n:‘xl'o-h

cess, on the other hand (the wording of the present version docs not distinguish clearly g

between general categorics and their instances);

e Conformance to the programming notation introduced in chapter 3; ‘ N .

o conformance to the conventions of the rest of the book (e.g. few references in text, bibliographic

notes at end of chapter, format of referenccs, etc.)

Note (January 1985): This text was ecssentially written in 1982-1983 and will be extensively

reworked.

-5-

8.1. - INTRODUCTION: A MULTI-FACET DEFINITION

Among the buzzwords in software engineering, "modularity” is one of the most misused; as a catch-
phrase, it is probably as popular as “structured” or "reliable”. The proponents of any specification, design
or programming method will always claim that it leads to "truly modular” systems; seldom, however, is
{here any convincing evidence supporting such a claim. As a matter of fact, there does not exist a simple,
widely accepted definition of what the concept of modularity means with respect to programs. On the
other hand, anyone with some programming experience will have an intuitive feeling for what it means for
a program to be modular, and agree that this is an important quality which programs should indeed pos-

SORN

“The purpose of this chapter is to try to elucidate what modularity means as far as programiming is
concerned, why it is so important a property, and what can be done to promote it when designing and
building programs. This last point will take us into the study of several fruitful concepts.

Our first task will be to give a sufficiently precise definition of what modularity is. The general idea,
of course, is that a program is modular if it is made out of a number of elements, or modules, in such a
wily that each of them enjoys some internal homogeneity and ptual aut y, and the set of
their interrelationships is structurally coherent. This problem is not unlike those which are described
{if not solved) by general systems theory; some of the vocabulary which will be used reflects this similar-
ity.

The above characterization is, however, much too vague to be considered technically satisfactory; it
daex not offer much help in determining whether or not a given program is modular, or, even more funda-
mentally, whether or not a programming (or program design) method or language is an aid in the con-
struclion of modular programs.

As it turns out, one of the reasons that there is not e single universally accepted definition of modu-
larity is that different viewpoints will lead to different, equally justifiable definitions. It is not so much
that modularity means many things to many people, but rather that there are several inherently different
fucels to it. In fact, we will not concentrate on a single definition; we will instead define modularity
through a set of ten requirements: five eriteria and five principles. The "principles” are as important in
praclice as the criteria; the distinction stems from the fact that the latter may be logically deduced from
the former. On the other hand, even though the five criteria are not totally mutually independent, no one
follows directly from the others. In our view, no understanding of modularity will be complete if it does
not satisfy these ten requirements.

After discussing the criteria and principles, we will introduce five keywords, denoting technical con-
copts which help in the practical realization of modularity. We will then study how these concepts are
compatible with traditional approaches to modular programming, based on the subprogram concept;
other techniques will be discussed, such as the Jackson and Warnier design methods, the coroutine concept
and the use of abstract data types.

Several examples will be given of applications of these coneepts, one of them describing an impor-
tant practical class of problems, the design of interactive menu-driven programs. We will conclude by
studying the relational structure of systems seen as networks of modules.

Although much of the discussion concentrates on what "modular” means for programs and how
modular programs may be achieved, it generslizes for the most part to modularity as applied to earlier
stages of the software life-cycle, so that one can also use part of 1t when studying modular specifications
and modular design documents.

6.2. FIVE CRITERIA

Our five criteria are pro

perties which a method or lan i i
shauld possess if it is to be con S v o] 4

sidered an aid in the construction of modular programs. They are termed:
e modular decomposability;

¢ modular composability;
¢ modular understandability;
¢ modular continuity;

e modular protection.

6.2.1. - Modular decomposability

The first criterion, decomposability, has to do with the construction of programs. A method or

lungungv.may be said to be modular with respect to this criterion if it helps in the decomposition of a
p.r()hlf'vn into several subproblems, whose solution may then be pursued separately. From the point of
view of systems theory, the problem is to help decompose systems into subsystems (Fig. 6.1)

Figure 8.1 - Decomposability

In the general case, the decomposition process will be repetitive: each of the modules will give rise Lo

the development of new modules. Decomposability iz thus the condition that must be met in a top-

design process. o

' It should be noted that this requirement is essential in
_pregramming-in-the-large™: the ability to split a programmi
11~ also important in the
~olution of a problem.

view of one of the fundamentals conditions of
- ing task between several persons. Qf course,
ease of single-person programming, as a basis for an ordorly approach to the

Example: The top-down program dosign method was designed Lo meoel this critetion.
Cou . Lo . . 3
= nt:}r exarple: Many modules require some kind of initialization, i.c. a st of sleps to be taken
"h. <zrc” he n;lodnlc may perform its first useful tasks. In some design methods, however, it is required
S_rae pe . . 4 5
at all such module initializations be concentrated in a common "initialization module”. Since a

T

module’s initialization is so closely related to the rest of the module, such a rule is clearly quite
anti-modular as far as decomposability is concerned.

6.2.2. - Modular composability

The sccond criterion, composability, is a mirror image of decomposability. A method or language
will be modular according to this criterion if it favors the production of software elements which may be
frecly eombined with each other to produce new programs, possibly in an environment which is quite
diffcront from the one in which they were initially developed (figure 6.2).

Figure 8.2 - Composability

The composability criterion corresponds to one of the most serious problems which confronts the
soflware industry: the need for reusable software. Because this problem has not been solved, people
now write similar programs or program elements over and over again; most of the time, they are not able
to use solutions which have already been devised, by others or even by themselves, to answer the same (or
almost the same) questions. Soltware engineering will not progress significantly unless we become able to
avoid this constant re-inventing of the wheel. We must find a way to design pieces of software perform-
ing delinite tasks, which should be usable by any program requiring these tasks outside the initial context.

1t is a pity that the fashion for top-down design (or, rather, for naive interpretations of this metho-
dology) has led many people to underestimate the importance of the reusability issue.

The criterion of composabilit:y reflects an old dream (which, perhaps, is more a program user's or a
pragramming project manager’s dream than a programmer’s one): that of having the software design pro-
cess louk like a construction box activity, which would consist in combining existing standard elements.
Althongh such an extreme view will probably remain unrealistic for a long time, much progress is indeed
pesssthile towards composability (we will just mention here, without elaborating on it at all, & phrase which
we (hink contains one of the keys to this evolution: Computer-Aided Software Design).

Example 1: Subprogram libraries are designed as sets of composable clements. Even though they
are under-used in practice, mathematical libraries (such as IMSL, NAG, LINPACK, EISPACK,
Harwell, to name some of the best) represent the most advanced developments in this area.

Example 2: Commands in the Unix operating system all operate on an input viewed as a sequential
character stream, and produce an output with the same standard structure. They are thus designed

-8-

so as to be composable; the operator denoted as | is used for the purpose of composition, so that
A|B represents a program which will take A’s input and have it processed by A, A’s output being
sent to B ag input and processed by B.

Counter-example 1: Switch on your terminal, or pull out a card drawer, and have & look at some
of the programs you wrote last year.

Counter-example 2: One popular way to “extend" the facilities of languages like Fortran (which in
most cases means in effect to correct some of their most blatant deficiencies) is to use so-called
preprocessors which will accept an extended syntax as input and map them into the standard form
of the language, producing programs (e.g. Fortran ones) as output. Such software tools are usually
not composable with one another.

Counter-example 3: In the initial definition of Pascal, as well as in the proposed ISO level 0 stan-
dard, the bounds of an array must be compile-time constants; il they array is a procedure parame-
ter, the actual bounds must be declared in the procedure as constants all the same. This means that
a library procedure for summing two vectors with 103 elements may be written in the language; a
procedure for summing vectors with 104 elements may also be written, but it has to be a different
one. In practice, this precludes the use of these versions of Pascal to write reusable software involy-
ing arrays - and, in particular, numerical software. The problem is corrected through the notion of
conformant array (which does not lift the requirement for constant bounds, but allows the bounds
of an atray parameter to a procedure to be specified by the calling programs only, as eg. in For-
tran) in level I of the ISO standard. Adherence to this level is, however, not compulsory.

6.2.3. - Modular understandability

The third criterion, as well as the next one, is important with respect to the "maintenance” phase in
the soltware life-cycle, which many studies have estimated to account for 60 to 90% of software costs. A
program (or program specification, or program design) will be modular with respect to this criterion if the
text of each of its modules may be understood by a human reader all by itself, without making any refer-
cnce Lo other modules, or by making reference to as few other modules as possible (figure 6.3).

Example: The method which at first sight seems the least modular one of all, yielding only one-
module complete programs, satisfies this particular requirement. . . providing the resulting programs
are understandable at all.

Counter-example: If a set of modules has been so designed that its correct [unctioning depends on
these modules being activated in a certain prescribed order, then they will not be individually under-
standable.

1

-9-
/|
/
A
/
/ 7,
// // :
v -~
7/ //
N //
-

Figure 6.3 - Understandability

8.2.4. - Modular continuity

The fourth criterion corresponds to another characteristics of software projects, which, a.lt'hough
perhaps regrettable, is just about universal and must be dealt with openly: the fact that the requirement
specifieation for the problem to be solved will always vary during the lifecycle of the project. A program-
ming method is modular with respect to the continuity criterion if a small change in a problem
specifieation results in a change of just one module, or few modules, in the program obtained (rom the
specification through the method.

The term "continuity” is drawn from an analogy with the notion of a continuous function in
mathemutical analysis; the "function” which should be “continuous” here (of course these words should not
be taken tno literally) is (see figure 6.4} the function:

Programming method: Specification — Program

= 10=

program

Programming Method

S
I g
Specification

Figure 6.4 - Continuity

(‘ontinuity is one of the main benchits we may feel entitled L? draw frorn a .t.rulyimodula{met.h(.)d.
The problem here is that whereas the notion of a "small change” has a raxrl¥ mtulhx‘.le meaning with
respect Lo changing & program (there may even exist reasonable ways of measuring the size of a program
change). it is much more difficult to define for specifications. Worse yet, anyone who has had the oppor-
tunity lo discuss the urgency of a change with a customer knows that programmers and program users
hn\(-.vvry different perceptions of what "small” means in the context of changes to program specifications.

Example 1: Some programming projects enlorce the rule that no numerical or textual constant
should ever be used in the statements of a program: all constants must be referred to through sym-
lnlic names, whose associated value only appears in a constant definition clause (PARAMETER in
Jortran 77, constant in Pascal or Ada, = in Algol 68). Thus, if the value has to change, only the
definition is impacted. This is a very wise precaution as regards continuity.

Example 2: The Uniform Referent property: Let z be the name ol an object, and ¢ the name
of an attribute possessed by objects of the same type as z. For example, z might be the nam‘e.z of a
hank account, and a the "current balance” attribute of bank accounts. Let t be the type of z {"bank

aecount” in our example).

[n programming terms, @ may be represented by a field dcsignator: if objects of type ¢ are
implemented as records {e.g. & bank account is represented by a record with ﬁcld.j such n‘s account
‘older’s name, credit, debit, current balance, ete.); allernatively, @ may be associated with a pro-
codure or function working on objects of type ¢ (if the credit and debit are stored for every account,
the balance may be computed as their difference whenever required, rather than stored per-
manently). Choosing between these Lwo representations is a space-time tradeoff; the former econom-
1708 on computation, the latter on storage.

[n many languages, the notation used to refer to attnibute a of object z will noi be the same
‘n both cases: access to a record ficld will be written z.a (as in Pascal, Simula, PL/1, Ada), or zof a
(as in Algol 68, Cobol), whereas function call will be written a(z). On the other hand, in Algol W",
the notation a(z} is used in both cases (in Simuls, the notation z.a will also serve both purposes if
a, whether a variable or a function, is local to the class of which a is an instancc).

This property of languages such as Algol W (2nd Simula to a certain extent) is known as t,l)e
Uniform Referent property; the phrase means that there is o uniform way of referring to certain
clements, independently of their implementation.

-11

Clearly, a language possessing the uniform referent property will favor modular continuity,
sinee a reversal of the initial implementation decision (using & function rather than a stored attri-
bute, or vice versa), which is quite possible in the lifetime of a project, will entail changes only in the
maodnle(s) where the implementation of the objects at hand, such as z and its attributes, is described
- not in those where they are used. .

Counter-example 1: A method in which program designs are patterned after the physical
implementation of data, e.g, customer’s addréss begins on byte 27 of customer record, or
printer interrupts are recorded at address 2351, will yield designs which are very sensitive to
slight changes in the environment.

Counter-example 2: Languages such as Fortran or Pascal which, in contrast to Algol, Simula
or Ada, do not allow to declare arrays whose bounds will only be known at run-time, make
program evolution much harder.

6.2.5. - Modular protection

The last criterion corresponds to another fundamental issue: errors, and, more precisely, propagation
of errors, A system is modular with respect to this criterion if the consequences of an error remain
confined to the module in which the error occurred, or this module and few others.

As far as programs are concerned, the kinds of errors which are of concern here are run-time errors,
c.g errors resulting from hardware failures, erroneous mnput, lack of needed resources (like exhaustion of
nvailuble storage). In a broader context, e.g. if we consider the modular structure of specifications as well
as program designs and programs, protection also implies that a logical error made in, say, one module of
a specification (stemming for example from an incorrect understanding of the problem to be solved), has
consequences in 2 small number of modules in the design document or eventual code.

Example: A methodology which imposes that every module which contains input statements also
contains statements to check the conformity of input data and correct abnormal values is good for
modular protection.

Counter-example: Languages such as PL/I and Ada have the notion of "exceptions”, with special
statements to "raise” an exception and statements to "intercept” an exception; when an exception is
raised, control will be transferred to the tatercepting statement, which may be anywhere in the pro-
gram. Unless used with a strict discipline, such facilities may lead to programs with bad modular
protection (which is of course better than no protection at all).

L12-

6.3. - FIVE PRINCIPLES

I'ram Lhe above set of criteria, certain principles follow which must be observed to ensure proper
madularity. We shall study five of them:

o lingu'stic modular units;

o fow interfaces;

o small interfaces (weak coupling);
« explicit interfaces;

« privacy (information hiding).

Al but the first have to do with the basic issue of intermodule communication.

6.3.1. - Linguistic Modular Units

The principle of linguistic modular units is fairly obvious but worth recalling anyhow.

Modules must correspond to syntactic units in the language used. I

The language mentioned here may be a programming language, a program design language, a specification
Lnguage ete.

What this precludes is the possibility of having the module structure described from the outside,
with no correspondence with the tinguistic structure of the program (e.g. module X extends from lincs 47
1o 203 of procedure P).

This principle clearly lollows from the criteria of decomposability (if we want to scparate tasks, then
every one must result in a clearly delimited syntactic unit), composability (how can we combine anything
clse than closed units?), and protection {we can hope to be able to control the scope of errors only if
modules are syntactically delimited).

6.3.2, - Few Interfaces

An important characteristics of the structure of a purportedly modular system is the number of
intermodule relations. A relation may exist between two modules in o varicty of ways: they maybe be
procedures, one of which can call the other; they may access common information; cte. {see soction 6.41
for a classification of these possible relations). The “Few Interfaces” principle mits the numhber of such
conticetions:

[Every module should communicate with as few others as possible. I

More precisely, il a system 1s composed of n modules, then the number of intermodule connections
hould remain much closer bo the munimum, n—1 (see figure 6.5 (a)) than Lo Lthe maximum, a{n—1)/2 (sce
figire 6.5 (¢)).

- |3k

(a)) ()

Figure 8.5 - Types of module interconnection structures

This principle follows in particular from the criteria of continuity and protection: if there are too
many relations between modules, then the effect of a change or of an error may propagate to a large
number of modules. It is also connected to the other criteria: composability (if we want a module to be
usable by itsell in a new environment, then it should not depend on too many others), understandability
and decomposability.

It should be noted that, whereas figure 6.5(a) shows a way to reach the minimum number of inter-
conneetions (n—1) through an extremely centralized structure (one "boss”, everybody else talks to him and
to him only), there are also much more "libertarian” or "anarchistic” structures, like that of figure 6.5(b)
which is almost as good with respect to the Few Interfaces principles (n connections) but looks quite
diflecent in its organization (everybody talks to two immediate ncighbors). Although the latter style of
design is sometimes viewed with suspicion, it may yicld very interesting and solid results, as we shall sce
later

6.3.3. - Small Interfaces (Weak Coupling)

The "Small Interfaces” or "Weak Coupling” principle (sce figurc 6.6) rolates to the size of intermo-
dihe connections rather than Lo their number: .

If any two modules communicate at all, they should
exchange as little information as possible.

Using an expression from electrical engineering, what this principle swys is that all ehannels must be
ol limited bandwidth. This requirement clearly stems, in particular, from the eriterin of continuily and
proteetion.

- 14=

Figure 8.8 - Intermoduie communication

o An nx':rer-ne bu& all too frequent counter-example is a Fortran practice which some readers will prob-
:cnl_Y r:‘v:gnlze, the Garb'age? Common Block", Programmers who use this technique find it very con-
|;Q':“:|i ﬂ? :.lfl;t; atttgetbeg;)n.mng (ol' everly program unit an identical, gigantic COMMON directive which

sls all sig ant data objects (variables, arrays), so that every unit has a

vl s | . , ccess to every datum.
this is very convenient: no need for declarations in a new unit, just copy the Garbage Bl);)ckr liﬂrj‘lnd e
gram debugging is so much of an excitement ... ¢ . g

rmpwltt (:TT;,I: Sar:’so“b;etno:ed that theI block structure of A!gol—likeilanguages is quite dangerous with
speet all Interfaces principle: any block has access to all the objects bel igher
enclosing blocks, including many which are of no | i iy A
i I y Interest to it; there does éxist a risk of unjustif
to such objects. Thus, the equivalent of the "garbage commt')n block” may be found in Fj’asc;legra;clf;

programming (too many variables declared at the out i i o
ol variables) . ermost level), in C programming (too many "exter-

6.3.4. - Explicit Interfaces

. \JVIIL‘h‘the fourth principle,lwe 8o one step further in enforcing a totalitarjan regime upon the societ
;3 modules: not only do we require that everyone talks with few others, and that any such conversatio by
tmited to the exchange of a few words; we also impose that it must be held in public and loudiy! "

Whenever two modules A and B communicate, this
fact must be obvious from the text of both A and B,

- Behind Lhis principle stand .the criteria of decomposability and composability (if a module is to be
E;;m;qu:.;nblel:nto or cor;nlposed with others, any outside connection should be clearly marked), continuity
rual other clement might be impacted by a change should be obvious ’
: ik T be s) and und ili
ane understand A by itself if its behavior is inﬂucnc?:d by B in the same)tricky wa;:;landabllfhy (how eno

. ;\s we shall see later, the principle of Explicit {nterfaces plays a very important part in the search
vrdequate modular structures. One of the problems is that, whereas one of the mast obvious kinds ((:lf

ntermodale (‘.O(Ip”ng is the classical cedur
E 21ass roce 58 icit ki
i P dure call, anobher, much less explmb kind occurs thro ugh data

- 15-

modifies uses

Figure 8.7: Data Sharing

Assume for example (figure 6.7) that module A modifies and module B uses the same data element
X; X may be a variable, an internal structure, a file, an attribute of an external device (e.g. a sensor),
ete, necessible to both modules through a sharing mechanism such as the Fortran COMMON, the Cobol
Data Division, or the block structure of Algol-like languages. A and B are in fact strongly coupled
through X even though there may be no apparent connection, such as procedure call, between them.
6.3.5. - Privacy (Information Hiding)

The Privacy principle, also known as Information Hiding, relies upon the assumption that there
exists for every module an official description of its purpose, which is normally different from (and less
detailed than) the description of its function, i.e. of how the module may rely upon properties of another
module which are not part of such official description for this other modulel!),

I All information is private unless it is declared public.]

This principle prohibits a module from relying on the way another module works internally. The
fundamental criterion here is continuity: if a module changes, then other modules may not be affected by
its changes il the interface remains the same. If the specification of interfaces is of a sufficiently high
level, i.c. describe function, not implementation, they will remain unaffected by technical changes.

For example, a procedure used for retrieving the aitributes associated with a key in a table (e.g. in a
personnel file or the symbol table of a compiler) will internally be very different depending on the way the
table is stored (sequential array or file, hash table, binary or B-Tree, ete.). The document deseribing the
usage of this module should only contain information which describes the services it offers (storing an ele-
ment, searching for the element associated with a given key, asking for the current number of elements),
rather than details about the particular implementation techniques chosen. A module which uses it only
through these official propertics, without relying on the implementation, will not suffer when the initial
iruplementation choice is modified - 2 very common event in software projects.

The need for separating the description of function from that of realization and the principle of
information hiding which it implies are also related to decomposability, composability and understanda-
bility: to scparately develop the modules of a system, to combine various existing modules, or to under-
stivneh indrvidual modules, it 1s indispensable to know exactly what each of them may and may not expect

from the others.

DWe e the word “description” here, rather than “specification”. to avoid any confusion with the
fiendinn phase of the softwate life-cycle; indeed we feel the principle may be applicd (o the modularity of
specification documents as well: a complex specification should have a modular structure, and it may be
‘bemed necessary to distingtush between the “public” and "private” parts of every module in the specification.

- 16 -

6.4. - FIVE KEYWORDS

We now come to more technical aspects of the modularity concept in programming. Our five key-
words describe features which are useful, if not necessary, in order to build truly modular programs. They
ares

o synchronization;

o data transmussion and sharing;

® genericity;

* persistence;

o separate compilation.

The first three have to do with inter-module connections; the last two with the autonomous develop-
ment and behavior of each module.

6.4.1. - Synchronization

Our first keyword is relative to module connections occurring through transfer of control. An obvi-
ous way for two modules A and B to be related is when the execution of some program code belonging to
A depends on the execution of some other code from B.

The best-known example of such connection is subprogram call: execution of A is suspended; execu-
tion of B starts at the beginning of B, and proceeds until the end of B; then execution of A resumes when
it had stopped.

This is not, however, the only possible kind of control connection. The more general mechanism
may be called synchronization. Synchronization extends to its full scope in the case of parallel pro-
gramming, where more than one module may be active at any given instant. The study of synchroniza-
tion among parallel processes brings some interesting concepts back into the domain of sequential pro-
gramming as well, as we shall see in section 6.9.

6.4.2. - Data transmission and sharing

The other obvious facet of intermodule communication is through the exchange or sharing of data.

The delicate point regarding explicit transmission of data (as via argument passing), in particular
with respeet to the continuity and protection criteria, is to be able to assess precisely what may happen
to & datwmn which is passed through from one module to another or, more generally, what access rights are
assoctated with 2 datum being transmitted. This problem has received a great deal of attention for
operating systems. In programming languages, the least which should be required is that the rights any
module has on arguments transmitted to it be defined precisely.

Communication of data between modules occurs not only through explicit transmission, but also
through sharing. Data sharing is allowed, for example, by the COMMON mechanism of Fortran and by
the block structure of Algol-like languages. This feature is both convenient and quite dangerous; as we
have seen, 1t tends to breach the Explicit Interfaces principle. Block structure, in particular, has been
often eriticized because it provides unlimited upward visibility: a statement belonging to a block may
aceess and for modify data belonging to any enclosing block. The basic elements of a remedy may be con-
tained in Dijkstra’s notation [Dijkstra 76] which defines at block inception, for each imported or exported
element, the rights that the new block may exert on this element.

In any case, data sharing should be used with great caution, since it gives basically the same power
ns data transmission, but in a much less visible fashion.

- 17 -

6.4.3. - Genericity
To be completed. Examples from Ada and LPG (a language developed at IMAG, Grenoble|
6.4.4. - Persistence

The data elements used by a program module are persistent if they retain their values from one
activation of the module to the next. !

For example, the internal variables of a class object in Simula are persistent ("activation” as used in
the above definition here includes creation by the new construct, call of any of the procedures of the class
relntive Lo the object, and re-activation by resume). Some entities may be explicitly designated as per-
sistent in languages such as Fortran 77 (SAVE) Algol 60 (OWN) and Algol 68 (heap). On the other hand,
no data clement of a Pascal procedure is persistent through the successive activations of this procedure;
the only way to have it retain its value into move its declaration outwards to the enclosing block, which
is obviously very harmfu! to modularity.

Allowing persistence of data local to a module is fundamental with respect to the construction of
modular programs. If we want modules to be truly autonomous and homogeneous entities, then they
should be allowed to "possess” and manage their own data. If this is not done, all the information which
is necessary to re-start a module will have to be provided by the module which triggers the re-starting;
Lthis means that information pertaining to one module will be disseminated among other modules, possibly
many of them (since the propagation of information may be carried quite far). Such a scheme obviously
breaks the Small Interfaces and Privacy principles.

Although the necessity for persistence of local data as an important asset for modularity clearly fol-
lows from the previous discussion, it is interesting to note that this idea contradicts some commeonly found
ideax of programming methodology. For example. the methodology known as "structured/composite
design” [14], which has modularity as one of its central themes, advises against the use of persistent data.
although this approach may be in part justified by the technical difficulties encountered when dealing with
persislence in programming languages, we feel that is based on a partial and short-sighted view of modu-
larily, taking the procedure as the only possible kind of module; this view as we shall see in the next sec-
tinn, encompasses only part of the problem.

What the persistence concept really contradicts is the usual notion of "pure procedure”, viewed as
an ddealization of the subprogram and thus of the module. A pure procedure is a mechanism which per-
forms some computation which may entirely be specified in terms of the relation between input (argu-

" menls communicated to the procedure) and output (results computed by the procedure and returned to

the ealling programs). It is thus the programming equivalent of a mathematical function {except that one
may, without too much trouble, accept as pure procedures mechanisms which have not only in arguments
and out results, but also seme in out arguments).

A pure procedure is thus like what some people view as the ideal subordinate: memoryless, history-
less, eapable of performing a well-defined task whenever it is ofdered to do so and provided with the
requisite information, and ready to disappear again once it has delivered the expected results. In con-
traxt. a module with persistent dats manages its own information and accumulates experience, a feature
which not all "bosses” are enthusiastic about. {The two approaches are not unlike what is known in social
science as "theory X" and "theory Y")

The necessity of persistence and the insufficiency of the pure procedure concept are obvious even for
very simple problems. The following two examples are typical:

o write a module of some kind, which upon request will print an integer passed to it, in such a way

that two successive items are separated by a blank; there should thus be a way for the module to

remember whether it has already been requested to print an integer (so that a number is preceded
by a blank if and only if it is not the first one);

o write a "pseudo-random number gencrator”, the algorithm used by such tools generally a relies on

2 soquence of the form ag = z, a4 = f(a,), where z is a "sced" provided initially be the requesting

S 18-

;nodu_le, g 'x§ returned as "pseudo-random” number at the i-th activation of the module, and fisa
lilln"(;:lon c:xs;gn‘ed 80 as to provide as much apparent "randomness” as possible, If every activation
o € module Is to return a new number a,, then t X i

O i mods N n the module should be able to retain the last com-

It should be noted that expression of persistence raises some i

Ia nguages are concernﬂcd. One of them is the conflict between persisTenczr:?lg’?;n:smif::xlf:captri(t:?ahzr:c:;g
;.:lly, it is known' as "the Algo.l 60 Dyna.n‘xic OWN array problem”, since the initial Algol report'aHowed
{:«:‘l h ::: (ésﬂ:;:t;?naoleny IO;(I)eCt as p;rsnlstendt (OWN) and the presence of array with adjustable bounds

s n Algol array declared in a block ay i i i i
ables are declvared in 2 block enclosing B and have been as:?gr:eg’ ;:::::r’ev:?l::bvlfehselnpel:;?d;q P Vadrh
:\n array having adjustable bounds must clearly be re-allocated every time B (which'ma be : exec{i;’e .
i vxccuted;. but then what dogs it mean for the array to be persistent? Later vers};ons8 i?r/tlce p
removed this contradiction by forbidding adjustable QWN arrays. Descendents of Algol OI] 50] o
have an OWN declaration; one of them, Simula includes persistence in a nice way through cr:sllsisy o

e A p.roblem which.is intimately connected with persistence is that of initialization. If we have vari-
ables which rgta.m their values, then we must have a way of deseribing the value they have when th
module to which they belong is first activated Note that naively writing ’

if first_call then
instialize ; first_call := false
end if

does not provide a solution since first_call itsell has to be a persistent variable.

S0me Ianguages provide g T ihe expression 18t v F
S syntactic upport, for the ex 810 iti i
ot ; : of initial values. In ortran, if X is a

SAVE X
DATA X [zo/ *

where zg is a constant. In Algol 68 we will write the initialization in the declaration statements, e g
3 , e.g.

locint X : =z,

»Nlonc of these solutions, however, is entirely satisfactory. The limitatio
r.ozsiru:l:erg.: Ilfor f)ltample, one might want z, to involve previously initialized elements, as in
il = 5 vk =3 or subprogram parameters. On the other hand, allowing z; to be an ex’ i
opens zi{\ngerous possibilities: by destroying the traditional fence between the erl:tirel st t‘y pbressmn
dc-vlnmf.mns and the dynamic nature of expression evaluation, are may run into troubl;" 1 B gl Ele
evaluation of zo might entail side-effects (in Ada, where one ‘may write X integer : - - ‘examp[e’ e
could be 2 call to a function which starts another task which communicates with fhe ix;it—ia;l:oorllt El)mﬁkv ©

n to constants may be too

In fact, a satisfactory solution to the problems raised by persistence and initialization implies going

beyoud the concept of procedure and ideri is wil
P g p considering modules as processes. This will be studied in sections

8.4 5. - Separate compilation

he possibili o compile modules sepa ely i i
p Yy B) el Y i
] . ! bility t: p parately is a necessity for any module structure provided by &

. H;zhrzced :]or separate cUr.npila.Lion is not, as often argued, motivated primarily by efficiency con-
ﬂn!\'“lw N:let : o;vn & contrario by the fact that, on many systems, separately compiled modules may
A ited after they have been assembled by a special system program called a linker (or linkage

S 19 -

aditor, or linking loader), which often takes as much time per module as the compiler. In fact, the main
irainnent for scparate compilation, even when it is not explicitly formulated, it information hiding:
anee s module has been compiled, then it becomes a closed object; its internal details are no longer easily
sceessible (Lo use a popular term, they have been "encapsulated”). Actually, it is only usable through
seme external deseription; such a description thus has to exist.

A related property of compiled code which also plays a role is the fact that it is not modifiable any
more, This helps in making a compiled module into "packed material”, known only from its lahel.

Scparate compilation is also important for decomposability (separate development of modules makes
il necessary to work as far as possible on each individual module, up to testing) and, obviously, composa-
bility. Separate compilation is a natural extension of the "linguistic modular units” principle.

>From this discussion, it is interesting to note that compilation here is meaningful not only as code
production, but also (and perhaps more importantly) as & global operation on a program or program [frag-
ment, which applies to it tools for verifieation (syntactic and semantic cheeking) and archival, Thus the
notion of separate compilation, replaced by "separate analysis and archival”, may be transposed Lo such
inlerently non:compilable objects as specifications or program designs; it is useful to constitute "librarics”
of. for instance, specification modules, each of which has been processed by a sct of tools for consistency
checking and hiding of internal details.

Studying separate compilation not as a minor technieal issue but as an essential requirement in the
broad context of information hiding, modular design, software reusabilily, program libraries and
programming-in-the-large has some interesting consequences. One of them has to do with the required
software tools. With the above approach, a traditional linker - which, essentially, takes as input “quasi-
ohject code” which still contains some symbolic elements corresponding to resolved external references,
and replaces these by the actual addresses of the referenced modules - is no longer sufficient; one will be
confronted with a variety of modules, subsystems and systems, each existing in several versions, and
perhaps being split into a description part and an implementat’on part. What will be nceded, then,
includes:

e 5 “module interconnection language” which makes it possible to describe particular combina-

tions of modules;

® a set of tools for what is called "configuration management”, i.e. keeping track of the respec-

tive states of the various modules, subsystems and systems, and their interconnections.

Such tools are essential in supporting a truly modular design methodology.

Separate compilation raises some non-trivial technical problems at the border between language and
compiler design. The most important issue is to make it compatible with strong typing, a fundamental
feature of modern languages. At the other extreme, in Fortran (a language for which separate compila-
tion was one of the most important design criteria}, the compiler stops at the module border: the compila-
tion unit is the Fortran subprogram (subroutine or function}; once a subprogram has been compiled and
stored in a library, the compiler is not required by the language definition to check the compatibility of
the formal argument list with the actual argument lists in calling programs; very few compilers will do it.
In the code generated for each module, all typing information has been lost. The hinker, when combining

subprograms, cannot then perform any significant checking.

In a strongly typed language like Pascal, Simula or Algol 68, it is always possible to implement
scparate compilation by doing no more than in Fortran: provided a procedure does not use any global
variable, it can be compiled separately. Such a simple scheme will not allow. however, for checking type
compatibility; i.e. if we compile separately

procedure P (z, &) 2:ty, ..., 2, &)

and procedire @ containing the call

Plag s, ..., om

we have no way, once P and @ have been compiled, to check that m = n and that every q, is of a type

- 90-

compatible with that of z,. What may be felt acceptable by Fortran programmers for the sake of
“elliciency” (?) should be rejected by users of languages which have been explicitly designed so that their
type systems allow for complete static verification of type compatibility. Accepting it would be accepting
that compatibility is checked for entities within a given module, but not for objects belonging to different
mevfules, which is all the more absurd that the most serious errors, and the ones which are the most
dillivnlt to detect and correct, precisely occur at inter-module connections (this is one of the reasons which
mike “programming-in-the-large” so much harder than "programming-in-the-small").

An apparent solution is to modify the usual notion of compilation, so that the result of compiling a
madule will contain not only some object code but also an "interface symbol table" which carrics all
the information necessary to check the conformity of calls to the module. In our example, the intorface
symbol table for P would contain, in an appropriately coded form, the list of argument types
by tbas, i o i

With this technique, module linking has to be performed by = special tool which must know about
the structure of the interface symbol table, and hence about the type system of the programming
tanguage used. Such a tool may thus not be a general-purpose linker; 1t has to be “language-oriented” - &
solution which raises some difficulties when one has to combine modules written in different languages, but
of course this requirement is not compatible with that of intermodule type checking.

Unfortunately, there is a major flaw in this approach. It may be viable for a language like Fortran
where the type system is essentially finite; in a language like Pascal, however, it cannot be applied to the
separate compilation of procedures because of the presence of constructed (user-defined) types. Assume
that ¢; and t, above are constructed types, e.g.

t; = array [L..k] of (a, b, ...);

ty = record {m, p; m» py; ...)
Thus, if the argument list of P and the call to P in @ are to make sense, then both P and Q must
hiave access to the above type definitions (and others, such as the definitions of types P, P, ..). They
must lso be able to access common constants such as k (and its value), the names a, b, ..., etc.

Nole that the definitions of these objects may not be part of the body of procedure P {or @), since
they are needed outside.

Tlhe consequence of this discussion is clear: Pascal does not allow for separate compilation of
procedures if static type checking is to be retained. the same is true of other languages of the same class
(rich Lype system, block structure) such as Algol W or Algol 68. Although many existing Pascal systems
purport to provide separate compilation, they all either do not perform inter-module type checking or
extend the language.

One should not draw the hasty conclusion that the static type checking and separate compilation
are incompatible for modern languages: the contradiction which we have analyzed is relative to pro-
cedures only. What we must then deduce is that the procedure is not an adequate modular structure for
sepurate compilation in modern languages. .

We may note at this point that the impossibility would not have arisen il we had had our disposal

modules which contained not only one (or more) procedures, but also constant definitions, and type
declarations defined so as to be access.ble from other modules. We shall, in fact, be looking for such kinds

of madules, containing other elements as well, such as variable declarations and even statements® But
et nat anticipate .. .

M1 that Pascal offers a language structure which satisfies these requirements and embodies all the neces-

~arv information (whereas the procedure does not because external information may be needed to understand

thi argument list): the Pascal concept of program. Unfortunately, there is no interconnection mechanism

hetwedn programs: a program may not call another one. There have been, however, implementations of

WWMW i Pastad haral an M

Ty Unket i

" Wllwu”y.

.91 -

8.5. - SIMPLE-MINDED APPROACHES: THE FIVE SINS OF THE PROCEDURE

The simplest way to decompose a program into modules is to use the ordinary concept f)l‘ pro-
ecdires. 1t means that the task to be performed is divided repetitively into subtasks, each of which will
varrespond to & program unib. -

In fact, the term "module” is still considered by many people as a synonym for "procedure”. "Modu-
lar programming”, in this context, simply means decomposing programs into as many sh.ort procedures.as
possible -- which may be belter than no division at ell, but does not really further the aims of mnd.ula.rn.y
4~ we have analyzed them. Several books popularized this idea during the late sixtics and seventies (sce
e %), bul even for more recent authors ([14]) the equation module = procedure still holds.

Procedures are of course one possible modular structure. There are, however, many probtems wilh
Iking the procedure as the paramount type of module. We shall study five of them; some have already
Ieen mentioned and will be only bricfly reviewed. The Five Sins of the Procedure are:

o inck of control of data propagation;

o incompatibility with scparate compilation in the presence of static

o Lype chocking;

e lack of flexibility of the argument mechanism;

« uncqual control relationship;

o imbalance between process and data structures.

6.5.7. - Lack of control on data propagation

Whereas the direct interprocedural connections of "control” type, occurring through the ['m).ccdurc
eall mechanism, are obvious and easy to spot, the various procedures in a system may nlsa. be mdlroct!y
related via the data which they exchange or share. In many cascs, these c:onnchtons will be Lo? h1vg
(violating the Small Interfaces principle), not as visible as the cont}-ol conncclions ((‘o.nbrﬂ.ry to l.hn. Expli-
¢it Interfaces principle) and hard to document properly, especially in the case of sharing (endangering the
observance of the Privacy principle).

8.5.9. - Incompatibility with separate compilation in the presence of static type checking

We have seen that the use of procedures as modules does not biend well with separate compilation if
complete, static type checking is also required.

On the other hand, separate compilation, al least if taken as the ability to separately analyze
modules and then make them into closed units, appears to be a fundamental component of any program-
ming language or methodology if it is to be applicable to anything else than toy problems, student exer-

cises and experiments.

6.5.9. - Lack of flexibility of the argument mechanism

Another serious flaw of procedures as modules is the bad performance of the argument passing
mechanism with respect to the continuity criterion. In a procedure call

P(blv by bn)
eorresponding to the procedure heading
procedure P (in a;: .. 030 oy ooyt
OUL i1’ reey oy Gl vor)

.92-

the argument list a), -+ - @, describes the interface between p and the calling program units. Now in the
evolution of a system, it very commonly happens that a new use for an existing procedure requires new
procedure arguments or, to the opposite, makes some arguments meaningless. A typical example is the
case when pois an output statement. and some of the in parameters describe terminal characteristics; then
at some point comes a terminal with new options, such as the possibility to choose between several colors
for oulputting an element, '

In such a case, a new argument will have to be added to p (in other situations, a argument might
have ta be removed); the body of p will be modified in order to take this parameter into account. The
prohlem is thab p's interface with the outside world will be changed; so every program unit which uses
p must be updated, in order to include the right arguments in the call to p. The change will affect ?
itxell and the units which require the new facility -- and so far this is perfectly naturel -~ , but also all pre-
viously written units, which do not use the extension, This is unacceptable in a large system: as functions
are adided or removed, existing code would have to be constantly updated even if it is logically unaflected
by these changes.

1t should be noted that the presence of keyword arguments, with defauit velues, as in Ada, provides
only o partial solution to this question.

Some remedies to this problem have been studied in [12]. A proper soluticn implies going beyond the
concept of procedure.

8.5.10. - Unequal control relationship

We have already remarked, when studying persisience (4.4), that the relationship from calling pro-
gram to called procedure was a very dissymmetric one, of the master-slave kind. A procedure is a perfect
specialized servant, which does not exist, except when it is required to execute its master's orders. In our
search for ways of allowing the development of systems as sets of autonomous and coherent parts, we may

hope (o find module types which lend themselves to relations more oricnted toward the "sell-management”
stale.

8.5.11. - Imbalance between process and data structures

A central duality in programming is that of process vs. data, or algorithm vs. objects. Data process-
ing (o suggestive expression) consists in applying some algorithms to some objeets; a data processing sys-
tem ¢nn only be deeply understood through an analysis the structire of hoth process and data structures.
\ representation of this situation may be construeted by associating with the system a graph (fig. 6.8)
which hns the data elements as its nodes, and the data transformations as jts vertices (a multigraph is
aetually needed in the gencral case).

- 23 -
b 5
1
o ed
Qu__ =1
Ol —uhall p
——— - \P3z
p\\‘\ \
4 *.'.OP
-— 5
/’/,apvd3
b, - 7
d50 s

Figure 6.8 - A SYSTEM GRAPH

Building programs as systems of procedures is a aerichs': break of the process/data dus.litAy, since pro-
cedures correspond exclusively to divisions of the process part of the system: s}mh s modu!anzahon com}
pletely neglects the other half. As might be expected, the da}:a half takes its revenge in ?he form o
inzufficicnt coherence of the resulting modules: this is apparent in severzlxl of the problems which we have
encountered and discussed such as sneaky connections through data sharing.

More satisfactory modular policies will have to restore the balance and take into acc?unt: the data
as well. We shall in fact see the usefulness of introducing data units for system modularization, along
with Lhe traditional “program units”, i.e. procedures. ‘

A data unit is a module which is organized around a data structure, whereas a pr.ocedure.ls based
on a processing step. Because of the dual relationship of da!.a. and process, s d.ata unit will contain, along
with the deseription of a data structure, the procedures which act upon it, in the same way as a pro-
codure unit attaches to the description of a procedure that.of the data structures on which it operates.
The modularization choice which faces the designer is thus, at each step, whether to put the data into the
procedures or the procedure into the data. ‘ ‘ .

For cxample two extreme policies for- the system of.ﬁg. 6.8 would be hav.mg sxx.data"t;l?lt:,
corcesponding to d.l,d.z,...ds or ten procedure units, corresponding to py,ps,...p10. All kinds of intermediate
solutions are also possible. ‘

It may seem at [irst sight that each of these groupings will bf" just as artificial as the other:m T.he
lirst extreme solution means that py, for example, has to be split betw?en d, and ds, or arbitrarily
attached to one of them; the other implies the converse situation for dy with respect to py and p;. But
nol all choices are equivalent with respect to modularity.

Although there is not absolute rule for deccmpo"sing along one line before the other, some scri});s
argnments tend to favor the "modularize around-data” method at the outermost level of a system. e

niia eriterion here is continuity. During the evolution of a software system, there 18 a very good chance.

that the tasks which are required from the system will change. A payroll proccssin.g syst:cm, for instance,
will be required to provide new outputs, e.g., statistics, and t!\e payro!l compul.ntfon will change due ‘Lo
new rules, evolving legislation, ete. On the other hand, the objects whlrh.nre manipulated by t.h(: sylst(m
wil pirohably remain roughly the same, at least if viewed from a sufficient level v.?f aF)str'act:’.t:r}. t‘;g.
the payroll system will always work on things like employee records, salary scales, social svcnm.i usr Lc
It 1~ thux probably a better bel on the future to base the overall structure of the program on the objects
than on the lasks.

This argument - which lies at the basis of "object-oriented pmgrulmmir{g" = p!nys an imp?rmnh rohle
in the rest of this discussion. Again. we should mention that it gontradicts s»m(plmtnc presan‘nLn‘ons qr LI ¢
tap-down method. The usual deseription of top-down design goes somewhat like the following: begin by

S4-

deseribing the overall purpose, or "top” of your system, e.g.,

compute monthly payroll

this gives "the first version of the system", unfortunately too abstract yet to be implementable. So it
must be refined; the first refinement could lead to something like

-- compute monthly payroll:
input employee data ;
input monthly work data :
for each employee do
compute monthly pay ;
output payroll

You should then apply the same process to the still unresolved pseudo-statements, like "input
employee data”, etc. and proceed repetitively until you are only left with implementable statements.

The problem with this approach is that it does not apply to real size programs. It is meaningless Lo
talk about "the" purpose of & nontrivial program: real systems have no top in the above sense. Any
serious system fulfills a set of functions. An operating system. for example, answers requests {rom vari-
ons deviees; pretending that "the” purpose of the system is described at the topmost level by

answer device request

and basing the development of the system on refinements of this “"statement” will result in an entirely
artificial structure. The same is true of systems which superficially seem more single-goal-oriented, such
as the above payroll processing program, or a classical scientific computation; when one looks more
¢losely and considers the full life cycle of any such program, it becomes clear that there are always severat
varianls of the program, which are closely related by the facilities they use but pursue different aims.
Among the many parameters which may characterize a system variant are, for instance, whether it is for
actual production or for program test, and whether it is interactive or batch-oriented.

Lot us concentrate on this last criterion and consider & program which has both 2 batch and an
interactive form. The batch variant will have as its "purpose”

solve a complete instance of the problem
which, necording to the top-down design credo, could be initially refined into something like

read input values ;
compute results ;
output results

The interactive version, oo the other hand, may be described as

process one transaction

wliich could be refined into

.25-

if new information provided by the user then
input information ;
store it
else if request for information previously given then
retrieve requested information ;
output it
else if request for result then
if necessary information available then
compute requested result ;
output it
else
ask for confirmation of the request ;
if yes then
obtain required information ;
compute requested result ;
output result
end if
end if
else ...

Thus at the outermost level there is apparently no relation whatsoever between these two programs;
bt in reality they are two facets of the same system, and their essential components will be the same.

What this discussion shows, in our opinion, is not that the top-down method is inadequate, but that
it ix an error to apply it to the process part only. The structure of a system should be znalyzed in terms
of both the objects it manipulates and the tasks (the plural being fundamental here) that it performs. At
every step in the development of & system, the designer has the choice between refining data and refining
processes. This choice must be made consciously; choosing the former alternative first at the basic levels
of system development will, according to our experience, yield more coherent, solid and change-proof
designs,

It is interesting to note that Wirth's 1971 paper (16], the first description of the top-down method,
clearly stated that the refinement process should he applied to data as well as to algorithms. It does not
however mention that the designer must often choose between the former and the latter.

We shall show in sections 6.6 Lo 6.8 how these ideas can be applied. We will see in particular when
introducing "abstract data types” that a proper approach restores the process/data balance, which may
< lo be destroyed by going too far in the modularize-around-data direction; indeed, a good way of
deseribing a data structure is to use as abstract description the properties of the set of functions which
may be applied to it, so that the loop is closed and the process/data complementarity appears clearly
avain.

Refore we come to this, however, we must study a little more closcly what “structuring around data”
muans. We will first take as example a design method which is well-known in business data processing cir-
cles the “Jackson method”. Although it has some obvious limitations, Jackson’s method will help us
inteodhice some of the most fruitful concepts. s

- 26 -

6.6. - MODULARIZING ON THE BASIS OF THE PHYSICAL DATA STRUCTURE

The method developed by M. Jackson [7], (similar to the one preached by J.D. Warnier) has been
esxentinlly used for business data processing applications.

One of the basic ideas of the method is that the structure of a program should only depend upon the
structure of the data it manipulates. In patticular, the tasks to be carried out do not influence this struc-
ture: they only determine how it will be filled.

Since "data” is a somewhat overused term, it is necessary to say what it means in the particular
conlext. Let P be a program using some input /, producing output O and having some internal data
structire D (fig. 6.9). The word "data” is used in the literature to mean at least four things:

el-]

¢2-D

o3y O

et-IUDyY O

.ﬂ

Oy

Figure 6.9 - DATA MANIPULATION

The data considered by Jackson are apparently those of the fourth category, i.e. input and output
files. The structure of such fles will be described in Jackson’s method by a tree using a combination of
the base schemata of figure 6.10: for instance, an element type of A is the concatenation of one element of
tvpe A1, one of type A2, one of A3 and one of A4;a B is cither a Bl, 2 B2ora B3;a Cis zero, one or
more oceurrenees of a Ot

N -

8] Bz s

Figure 6.10 - BASIC JACKSON STRUCTURES

¢ centbral idea in S0N'S MeLhod (S that 4] cessing & file whose struetire uses Lhese
Tt tral id Jack ethod that a progrs Proeess | t sl 1A T
¥ Jac g. ’
eien ts will have a corresponding) $ sponding to concatenalion, cor 1ona
ents wi L] ng structure, with sequence correspond

to alternative, and loop to repctition.

FILE

ND
FILE BODY LB

|

RECORD *

FILE HEADER

Figure 6.11 - A FILE STRUCTURE

or example, a file havin, e structure given by hgure 6.11 w 2 process a program of the
4 4 o 2 Y g
y te, f h the struct by f 6.11 o ¢d b

form;

.28 -

-- process_FILE:
process_FILE_HEADER ;
-~ process_FILE_BODY:
until file_end do

read record ;

-~ process RECORD:
type_A: process_A,
type_B: process_B;

end do .
process_FILE_END

The study of the tasks to be performed will be carried out separately, resulting in a list of necessary

clementary “actions”. These actions will then be spread out into the "holes” of the above program struc-
lure (process_A, process_B, ete.), to obtain a complex program.

) 'l‘).m lollowing example is taken, slightly simplificd, from Jackson’s book. An input file of card
images is Lo be analyzed. There are three card types, A,B and C (distinguished by a character in some
position of the card). The required analysis is as follows:

¢ count the cards preceding the first A (the resulting count will be held in variable initial);
e print the first A;

e print the last card, which is always the first c following the first 4;

¢ count the "batches”, where a batch is either a contiguous sequence of A cards or o conligu-
ous sequence of B cards, starting with the first A (this count will be held in variable balches).

¢ count the number of "batehes” of B (this count will be held in variable Bbatches).

As implied by the method, only the structure of the data determines the structure of the program,
not the tasks to be carried out.

It is very easy to draw the diagram corresponding to this structure (figure 6.12)

HEADER H END OF FILE

NOT A BATCH

8_BATCH®

Figure 6.12 - A FILE STRUCTURE

The program operating on such data must then have an isamorphic structure:
process_FILE:
process_ HEADER ,
process_BATCHES ;
process_ END_OF_FILE

- 2G -

.
where the refinements of the statements are:

process_ HEADER:
init_HEADER :
until A do
process_not_A
end do

process_BATCHES:
init_BATCHES ;
until not baich do
process_A_BATCH ;
. process_B_BATCH
end do

process_A_BATCH:
process_starting_A ;
until not A do
process_batch_A
end do

process_B_BATCH:
process_starting. B ;
until not B do
process_bateh B
end do

praceaa_END_OF_FILE:
process_C

The method then requires that we list the necessary "executable actions”. To read the file, we will
need tests and actions. First we need to express the three tests two distinguish between card types; they
niry be refined as follows!

A (type(card) = A)
B : (typefcard) = B)
C: ftype(card) = C,

type (card) may be given for example by the first character of card.

The “actions” are of two dilferent kinds: input-output and computation The first k&nd comprises the
<iatements necessary to handle the mput file ("open” and "read") and to print the special cards and Lhe
requested counts; thus we find four kinds of input-output statements

open

read (card)
print card
print counter

T'he computation statements are nceded to compute the various requested counts; for each of these
connls, we need a statement to initialize the corresponding counter and a statement to ‘nerease it:
initial = initiel + 1
0 batches := handler + 1
Bbatches ;= Bbatches + 1

initial = 0
batches :
Bbatches == 0

What remains is then to "spread oul” these actions inlo the program structure by refinimg the
remaining pseudo-statements and tests. It is ensy to ohtain in this way the refinements af the yel under-
developed statements:

-30-

intt_HEADER:
open ;
intttal == 0 ;
read cerd

process_not_A:
snitial ;= instial + 1
read card

init_BATCHES:
print card ;
batches := 0 ;
Bbatches := 0

process_starting_A:
batches = batches + 1 ;
read card

process_batch_A
read card

process_starting_B:
batches = batches + 1 ;
Bbatches := Bbatches + 1 ;
read cerd

process_beteh_B:
read card

process_C:
print card

13y moving all these statements into the required position in the program structure, we get a solu-
tion Lo our problem.

This example of the application of Jackson's method (we shall see another one in section 6.9) 18 quite
representutive of the benefits and limitations of this method. The nice part is that the design process goes
very smoothly by just applying the basic recipe: use the data structure first. The "actions” are quite easy
to map into the overall structure (with the partial exception of the "read” operations, whose proper place-
ment requires some insight),

Oun the other hand, some obvious criticisms may be voiced. The first is that things may not go so
well when there is more than one data structure involved; in particular, “interesting" problems are those
in which the input and output structure are different! This case, called "structure clash”, is dealt with in
detail by Jackson, who suggests a coroutine-like solution schema.

Of more direct interest to us for vthis discussion 18 the study of the method with respeet to continuity
ana prolection. It is all very nice to base the program structure on the data structure, but it also means
that the data structure will be "wired” into the program structure, which will thus have to change jusl as
mueh as the structure of the data, in case the latter evolves. The problem, however, is that the way the
dila <lructure has been modeled here is so strictly fixed that it will be very diffienlt to change anything
withaut changing everything; consider for example what happens Lo the siructure depicted in fig. 8.12 if
we rlinge the specification just slightly: the header part now consists of cards which are not only not A
It alwo not B; the sequence of batches may begin with either an A-bateh or a B-batch. Although this
s problem is very close to the inttial one, the structure will have to be completely reworked. The same
i~ trie il we try to extend the program in order to cater to possible input errors (e.g., no A-card in the
lile}. Such disruptions of the program structure for conceptually small extensions are not acceptable in

light of the requirements for modular design.
These difficulties reflect two of the most serious limitations of Jackson's method:

o the restriction to tree-like structures for the modeling of data, which is tco constraining in many
enses; [or instance, even in simple problems, a general graph (e.g., & transttion table) may be needed;

e oven more importantly, the fact that the structure used is the external, physical one: figures 6.11
and 6.12 describe 2 file in & way which is very close to how it appears on a disk or deck or cards.
'his is the main reason why the designs which are obtained by using the method are so sensitive to
surface changes in the appearance of the data.

One of the lessons which may thus be learned from Jackson's method is that data should be
deseribid by deep properties, not by physicai structure. This will be the topic of the next section.

Despite its limitations, Jackson's method (which the above presentation described only in part) pro-
vides some important insights into the structure of programs. Some of its principles are worth pondering
over earcfully; one of the most interesting ones, although it seems at first sight paradoxical, is the idea
thitt (he aclions required by the problem specification will be found in the contents of the program but
should exert no influence at all on its structure, which should be entircly determined by the structure of
the duta. Data structures, however, should be described in a decper way than what we have seen so far.

- 42T

6.7. - ABSTRACT DATA TYPES AS A BASIS FOR MODULARIZATION

6.7.1. - Overview

SECTIONS 6.7.0 AND 6.7.2 WILL BE REPLACED BY REFERENCES TO CHAPTER 5, WIHCH
DESCRIBE ADTs IN A DEEPER & MORE COMPLETE FASHION.|

I data structures are to be used as a basis for proper modularization, we must find a method to
deseribe them in a sufficientiy abstract way.

How can we describe a data structure? Let us take the simple example of a "table" structure. used
(o store keys, which we will assume are just character strings (of type STRING), and to retrieve them.
Suel o table is necessary in many applications, e.g. compiler writing {"symbol tables” will contain pro-
grim identifiers), business data processing, ete.

The most obvious way to describe such a structure is to use its implementation: the table might be
represented by an array of strings, a linked list, a file, ete. Such a method is clearly not acceptable for
onr purpose since, as discussed above, it relies on properties of the structure which are far too superficial
anl change-sensitive. The physical representation does not capture the true nature of the table; by look-
ing atl two different representations {e.g. array and linked list), one may get the impression that they
correspond to very different structures, whereas they serve the same purpose, namely representing the
table, On the other hand, one of them, e.g. the array, can also be used for representing very different
things (an array of strings could be the internal representation used by, say, a fext editor for the part of a
text file which is accessible at any point in time).

What constitutes the true "nature” of the table structure is in fact its intended usage, that is, essen-
tinlly, the store and retrieve operations. It is these operations which make it possible to distinguish an
array {say) used for representing 2 table from an array used for something else, and, conversely, provide
the commonality between various reptesentations of the same abstract structure.

By combining a modularize-around-data approach with a description of data structures based on
operalions, we can (as announced at the end of 6.5.5) restore the process_data balance,

There remains, however, the problem of how to deseribe the operations which characterize a struc-
Lure. We could use a description of the algorithms themselves, e.g. the procedures for "store” and
"retrieve” in the table example. This approach has taken in the systems implementation language BLISS
[17), where data structures are described by their access mechanisms, for instance, an in, n} triangular

malrix is characterized by the fact that the [r, 7] clement lies at relative address i-(%)- + 7. Such a sclu-

tion however, is again not acceptable for out purpose since, as when describing a structure by its actual
memory layout, it relies on physical. superficial characteristics of the algorithms. In our example, there
ure many possible different algorithms for table management (e.g. sequential storage and retrieval, hash-
coding, binary tree or B-tree search and insertion, etc.). The procedures "store” and “retrieve” will be
externally very different depending on the particular policy chosen.

What we should do is to characterize the available operations not by their implementations but
their abstract properties; for example, “store” and "retrieve” are characterized by the fact that, roughly
speaking, a steing will be retrievable if and only il it has been previously stored into the table. This fun-
dacatal property transcends all particular representations.

11 is usefu! here to be a little more formal. We will define classes of data structures having the same
peneral properties as abstract data types. An abstract data type T is characterized by:

o a list of functions fy, fs, *** fn. which correspond to operations available on objects of the class;

o 1 list of predicates (or assertions) relative to fy, fa, * - fa, which give the abstract properties

of the operations.

Every f; has zero or more input domains, and one or more outpul domains:

JiiDy X Dy XD = D, XDy, X o X D,

-~ 38

7/
(p > 0.9 > p), where at least one of the D, (1< <q)is T (the type being defined). The following
CANCS IReD
e Il T appears only in the right-hand side {(that is, T is D'; for one or more j such that
p + 1< 7 <q) then f; corresponds to an operation which produces objects of type T, possibly
uxing objects of other types (D.] for 1 < j < p); it is thus termed a creation function. If the left-
hind-side is empty (p = 0), then f, has no argument and corresponds to a constant function.
o T appears only on the left-hand side, then /; takes one or more objects of type T objects: it is
thus called an access function. E

o Finally, if T appears on both sides, then f;, among other things, takes objects of type T and
viclds other objects of type T it is 2 modification function.

In our example case, we may describe the abstract data type table as in figure 6.13.

type TABLE:
FUNCTIONS

creation
create-empty: — TABLE
(a constant function which yields an (empty) table)

modification
insert: STRING X TABLE — TABLE
(models the "store” operation. Note that,
functionally speaking, an insertion yields & new
object of type TABLE)

access
present: STRING X TABLE -~ BOOLEAN
(should yield true il and only if the string
is in the table)

ASSERTIONS
for all s, &: STRING; t: TABLE:

not present (s, create-empty)
{as its name suggests, an empty table has nothing
present in it}

present (s, ingert(s, t)}) = ((s' = s) or present (', t))
(when inserting a string into s table, the strings
present in the new table are the one just inserted
and those already prescat in the old lable)

Figure 6.13 - Specification of string tables

This description captures the essential propertics of the table structure in a formal way, without
implying any particular implementation choice.

An implementation of an abstract data type T defined as above consists in a physical representa-
tion for objects of type T, and a sect of procedures py ps, 2w such that each p, has the same func-
tionality as f, and the assertions relative to the f; functions are satisfied between the input and output
arguments of the respective p, procedures. In our example, we need to choose a representation for table
(r.g. array, etc.) and procedures corresponding to create-empty, tnsert and present.

What we can do with these elements with respect to modularity should now be clear: in a
modularize-around-data approach, they should not be scattered, but be grouped together into a single
madule, which will constitute the data unit we are looking for.

- 34 -

An essential requirement of such a data unit is that it should be usable only through the official pro-
riedinres {ereate-empty, insert and present in our example), not by the internal representation which will
leve heen chosen, Only by observing this rule shall we be able to obey the principle of information hiding
and allow for continuity (if the implementation is changed, only the module implementing the ahstract
lata type must be updated: other modules use it through the official interface consisting of the public pro-
cedures, which, although changed internally. will still be called in the same way).

6.7.2. - Data type refinement

\n extremely important requirement with regard to the criteria of composability and decomposabil-
ity s the ability to deseribe objects as refinements extensions or particularizations of others. This applics
todutn as well as to procedures.

such an approach may be applied in a way to abstract datn Lypes. We will nse a "refine” relation:
1 i said Lo refine A if B possesses all the functions of A, enjoying Lhe same properties. B may have
other funcetions and for other assertions.

A simple cxample may be found in the ease treated above Se far. there is no obligation on any
TABLE implementation to do anything when a request is made for inscriion of an already present item
animplementation may ignore the request or do something clse which docs not change the further
behavior of the operation present. We now consider a new structure, COUNTED_TABLE, lor which it
shonld be possible to know how many times a given item has been inserted.

Rather than redefining COUNTED_TABLE from scratch, we consider it to be a refinement of
TABLE, with a new funclion count, and new assertions. The definition iy given in figure 6.14. Since
COUNTED_TABLE refines TABLE, cverything which was cxpressod o figuce 6,13 applics to
COUNTED_TABLE; only the new fealures have heen added Note thal the last assertion exprosses a
property of the TABLE [unction present which is only true of COUNTED_TABLE.

type COUNTED_TABLE refines TABLE’
FUNCTIONS

access
count: STRING X COUNTED_TABLE — INTEGER

ASSERTIONS
for all 5, &: STRING, T: COUNTED_TABLE

count (s, create-empty) = 0

count (s, insert (s, t}) =
if ' = s then count /5, t) + 1
else count (s, t);

present (s, t) = count {3, t) > 0)

Figure 6.14 - Specification of a counted table

8.7.3. - The Simula class

The Simula 67 language embodies & concept called "class”, a very interesting programming language
structure for the implementation of abstract data types.

A class ig characterized by the following elements:
° a name;

 z0ro or more arguments (similar to procedure argument);

-35-

& two kinds of attributes: variables (or arrays), and procedures;

o 1 (possibly compound) statement.
The general syntactic structure of a class with name C is the following:

class C (argument list); argument types ;

begin
declarations of variables and arrays ;
declarations of procedures ;
statement ;

end

To apply & class for the implementation of an abstract data type, we will use the v.ariables and
arrys for the physical representation of objects of the type and the procedures for the operations.

The statement represents actions to be taken when creating an object of the class. An object of the
class, say z, is declared by writing:

ref (C) z
and is actually "created" at execution time by the statement:
z:- new C
{i- ix used instead of := for assignment to class objects). The new construct allocates the storage space

which is necessary for the attributes of z and executes the statement of the correspending class definition.

Once = has been created in this way, it behaves as an object of the abstract data type associaf,ed
with G, It possesses attributes written z.a, where a is any of the variable or procedure names appearing
in the definition of C.

For example, we could implement our TABLE type in a straight forward (and inefficient) way by
using an array of strings, managed sequentiaily, as in figure 6.15.

A particular table ¢1 will then be declared by

ref (TABLE) i1;

To create it, one must execute
t1 .- new TABLE

1 can then be used through the appropriate proccdures,_e.g.:

t1.insert ("KEY1') ;
t1.insert ("KEYWO")
if t1.present ("KEYZ') then...

- 36 -~

class TABLE(n); integer n ;

begin
comment variables ;
text array strings (1:n);
integer top :
comment procedures ;
boolean procedure present(t); text t ;
begin integer i; boolean isthere ; .
isthere := false; 1 = 1;
while ¢ < top do
begin
isthere = (strings(i) =t} ;
ti=i+ 1
end search ;
present := isthere
end present ;
procedure insert/t); text t ;
if not present(t) then
begin
if top = n then error
else
begin
top :=top+ 1
strings (top) i= ¢
end actual insertion
end tnsert ;
comment statement ;
top =0
end TABLE

Figure 6.15 - TABLE implementation in Simula

8.7.4. - Class prefixing and virtual procedures

Class B will inherit all the properties of a class A il its declaration is prefixed by the name of A:

Aclass B{..);...;

begin
attributes which objects of class B
have on top of those of class A;
statement
end B
B ealled a subcelass of 4.

A neility which is needed in connection with prefixing is virtual procedures. If a function f in the
speciliention of A may only be refined at the B level, then in the corresponding Simula classes the name
of the proeedure corresponding to f should appear in 4, but the procedure irnplementation may only be
given in B. The necessity for such a feature is particularly clear if we consider a class A with several

subelasses B, C, D, each of which may have further subclasses (figure 6.16).

- 837~

Figure 8.16 - A class hierarchy

An operation may be defined at the A level, its implementation depending on whether and A object is a
B, a C ora D (or even on whgther itis an E, F, etc). We may, for instance have the following relations
in a graphics system:

class figure; ...
figure class plane-figure; ... ;
plane-figure class triangle; ... ;
plane-figure class cirele;
plane-figure class rectangle; ... ;
rectangle class square; ... ;

Some operations, such as rotation, will have to be defined at the figure level; their implementation
ean only be given if we know what kind of figure we have. such procedures will appear in a special vir-
tual paragraph in the parent class; their presence there means that subclasses are required to provide a
conerele implementation of the virtual procedures.

The example of figure 6.18!, corresponding to the refinea relation seen above between TABLE and
COUNTED_TABLE, should by now be sufficiently clear. Figure 6.17 gives the structure; + indicates the
"netual” procedures, * the virtual ones. t

! Werrnst the reader will pardon us for the conflictiug usea of the word "ligure” here,

-38- 39

class TABLE ;

7 QM’C virtual:
boolean procedure present ;

TABLE § . %
T ELMW procedure insert ;

. begin end TABLE; comment no actual attribute or statement at this level ;

TABLE class COUNTED_TABLE ;
virtual:
integer procedure count ;

irtual begin
ctual boolean procedure present (1); text ¢ ;
present = (count (t) > 0)

- end COUNTED_TABLE ;
<‘_aum,t’c

+ COUNTED_TABLE class IMPLEMENTATION, ;
present

begin

COUNTED_TABLE %

physicel representation of the counted table ...
integer procedure count (t); text t ;

begin ... actual implementation of count end count ;
. n procedure insert (1); text t ;
Ansert) ‘ begin ... actual implementation of insert ... end insert ;

TMPLEMENTATION ! %wunf wmEerel 0 L Y _emlhaomemmmes
IMPLEMENTATION 2 o nt+ end IMPLEMENTATION,

Figure 6.18 - Hierarchy of tables

Several remarks are in order here.
e |. The "modification” procedure insert does mot recreate a new table, but modifies the existing

Figure 6.17 - Hierarchical system x;f the "table” ciasses one
e 2. All the procedures have an implicit argument of type TABLE: the class describes what opera-

lions may be applied to any table, so the corresponding argument need not be indicated within the
class. The following function of the abstract data type specification:
present: STRING X TABLE — BOOLEAN
ix thus represented by a procedure with only one argument:
boolean procedure present (i); text t

Indeed, the other argument appears in the calls through the dot notation; i.e. the function applica~
tion

present (s, t1)
becomes in Simula

t1. present (s)
o 1. As could be expected, we had to introduce a limitation on the possibilities offered by the
abstract specification: our "table”, implemented with an array, may only contain up to n strings,
where n is the argument of the class.
« 4. There is no procedure corresponding to the creation function create_empty: creation is ensured
by the new construct.
o 5. There is no way in current standard Simula to distinguish between "public" attributes (the pro-
codures insert and present) and internal, “private” ones (top and strings). So any calling module
may, for example, exceute:

t1.top := 7 * il.top

which is, of course, contrary to the principle of information hiding. There is no way to enforce this
principle in Simula other than programming discipline. A simple language extension, allowing the

- 40

module implementor to specify what is public and what is private (the so-called "hidden-protected
feature”) has been designed but is not provided by common Simula compilers.

OF course, on any leaf of a tree such as that of figure 6.17, there should not remain any virtual pro-
cedure which does not have a matching actual procedure on the path from the root of the tree; such a
provedure would not be executable,

This prefixing mechanism is extremely elegant and powerful. It may be compared to the "variant
record” mechanism of Pascal and Ade, with the important difference that the former is closed (once a set
of variants has been designed, no further extension of the record type is possible), whereas in Simula any
class can always be extended by being used to prefix a new class,

One may point out two limitations of this mechanism:

® 1. The specification of virtual procedures includes the type of their results for function procedures
(c.g. present, count above), but not the type of their arguments, which will only be given in the sub-
class which actualizes each procedure. This absence is motivated by the fact that such an argument
type may depend on the entities defined only in a subclass, and thus not textually available in the
parent class; it is, however, rather unpleasant for readability.

® 2. A class may have at most one prefix, which restricts type networks to trees. It is as though the
mechanism allowed to define vector spaces and topologicul spaces, but not to combine them into the
concept of "topological vector space”. Technically, however, there exist ways to "cheat” with this
limitation,

6.7.5. - An example

We now present a slightly more ambitious example of the use of Simula classes as a module built
around the implementation of an abstract data type. This example does not use the concept of prefixing.
The example of figure 6.20 is a class implementing the concept of complex number, [t corresponds to the
abstracl data type definition of figure 6.19 (where some complex operations have been circled, e.g. +, =,
ete., Lo avoid confusion with their real equivalents).

The basic idea behind the implementation is that, among the two main representations for complex
numbers (cartesian and polar), the proper cone should be used for each operation. The benefit of this
approach will be appreciated by trying to derive the formula for complex addition in polar representation.
On the other hand, the necessary conversions are performed only when necessary; outside the class, if a
proper discipline is followed (i.e. if the class objects are ouly accessed through the official procedures),
which representation is available at any given instant is irrelevant.

We have chosen to implement the operations (plus, minus, etc.) as modifying an element rather than
compuling a new one; that is, the call

21 plus (z)

will assign Lo 21 the value of 21 + 2. We could alternatively create a new element; procedure plus would
then become:

ref (COMPLEX) procedure plus (2); ref (COMPLEX]) z ;

begin ref (COMPLEX) C ;
C - new COMPLEX ;
O.cartesian-assign (z+ 22, y+2y);
plus - C

end plus

and similarly for the other procedures. this is closer to the abstract data type specification but more
pralific in storage.

The Simula class of figure 6.20 assumes the existence of a boolean hardware-dependent boolean pro-
cedure may_divide (y, 1), whick returns true if and only if the division of y by 2 may be carried out (ie.

s not too small relative to 1), and of a variable piinitialized with an approximation of 7 (Simula has no
svmbolic constants).

<41 -

. rize around one
This example clearly shows one of the not so happy consequences of the "modulari

1vpe” poliey: since & Simula class describes what may be doune to anydcl:es: Ilirlita:l:;, t.mn?;:sfseazlc\.‘vm\i;i:
,inplu it p:\}nmcter, here of type COMPLEX. Thxs means Ll}at pvrl?o;; zaHEd & , ,
operate on two elements of the class, must be dissymmetric; plus will be 3
21.plus (22)
or 28.plus (21)
Il we want to be able to resort to the more reassuring form
plus (z1, 28)

i i i ith modu-
then we have to declare plus outside the class COMPLEX, which of course is not compatible with modu-

lerrily .
The Ada approach has "packages” which are poorer in structure than the Simula class, but do not
e A 8 . S

e the wbove problem (sec below 6.7.6).

type COMPLEX
FUNCTIONS
"
cresren 0: — COMPLEX
cart, pol: REAL X REAL - COMPLEX
real, tmaginary: REAL — COMPLEX

access
1,4, p, ©: COMPLEX — REAL
#, =: COMPLEX X COMPLEX — REAL
distance: COMPLEX X COMPLEX — REAL

fonts
e /. COMPLEX x COMPLEX — REAL
" %N/ COMPLEX X INTEGER — COMPLEX
“: COMPLEX ~» REAL -- conjugate

PROPERTIES
for all z, 2/: COMPLEX, a, b, r, t: REAL:
0 = cart (0,0) = pol(0,t) ;
z (cart (e,b))=1a; y (ca{rt ()j,b)}t= b; i
ol (r,t)) = r, 8 (pol (r,t}) = t mo g '
fc:(:; (as= cart (o, 0} = pol (jdl, if 2> 0 then Oelse I1);
imagtnary (5) = cart (0,5) = pol {

p(z) = Valaf +y(2)i z(2) 0 = 6(2) = ""”gg%)l '

2(z) = plz)*cos (8(z)); yz) = p(z)*sin(0(2)) ;

= 2)= (z(z) = 2(2) and y(z) = Y(7'))
) 603 = B¢ mod 21
z¢z/=not(z=(2') ,‘
f??ﬁfﬁ{;ﬂiﬁﬁyﬂ+ﬂﬁﬂﬁ
z - 2/ = cart (z(z) — 3(3')'y‘z"_.y(z.)“
2 * 3 = pol (p(z) * pl), B(z) + B(<")) ; .
2 %0 => 2/ = pollal:)/i). 6(z) - 8() ;
2**n = pol(plz)", n X 8(z));
n \/; = paol (" \/;(1)1 2&2)—)

z | = cart (z(2), — y(2)) = pol(p(2), — 6(2))

Figure 8.19 - Specification of the type COMPLEX

.49

class COMPLEX ;
begin
comment Representation invariants:
(cartesian => zrep and yrep have the values of the cartesian
coordinates of the current complez,
as resulting from previous operations)

and (polar =» rorep and thetarep have the values of the polar
coordinates of the current comples,
a3 resulting from previous operations,
rorep 2 0, 0 < thetarep *2* pi) ;
comment Internal (hidden) variables ;
real zrep, yrep, rorep, thetarep ;
boolean cartesian, polar ;

comment Internal (hidden) procedures ;

procedure make-cartesian ;
comment make cartesian form available ;
if not cartesian then
if not polar then error ("uninitialized complez”) else
begin
zrep i=rorep * cos (thetarep) ;
yrep = rorep * sin (thetarep) ;
cartesian = true
end cartesien ;

procedure make-polar ;
comment make polar form available ;
if not poler then
if not cartesian then error ("uninitialized complez”) else
begin
rorep := sqrt (z¥¥2 4 y*¥g)
if may_divide (y,z) then theta := arety (y/z)
else theta = sign(y) * (pif2)
polar := true
end make-polar ;

comment The procedures which follow are public ;
comment [nitialization procedures ;

procedure cartesian_assign (a,5); real ab;
begin
Zrep i= q; yrep ;= ;
cartesian ;= true; polar = false
end cartesian-assign ;

procedure polar_assign (r, t); real v, ¢ ;
begin
rorep =7, thelarep == modulo (, 2*p) ;
cartesian ;= false; polar := true
end polar_assign ;

S 43-

procedure real_assign (o), real a ;
begin
zrep := a; rorep = abs(a);
yrep =0

thetarep = if ¢ > 0 then Oelse pi;

cartesian = polar = true
end real_assign ;

procedure imaginary_assign(b); real b ;
begin
yrep := b; rorep = abs(b);
zrep =0

thetarep := if b > O then pi/2 else -pi/2

polar ;= cartesian ‘= true
end tmaginary_assign ;

comment Access procedures |

real procedure z ;
begin
make_cartesian; T ;= zrep
end z;

real procedure y ;
begin
make_cartesian,; y == yrep
end y;

real procedure ro ;
begin
make_polar; ro := rorep
end ro ;

real procedure theta ;
begin
make_polar; theta == thetarep
end theta ;

ref (COMPLEX) procedure copy ;
begin ref (COMPLEX) ¢ ;
¢ ;- new complez ;
if cartesian then
¢ cartestan_assign (z,y)
else if polar then
c.polar_assign (ro, theta}

A M
else error ("uninitialized complez

copy - ¢
end copy ;

-

comment Operations ;
procedure plus (2); ref (COMPLEX) z ;
cartesian_assign (z + y.z, y + 2.y} ;
procedure minus (z); ref (COMPLEX) z ;
cartesian_assign (z - 4.2, y - 2.y) ;
procedure times (z); ref (COMPLEX) z ;
polar_assign (ro¥z.ro, theta + z.theta);

;

- 44 .

procedure divide(z); ref (COMPLEX) :z ;
if not may_divide (ro, z.ro) then error
("impossible complez division"
else polar_assign (rofz.ro, theta-z.theta) ;
procedure conjugate ;
if cartesian then cartesian_assign [z, -y)
else if cartesian then polar_assign (- ro, - theta)
boolean procedure equal(z); ref (COMPLEX) 2 ;
if cartesian then
equal == (2= 23} and (y = 2y)
else if polar then
equal »= (ro = z2.ro) and (thets = z.theta)
else error ("uninitialized complez”} ;

boolean procedure not equal(z); ref (COMPLEX) =

nrot equal == not equal () ;

procedure power (n); integer n ;
polar_assign (ro **n, n*theta)
procedure power (n); integer n ;
polar_assign (ro**n, n*theta)
procedure root (n); integer n ;
polar_assign (ro**(1/n), theta/n)
real procedure distance(z); ref (COMPLEX) z ;
begin ref (complez) C ;
C - copy ;
D.minus (z) ;
distance := C.ro
end distance ;

end COMPLEX ;

Figure 8.20: A Simula class for complex numbers

8.7.6. - The Ada package facility

[’!‘o be complete‘d. Will describe Ada packages and show that they are more general in nature than
Simula classes, since they may be used to gather virtually any set of objeets, but are static in nature and
do not lend themselves to object-oriented design. Emphasis will be put on genericity.|

L 45-

8.8. - MENU-DRIVEN INTERACTIVE PROGRAMS: A CASE STUDY IN MODULAR
DESIGN

6.8.1, - Full-screen interactive applications

We shall illustrate some of the concepts introduced above by an example which is quite representa-
Live of an important class of problems, and yields an elegant modular solution based on modularizing-
around-clata: menu-driven interactive systems.

In such systems, any user, working at a terminal, sees at every step a certain full-screen "menu”, i.e.
a set of questions; the answers he provides to these questions will either trigger an error message if they
are incorrect, or cause the program to take some actions (such as updating a data base} and proceed to
some other step in the dialog, displaying the appropriate menu.

An exccution of such a system may thus be described as a traversal of a transition graph associated
with the system. Such a graph depicts the system with nodes, or atate, and labeled vertices, or transi-
tions. An example graph, an for imaginary (and simplistic) flight reservation system, is pictured on figure
6.22.

enquiry
on seat
availabilit

cancellation

change
of
reservation

reservation

quit

Figure 8,22 - An interactive system

We shall assume for the sequel that one of the answers provided by the user at cach state iz an indi
vation of whal he wants to do next, i.e. whal transition should be taken; we will eall such an indication
an oxit label and asswme that pessibic exit labels are expressed by integers hetween 0 and some valuc
m 1. Quite frequently, the exiv label is determined by hitting one among m special function keys on
the kevhoard. The tabels of the graph vertices on figure 6.22 correspond to such exit choiecs.

We should point out thal such & transition graph is often quite complicated and intricate, and there
1 no obvious way to "structure” it (there have been some altempts, however -- see e.g. (82]). In particu-

lir:

- 46 .

@ there is often a possibility to "quit"
on qure 6.22); this facility, which i
nesting convention (figure 6.23(bj)
® there is often & "help” facilit
menu (from which it is sometim

at any time during the dialo, i 'y (label 0
me ¢ g by Ppressing a special key (]
s almost indispensable from the users’ standpoint, bre(aks :1”
1

Y which suspends the current i
: execution to dj i

e es posstble to ask for more help) (figure 6.23(b‘)'Isplay o Ry
bt :xlsergusil;loge maﬁ have tried to separate a system into different com .
b emand a direct connection bet

6.2%(c)), in order to avoid i e P
: the necessity of goi

or going back th
direct transition from cancellations to reservations in ﬁgurergu2g3h) the top |

ponents, it is not unusual
t in the structure (figure
evel all the time (see the

v

hetyp,
bach

hetp ack

Figure 6.23 - Examples of state graph sub-structures

Jur purpose in S section is to try to design a eneral framework for g N interactive syste
i on 4 B (uch a teracti t
(th 1 to try to d I f k System.

6.8.2. - A first attempt '

Lot us try to write a program for a schema of the above

tion. We just forget anything we may have heard about "stru, L i o)

and lot ours i intuiti . e o

o “mil:reso!;eb?unied by our intuition. Quite naturally, we shall getgaar:;mng mh!ts ‘f“lgﬂr-sense,
o 0cKS, or paragraphs, Py Py - P each corr d'p b lCh.!S ol
araph the i-th paragraph has the form: " NG fo w state i the above

=474

P, (program for state 1):
output screen for state i ;
repeat
read user’s answers and his exst choice C for the next step ;
- if error in answer then
output message
end if
until
no error in answer
end repeat ;
record answer ;
cage C'in
Cy: goto Py
C,: goto Py,]
Chny: 80t0 Pifi)
end case ;

whore t(i k) is the state to be entered when leaving state i with exit label k, and m is the number of pos-
sible exil labels after each step.

6.8.3. - A hierarchically procedural solution

What is bad with the above scheme? An obvious defect is that it will result in programs with an
intriente branching structure, belonging to the well-known "bowl of spaghetti” type; remember that the
slate graph may be very complicated. Probably even more serious is the bad performance that such a
program will have with respect to the “continuity” criterion: among the requirements changes which are
most likely to occur during the development of an interactive system of the kind we are interested in are
changes in the structure of the state diagram; e.g. users will request that it become possible to go directly
from sinte A to state C using a certain function key, whereas it was originally planned that one should
alwiys Lo through state B. So the above design is unsatisfactory not only because it uses goto statements
bt more importantly, because it bas "wired" the structure of the dialog into that of the program, so that
any change in the former will imply rewriting the latter.

As a result of this remark, any technique for "structuring” programs by eliminating goto statements
and replacing them with equivalent loops is bound to have no more than a superficial eflect on the quality
of the program above, A similar comment may be applied to the use of exceptions {as in Ada, PL/I,
€LY, which are provided by some languages especially designed for the construction of the interactive
programs, such as PLAIN [14]; such constructs seem here only marginally preferable to ordinary jumps.

The limitations of any a posteriori attempt to improve the structure of the above program are
further evidenced by the fact that this structure reproduces that of the underlying transition graph which,
a% we have scen, is in many practical cases inherently intricate.

A much better solution is to completely disconnect the description of what happens at every step,
i~ the operations performed while in a given state, from the description of the overall structure of the
dinlog, b.o. Lhe traversal of the graph. In other words, we will replace the constants ¢(i,k) above by calls
an explicit function

TRANSITION (i,k)
which will be used to specify the transition disgram associated with any particular interactive applica-
hon,

Uising this idea, we get a simpler version of our program schema, based on nine program units on
(hree levels of abstraction (figure 6.24): level 3 is that of a general system for executing interactive appli-
calions, level 2 is that of the individual applications; level 1 is that of the individual states in an

- 18 -

application.

Level

'SCHEDULE

Figure 6.24 - A hierarchical procedural solution

SCHEDULE only defines the traversal of the transition graph; it knows nothing about the particular
screens of a given application, and should be identical for all applicationst®:

SCHEDULE:
var current: STATE, nezt: CHOICE ;
current = INITIAL ;
repeat
EXECUTE (current, nezt «—) ;
current ;= TRANSITION (current, nest)
until
FINAL (current)
end repeat

Any application is described by a TRANSITION function associated with its graph, by a particular
state ealled INITIAL which is the first slate to be entered when starting the execution, and by a predicate
on states, FINAL, indicating whether execution should cease in a given state. Procedure EXECUTE is
refined helow; it has two arguments, a state current and a choice nezt; nezt is a result computed by the
procedure (this property is denoted by the mark « in the notation above), indicating the choice made by
the user for the next step, i.c. the exit label.

Note that {rom a practical point of view TRANSITION may be implemented either as a function
subprogram or by a two-dimensional array, the latler technique leads to a "table-driven" program which
will be more easily adaptable and is strongly recommended here. It is widely used in some application
areas such as business data processing
("decision tables"), compiler writing, real-time programming,

EXECUTE does what is required in a given state: ask the right question, check the answer, perform
the necessary actions and return the exit label &

1T . q . . .
v evefamintion mark following and actual procedures argnment. as in nezt +—, serves in our natation 2s &
reminder thial (his srgument is of out mode, ie. computed by the procedure.

.40 -

EXECUTE (in ' STATE, out ¢ CHOICE):
var a: ANSWER, correct: BOOLEAN ;
begin
repeat
QUESTION (s, a «)} ;
correct := CHECK (s, a) ;
if not correct then
MESSAGE (s, a)
until correct ;
end repeat ;
RECORD (s, a) ;
¢ = exit_label fa)
end EXECUTE

The specification of the yet unwritten procedures is the following. QUESTION (s, a«) is a pro-
cedure which outputs the question associnted with state s and reads the user's answer which it returns in
0. CHECK (s, a) returns true if and only il a is a correet answer for the question asked in state s; if so,
RECORD (s, ¢) processes answer a; il not. MESSAGE (s, a) outpuls the relevant error message. An
answer ¢ is assumed to include the exit tabel, written ezst_label (a).

- 50-

8.9. - GOING MODULAR: THE LAW OF INVERSION

Is this new solution satisfactory? At first sight it may seem so; but if we look at it more carefully
from the standpoint of modularity, we will soon discover that it is in fact unacceptable.

The problem here is (among others) continuity, and the keyword is data transmission. Let us recap-
itulate the functionalities of the procedures and function which are application-specific:

EXECUTE (in s: STATE; out ¢: CHOICE)
QUESTION (in s: STATE; out ¢: ANSWER)

function CHECK (in s: STATE; a: ANSWER): BOOLEAN
MESSAGE (in s: STATE, a: ANSWER)
RECORD (in s: STATE, a: ANSWER)

All these procedures have a state as in argument. This means that they must all discriminate on
this argument, i.e. have the general form
case 5 of
State,:,
Statey: ...

This will make them long and complicated (note in particular that all but EXECUTE have a
second-level discrimination on a), but it is not the worst: much more annoying with respect to modularity
ix the fact that all these procedures and functions will know about one complex interactive application.
Thus, if we change one transition, or add a state {e.g. a "help"), we must change all the procedures
involved. This is not acceptable in view of continuity and information hiding. Altogether, there is far too
much data transmission in this program: variable current (alias) is passed from SCHEDULE (level 3) to
all procedures and functions on level 2 and on to those on level 3. This is contrary to everything we have
seen.,

The situation is in fact even worse than one might think, since there is another argument to all pro-
cedures, which has remained implicit so far, namely the particular interactive application which we are
implementing (so that MESSAGE for example, has a three-level discrimination structure: on application,
state and answer). If we are thinking of “cataloging” procedures SCHEDULE, EXECUTE, QUESTION,
cte., as general-purpose tools in a library, then they should all know about all interactive applications
which use them, and all the states of every such application! This of course would be impossible to imple-
ment and we must look for another modular structure.

The fact that the state (current, s) lies at the basis of the problem should alert us: maybe we have

decomposed along the wrong line and we should try the "modularize-around-data” path. We may apply
here a "law” of modularity, which we call the "law of inversion"®,

I you pass too much dala in your procedures,
then put your procedures into your data.

tiere an obvious candidate for a "data unit" based on an abstract data type is the state. We will
thug introduce a class STATE (from now on we use the Simula notation, which is of sufficiently high level

(s . eradn . = . -
"ihia e of the term "inversion™ is not the same as in the expression "program inversion” introduced by
Jaeksosi in [Jackson 78},

-

< 81

{or deseribe both the abstract data types which we need and their implementation).

\nong the attributes of & state are:

o the Tour procedures of level 1 in figure 6.24, which in the general class STATE can only remain vir-

Tuadt

o thie procedure EXECUTE, as seen above, but without the state parameter.

Wr assume that the user's answer is described by an object of class ANSWER, which has the integer
“exii-label” as one of its attributes. We thus get the class of figure 6.25.

class STATE ;
virtual: procedure QUESTION ;
boolean procedure CHECK ;
procedure MESSAGE ;
procedure RECORD ;

begin
procedure EXECUTE(c); integer ¢; name ¢ ;
begin
ref (ANSWER) a; boolean correct ;
correct = false ;
while not correct do
begin
QUESTION (a) ;
correct == CHECK (a) ;
if not correct then
MESSAGE (a)
end checking ;
RECORD (a);
¢ := a.exit-choice
end EXECUTE
end STATE

_Figure 6.25 - Making the state a class

"To deseribe a particular state of a particular application, we must refine this class by giving the

mirtivlar realization of the above procedures, e.g..
STATE class ENQUIRY_ON_FLIGHTS ;

bhegin R
¢ procedure QUESTION (a); ref (ANSWER) o; begin ... end QUESTION ;
boolean procedure CHECK (a); ref (ANSWER) o; begin ... end CHECK ;
procedure MESSAGE (a); ref (ANSWER) a; begin ... end MESSAGE ; ~
procedure RECORD (a); ref (ANSWER) o; begin ... end RECORD o
end

Proceeding to the next level, we now have all the elements to describe any complete interactive sys-
lem, which we will call an "application”. Rather than writing a main program, we will again introduce an
abstract data type, reprosenied by a class, which will allow us to solve the problem of having a single sys-
tem for describing, building and executing many applications

An application is described by the remaining elements at levels 2 and 3 of figure 6.24: the TRANSI
TTON function which describes the state graph, the INITIAL state, the predicate allowing to determine
whother or not a state is FINAL, and the SCHEDULE procedure.

- 52 -

To simplify matters and avoid leaving major choices to the designer of each application, we take the
following implementation decisions:

¢ the TRANSITION function will be represented by an array, with n rows and m columns;

o n (the number of states) and m (the number of possible exit labels} will be the parameters of the
elnss;

s since TRANSITION is represented by an array, every application will have to number its states
from 1 to n; we need an array ASSOCIATED_STATE to find the state associated with a given
number (but not the reverse: class STATE does not have a “state number” attribute: this would
bind a state to a particular application, which we do not want);

® to avoid a virtual boolean procedure FINAL, we take the general convention that a transition to
slate number 0 denotes system termination, "normal” states being numbered ! to n. We could also
systematically take a certain value, e.g. 1, as the number of the initial state, but this would be too
constraining for system evolution and we prefer to leave INITIAL_NUMBER, the number of the ini-
tial state, as an explicit attribute.

We thus get the class of figure 6.26.

class INTERACTIVE_APPLICATION (n, m); integer n, m ;

begin
ref (STATE) array TRANSITION (1:n, Om-1) ;
ref (STATE) array ASSOCIATED_STATE (1:n);
integer INITIAL_NUMBER ;
procedure SCHEDULE ;
begin integer current_number; comment 0 < current_number < n ;
current_number .= INITIAL_NUMBER ;
while current_number /= 0 do
begin ref (STATE) current ;
integer nezt; comment 0 < neat < m-f ;
current .= ASSOCIATED STATE (current_number) ;
current. EXECUTE (nest) ;
current_number := TRANSITION (current_number, next)
end Loop
end SCHEDULE
end INTERACTIVE_APPLICATION

Figure 8.28 - Application 2s a class

In this framework, building an application consists in first constructing its various states as
refinements of the STATE class; note that they may be designed independently of each other, or taken
from previous applications. Then the application itself is constructed as an object of class
INTERACTIVE_APPLICATION; this is done simply by assigning a number to each state (i.e. filling the
nrray ASSOCIATED_STATE), constructing the state graph (by filling TRANSITION) and choosing the
inttial state,

During system evolution, it will then be quite easy to add a new transition, add a new state, delete a
slate and the associated transitions, change the actions performed in a given state, etc.

As a final remark, note that we bhave written SCHEDULE not as "the" body of
INTERACTIVE_APPLICATION but as just one procedure of the class. In fact, we can imagine situa-
lions where one wants to do something else with an application than executing it; if we plan to build a
serious systems for the development of interactive menu-driven applications, we will soon discover many
other facilities which have to be associated with an application, for instance:

_53-

o procedures to build and modify an application: add a state, add a bransnjion,_ dele.t.e a slmt.e, etc.;d
o procedures to simulate an application, e.g. in bat.c!\ ‘mode, or in interactive but line-oriented mode
on a terminal which does not provide full-screen facilities;

o procedures to store a complete application, iq an appropriatel:y cofied form, into a file (or more
generally into a data base of interactive applications), and to retrieve it. l
All this can be done in the above framework by adding new procedures to the class

INTERACTIVE_APPLICATION in a progressive way, without having to destro]y ;he St'?‘lﬁtuileszrbii’:ﬁ:
it stched is thus very open to evolution. is

wxisting uses of the class. The system we have sketche op . Tl

‘w\(:\h]"l:'r ;oncentrated on the objects of our problem (state, transition graph, apphca.t.mn), not on the

apparent "purpose” of the system, which would have closed it with respect to evolution:

l Real systems have no top. |

- 54.

6.10. - THE PROCESS APPROACH AND COROUTINES

After this review of one of the most interesting approaches to modularity, object-oriented design, we
turn to another useful direction: the process concept. We will concentrate on one of jts variants, corou-
tines, which provides and answer to one of the main objections to subprograms: their lack of autonomy.

Coroutines are the transposition to sequential programming of the concept of process as it is known
in the programming of applications involving paralielism, e.g. operating systems or real-time programs. A
process which manages, say, a printer, has much more conceptual autonomy than a classical subroutine; it
commumicates with other processes only through well-defined parts and functions to a large extent as an
independent entity which is entirely responsible for what happens to the printer but knows very little, for
instanee, about the way the CPU, the files or the terminals are managed. The reason for this situation is
not that real-time programmers take special courses in modular design, but that the inherent difficulty of
parallel programming is such that one may simply not indulge in careless design and uncontrolled inter-
process communication if one hopes to be able to construct any system at all.

A coroutine is best understood as a process; the only difference between coroutines and parallel pro-
cess is that the scheduling of the former will be sequential. In both cases, we have an autonomous entity,
which will go through a "birth" and "life” of its own, terminated in some cases by a "death”; many
processes or coroutines, however, are conceptually infinite. Qur printer manager, for example, could have
the following rough structure:

initialization ;

while true do
get a file to be printed ;
print it

end while

Instead of being "called” by a master program, a coroutine will usually be activated by another
corouline; this means that the coroutine’s execution starts again, not from scratch as in the case of a sub-
program (which always resumes execution at its textual beginning), but at the point where its execution
stopped last. This execution will be suspended (but not abandoned) whenever the coroutine itself
selivatles another one.

Note that technically this implies that a coroutine must retain the vatue of all its internal elements
(i-e. variables, parameters, execution counter, etc.) when its exccution is suspended. This is the exact
opposite of the notion of “pure procedure” which is often pinpointed as the idealization of the subprogram
coneept, but is quite in line with the keyword of section 6.4.4: persiatence.

With the activation mechanism, one is able to construct a system 28 a set of coroutines which are
on i par with each other, rather than under a master-slave relationship. This mechanism may, of course,
lie combined with more hierarchical ones.

Again, we will use Simula as a notational vehicle here; 1t was the first important general purpose
language to include a coroutine lacility. Coroutines in Simula are represented by class instances; activa-
lion is represented by the resume statement:

resume coroutine

2

The reader may have noted that the activation mechanism as described above must be comple-
mented with a special mechanism for starting a coroutine: upon initialization, one may not "activate"
~omething which does not yet exist. [n Simula, this is performed via the new instruction which creates a
new class instance. T'his, however, is not crough: after it has been initialized, a corouline must not yet
begin its activity proper (it should only do so when it gets activated by & resume statement); it should
first relinquish control to whoever started it. This is done via a speeial parameterless instruction:

detach

Thus, a system built, 25 & set of cooperating coroutines will have the following form:

. 55-

begin)
¢ class C,; begin ... end C; ref (C)) corautllnel i
class Cy; begin ... end Cy; ref (Cy) coroutines ;

class C,; begin ... end C,; ref (C,} coroutine, ;

coroutine - new Cy;
coroutines :- new C, ;

coroutine, :- new C, ;

resume C;
end System of coroutines

Note that since in Simula a class is not an object, but & pattern for a set of objects, each coroutine
is represented by two things: a class C; and an object coroutine; of type ref (C)).

Each of the classes will have the following general form:

class C; comment pattern for coroutine; ;
begin
initialization part ;
detach ;
comment below, the "active life” of the coroutine ;

actions ..;
resume coroutinej,
- actions ...;
resume coroutine;y;
- gctions ..

end
Often, the coroutine’s "active life”, indicated by a large bracket above, will have the form of a loop:

while cond do
begin
actions |
resume somebody

9nd Loop

cond will sometimes be the constant true: there may be potentially inf.'mit.e coroutines in a program
whicl itself terminates; coroutines will simply stop being activated at a certau‘ln time. . S
We now study an example of modular design using these concepts. This example is a varian
studie in [Jackson 78].
problem studied by Jackson in | . ' .
Jackson’s problem is as follows. A well-known proof in modern mathematics was devnset.i bleal;':;r
aae 3 3] ’ : '
lo show that the set of rationals is enumerable. Cantor used an explicit enumeration of rationals,
it}

tratedd in figure 6.27.

- 56 -
'1"% Y
J /3/4/5/5
Pi ey
tg/;/é/s/
2 3 5
a/e/_/
1
AV
.38,
1 2
'
6. ..
1

Figure 8.27 - Cantor’s table

The problem is to write in the o i i i
R Sisgnc rder of this enumeration the rational numbers appearing on the first

VET/22/13/2f2 -~ 1799 1/100 2/99 3/98 - - - 99/ 100/1

Jackson uses this problem as an icati
example application of his method. The "data” is ; i
‘ p . a" is ind
:n:):ll:‘:locci b?;a Jeckson diagram (ﬁg!.ue 6.28): the part of the table to he printed may be delslc;el:jedn::e]y
;)r |r iy ol zigzags where every zigzag is an up zig followed by a down zag. Zigs and zags are se e
ationals, which are easy to compute because for all rationals a /b on a g i Mg of
o given zig or-zag the value of

l RATIONAL®* l] RATIONAL®*

Figure 8.28 - A model of Cantor’s table of rationals

The solution is thus:

- 57-

ENUMERATION:
for : 1...100 (2) do ZIGZAG(i)

with
. ZIGZAG (k):
ZIG (k) ;
ZAG (k+1)

and o
ZIG (m):
a=mb=1;
while ¢ > 0do
print_rational (a,b) ;
a:=al; b:=b+l
end while

ZAG (m):
a=1b=m;
while 6 > 0 do
print_rational (a,b) ;
a=q+l;b:=b1
end while

This is a very nicely structured program (figure 6.29). Consider now variants of the problem where
we ask to print the first 100,000 elements of the enumeration, or all the elements up to the first are a/b
such that a® 4 87 > 10%, or any other criterion. The above solution does not generalize easily: this is
beenuse the actual termination may oceur either in a zig or in a 2ag, and we have no easy way of telling
in advance which.

What we are looking for is a properly structured solution (avoiding GOTOs to a common code for
termination), with no inelegant duplication of code; we are also preoccupied with the continuity criterion,
w0 we would like the solutions to the variants of the problem (including the initial one) to differ only
slightly, since they are the same except for the termination condition.

ENUMERATION
ZIGZAG

716 a4t

Figure 8.29 - Program structure for Jackson’s solution

To meet this requirement, we will replace the previous hierarchical structure by a coroutine struc-
ture (ligure 6.30). Arrows correspond to resume activations between instances of the classes shown; con-
Iatmment stands for blocks embedding; the names of class instances are in parenthesis.

- 58-

Figure 8.30 - Program structure for a coroutine solution

For convenience, we usc a class Lo deseribe rationals:

class rational ;

begin
integer numerator, denomsnator ;
procedure print ;

begin ... statements for printing the rational
numerator/denominator ...
end print ;
procedure assign (a,b); integer q, b ;
‘begm numerator '= g; denominator = b end assign
end rational

The main program is given in figure 6.31

- 59-

begin
class zigzag; begin ... see velow .. end; ref (zigzag) 2z ;
clasa zig (m); integer m; begin ... see below ... end zig ;
class zag (m); integer m; begin .. sec below ... end zag ;
class control: begin ... see below ... end ;

ref (zigzag) zz; ref (control) ¢t ,
ref (rational) current: current ;- new rational ;

2z ;- new zigzag; ¢t ;- new control ;

resume ct
end enumeration

Figure 6.31 - Main program for coroutine solution

Cluss control (more precisely, its instance ¢t} is in charge of controlling the continuation of the whole
process (figure 6.32).
class control ;

begin integer ¢ ;

detach

for 1 := { step 1 until 100 000 do
begin
resume zz ;

current.print
end active hife of control
end control ;

Figure 6.32 - Class Control

Note that for other variants of the program it suffices to replace the for loop by something else (e.g.
the Nimula cquivalent of repeat ... until (current. numerator)’ + (current.denominator)’ > 10%).

The rest of the solution is independent of the stopping criterion. Traversal of the Cantor table is
performed by instance 2z of class zigzag (figure 6.33).

- 60 -

class zigzag ;

begin
ref (2ig); ref (zag) za ;
integer ¢ ;

detach; {:=0;

while true do
begin
comment up one diagonal:
{ = 1+1; 2z = new zig (i) ;
while not zi.over do resume i ;
comment down one diagonal:
= i+1; za »= new zag (i} ;
while not ze.over do resume za
end (infinite} active life of zigzag
end zgrag ;

Figure 8.33 - class zigzag

The boolean variable over will be present in classes zig and zag. and will be set to true in these
classes when and only when the corresponding diagonal traversal has been completed. Note that this
varinble is superfluous: we know that zi and za must be resumed exactly { times each so that the while
loops could be transformed into for loops. The principie of information hiding tetls us, however, that it is
better not to let zigzag rely explicitly on this property.

An up diagona! will be traversed by repeated resumptions of instance zt of class 2ag (figure 6.34).
class zig (m}; integer m ;

begin integer q, b; boolean over ;
a:=m; b= 1; over ;= false ;
detach ;
while ¢ > 0 do
begin
current.assign (a,b) ;
resume c¢f ;
a:=a-I; b= b+l
end active life of zg ;
over ;= true
end zig

Figure 6.34 - zig

Finally zag is the exact symmetric of zig (figure £.35).

-6l -

class zag (m); integer m ;
begin integer g, b; boolean over ;
e = 1; b == m; over ;= false ;
detach ;
while b > 0 do
begin
current.assign (a,b) ;
resume cf ;
a:=a+l; b=0b-1
end life of 2ag ;
over := true
end zag

Figure 8.35 - zag

This solution deserves a few comments.
First one might argue that classes zig and zag should be declared within zigzag, giving the structure

of figure 6.38.

CANTOR

ZICEAG

ZI6

Figure 8.38 - A variant of the previoua structure

e kinds of relationships which Simula allows us to combine may be both "egalitar.ian" (resume)
and hircarchic (static: block embedding and class prefixing, dynamic: procedure call); this gives much {too
much?) freedom to the designer. .

Nole also an instance of a well-known deficiency of Simula with respect to inf.ormation hiding: in
¢lnsson 21 and zag, a public variable, over, is on the same footing 88 a and b which are only locally
needed. The need for the “hidden/protected” feature is clear here.

- 62-

We also notice here what is probably the most serious problem with the Simula coroutine Tacility:
the lack of provision for transmission of information. It is well-known in paralicl programming that two
kinds of intcraction occur between processes: synchronization and communication. There exist
mechanisms (c.g. semaphores) for synchronizing Lwo processes, i.e. making surc they reach compatible
sfates at a certain time, and others (e.g. parameter transmission in proecdure calls) for making them
exchange information. Any complete mechanism should, however, cater to both needs.

lere, il is clear that the resume mechanism only provides for the sequential equivalent of synchron-
ization. Communication has to occur by other means: in our example, information is transmitted through
ihe global variable current. This method is, of course, unsatisfactory with respect to our modularily cri-
teria and principles. What would be needed would be for the resume statement to be able to send infor
mation from the activating Lo the activated process, as one does with parameters in procedure calls. The
reason why this is not possible in a simple way, however, is thal whereas a call statement has a syntactic
melch in the program (the subprogram heading with the list of formal arguments), Lthere cannot be any
such thing in resume statements; indeed. by the very definition of this mechanism, exceution may con-
tinne at any statement in the resumed coroutine, so that there is no simple way to devise a language con-
struet to express how information could be transmitted upon coroutine activation.

A partial solution to this problem may be found in & descendant of Simula, Smalltalk, whose classes
communicate by structured messages: More complete answers are given by Fewitt’s ACTOR mechanism,
also based on message passing, and by Hoare's notation for Communicating Sequential Processes, known
ux 'SP, which will be studied in the next section.

- 62 -

611. - ABSTRACT DATA TYPES WITH A SCENARIO

This section [Lo be completed| will show how the ideas of modules built around a dfita s;;ructurt"aon
e one hand, and of modules associated with processes, on the other hand, may be com‘blned ':"conm er-
A objeel with ils associated history or, cquivalently, a process together with the object(s} it is respon-

ing
~thle for, . N
\ simple exemple will be that of a table whose Iife includes two p.huse§: in the first on.e,Lbol.hlm:c:
{ione ond searches are allowed, after a certain signal has been seat (triggering perhaps an internal reo

winization of the physical representation), only searches will he permitted (figure 6.37).

Figure 8.37 - THE LIFECYCLE OF A TABLE MANAGEMENT SYSTEM

The use of Actors & CSP to model such uses will be demonstrated.

- 64 - ' - 65 -

6.12. - THE STRUCTURE OF INTERMODULE RELATIONS

!
6.12.1. - Possible relations models
J X L (METAPHOR)
This chapter has explored several kinds of module structure. T
From the systems viewpoint, it is important to note that the main issue in designing for modularity
iy not be what the various modules are, but how they are interconnected. In the course of this chapter,
we have encountered several kinds of intf.rrmcdular relations; it is inleresting as a conclusion to recap complements &
them and try to study them more systematically. (METONIMY)
Figure 6.39 gives some of the most usefu! intermodule comnection mechanisms. As one goes down the complements
picturc, one encounters first more abstract, conceptual relations, then more concrete, technical ones, as
found in programming languages. Every relation, described by an arrow from left to right (where 4 —>
B means A is connected to B by relation r) is accompanied by the inverse refation, labeling a right-to-left gencralizes -
Arrow. "y
A models (or specifies, or abstracts, or describes) B, and B instances (or implements, or real- specializes
izes) A if A contains a description of what B does, or viewed the other way around, B is one way to do
what is prescribed by A. Conceptually, then, A gives the same information as B, or less, but is at a
higher level of abstraction. For example, the user's manual for a machine models this machine; or, the uscs
nhstract data type TABLE (fig. 6.13) is a model implemented by the Simula class TABLE (figure 6.15). o
Nimilarly, a Simula class C is used to model &ll instances of this class {objects of type ref (C)). is used by
A complements B (the relation is symmetric) if A and B cooperate toward the realization of some
higher-order aim. For example, workers of the same grade in a company "complement" each other; the
sume is true of procedures present and fnsert in the class TABLE (fig. 6.13), of the various subprograms in contains =
a library or of composable Unix programs. In fact, this relationship is closely connected to the composa-
bility eriterion. belongs to
Note that the models and complements relation corresponds to two well-known figures of rhetor-
iex: melaphor (denoting a concept by a corresponding concept at another level of abstraction), and calls -
metonimy {using a reighboring concept).
is called by
| creates .|
is created by
activates -
<
activates
| shares information wit.h! |
shares information with
sends information to
receives information from

F\.‘u}\&, £.7% - IMLQ}V’Much aUJAHQMA

- 86 -

A generalizes (or extends) B, and B specializes A, if anything which is described by B is also
deseribed by A (but some things may be described by A which are not described by B). The
generalizes/specializes rclation lies at the basis of the Linnaean classification of plants and is, in fact,
an important component of the scientific method. The prefixing mechanism of Simula (A class .., A
begin B end) is an elegant programming language implementation of the same concept which, unfor-
tumitely. was not carried through to later languages embodying the concept of abstract data type imple-
mentation, with the notable exception of Smalltalk. A different application of this relation is provided by
the cencept of generic instantiation in Ada.

4 uses B, and B is used by A, if A refers to B by its name. This occurs in Algol-like languages
through the rules of block structure, extended in Pascal and Simula by special facilitics which make it
possible Lo "peep” into the names of entities local to an object (with in Pascal, snspect in Simula). It is
ouly in Ada, however, that this concept takes its full meaning with respect to intermodular communica-
ten, thinks to the use clause, which allows explicit appropriation of a set of external names.

The contains/belongs to relation corresponds to textual inclusion in block-structured languages.

The calls/is called by relation is the standard boss-to-subordinate, officer-to-private cte. relation;
in common programming languages, it is represented by the caller-subprogram relation.

The creates/is created by rclation exists in languages which provide for dynamically alloeated
ohjects (Paseal, Algol 68, Simula, ctc.).

The symmetrie relation activates corresponds to the coroutine or process activation mechanism
(resume in Simula).

The relation shares information with, also symmotrie, corresponds to data sharing by any
mechanism, e.g. COMMON (Fartran) or block structure (Algol, Simula, cte).

The relation sends information to/receives information from is included in bhe calls/is called
by relation for common programming languages; not so in CSI° or Ada, lor example, where it also has cle-
ments in common with the activates relation.

6.12.2. - Properties of the relations

The various relations are of course not unconnected to each other. In fact, a system such as a pro-
sramming or specification language is characterized in part by the set-theorctical properties which it
assigns to these relations; for example, the last remark could be written more formally as

o (1) sends information to U receives information from C calls U is called by
(in Algol, Pascal, Simula, etc.)

® (2) sends information to U receives information from C calls U is called by U activates
(in CSP or Ada)

The following properties are also of interest. Operator « will denote relational composition; for any rela-
tion r, we note r~! the inverse relation ro r=" = r=' 4 p = identity) and r* the transitive reflexive closure
of r(r* = identity Ur Ur*UrPU -, where r"=raroro.,n times). We use the relation samescope
defined as

samescope = contains « containg

= contains « belongs to

o (3) uses C belongs te * U samescope
(in Algol 60}

o {4) uses C belongs to * U samescope U contains o users
{in Ada)

e (5) calls U creates U activates C uses
{in all common languages).

o (6) shares information with C belongs to ¥ U semescope
{in Algol 60, Pascal, Simula, PL/I, Ada, etc., excluding external files).

- 67 -

Fte, It would be worthwhile to explore further this “relational algebra” for important programming

Hinguages, !

6.12.3. - Intermodule relations in Fortran
6.12.4, - Intermodule relations in Pascal

8.12.5. - Intermodule relations in Simula 67

Figure 6.40 gives a represcntation of the allowable relational structure of mf)dular facilities in
Simula 67. OQnly the "direet” sense of the relation (from left to right on ﬁg.ure 6.39)‘ is pl.ctu.{es. Because of
praperties {2) and (6) above, relations "sends information to" and "shares information with" have not been

drawn explicitly.

Conncetions on this graph indicate possible relationships: 4 r—’r B means "an A may be connected
Iy r and ' Lo & B". For instance one secs from the graph that a procedure may create and activate a
cormitine

The richness of this graph, which one may inlerpret as reflecting the power of the language or its

complenity, is in itself interesting.

6.12.6. - Intermodule relations in Ada

ey The Software Knowledge Base, B, Mever, UCSH technical report, January 1985

S B% -

complements,
generalizes,

ABSTRALT

DA‘rA uses
Ty PLE
models
complement
generalizé
uses,
contains
uses, o e complements,
complements, 3 containg PLEMEnESy generalizes,
generalizes, ROCerSs uses, . nodels uses,
uses contains contains, B 9
N alitg contains contains,
contains, . ; creates,
creates activates

cantains

CLASS
INSTANCE

("OBJECT™) A

createsy
activates

COMUTIHE

complements, uses, ccntains, creates
ey
il

generalizes, activates

Figure 6.40: Possible intermodule relations in Simula.

[85¢]

INCREMENTAL STRING MATCHING

Bertrand Meyer!

Computer Science Department
University of California
Santa Barbara, California 93106

Telephone: (805) 961 4321
uuep: ...lucbvaxlucsbestibpm
csnet: bpm@ucsb

ABSTRACT

The problem studied in this paper is to search a given text for occurrences of certain strings, in the
particular case where the set of strings may change as the search proceeds.

A well-known algorithm by Aho and Corasick applies, to the simpler case when the set of strings is
known beforehand and does not change. This algorithm builds a transition diagram (finite automaton)
{rom the strings, and uses it as a guide to traverse the text. The search can then be done in linear time.

We show how this algorithm can be modified to allow incremental diagram construction, so that
new keywords may be entered at any time during the search. The incremental algorithm presented essen-
tially retains the time and space complexities of the non-incremental one.

To appear in Information Processing Letters,

KEYWORDS

String matching, word processing, bibliographic search, indexing, program correctness, analysis of
algorithms.

! On teave from Electricité de France, | avenue du Géaéral de Gaulte, 92141 Clamart France

1. INTRODUCTION

The problem of searching a text for all occurrences of one or more strings (hereafter called search
strings) has been well researched. Several algorithms have been published [3,1,2] .

This paper considers a variant of the problem which, to our knowledge, has not been addressed by
previous publications: the case when the set of saarch strings may change as the search proceeds. In fact,
in the practical application that led to this work, the search strings are found in the text itsell as it is
being searched.

In the next section, we describe that application, an interactive book indexing program. In section
3, we give the algorithm by Aho and Corasick which serves as a basis for our solution. Section 4 shows
why this algorithm does not readily apply to the incremental case. A solution is proposed in section 5; its
correctness is proved in section 6 and its efficiency analyzed in section 7.

2. AN INDEX PROGRAM

We first present the concrete occasion for which we developed the algorithm below. Of course, there
may be other applications of incremental string searching.

The occasion is a program for making book indexes. An index is a sorted list of all the "interesting"
words which appear in a text, each word being accompanied by a sorted list of the pages where it occurs.

As anyone who has tried knows, preparing indexes is a tedious and error-prone task, and it is
natural to lock for computerized aids. Much of the work (searching for interesting words in the text, sort~
ing the lists) can indeed be done automatically; but one critical step requires human intervention: deciding
which words are "interesting” and which are not. We call the person who will make this decision the
indezer; the best indexer is usually the author.

The best place to look for “interesting” words is of course the text itsell, which we assume to be
available as a computer file. Our indexing program thus has a phase called the collector which presents
the indexer with the text and asks him to select words for indexing.

The collector is an interactive program. It displays the text one screen at a time; each word appear-
ing on a screen belongs to one of the following three categories:

o "rejected” words, which the indexer has already designated as not interesting;

® "retained” words, which the indexer has designated as interesting (these words appear underlined
on the screen as the collector is being executed)

® “undecided” words, whose fate has not yet been sealed (these appear highlighted).

Thus whenever a screenfull of text is displayed, the indexer must choose to either reject or retain
each "undecided” word on the screen. This decision process is the essential object of the collector.

From the program point of view, then, what the collector must do is to search each successive por-
tion of text for occurrences of words belonging to the union of the "rejected” and “'retained” sets. Both
these sets change as new words are being classified by the indexer: thus the string searching method must
allow for incremental construction of the set of search strings.

3. A NON-INCREMENTAL ALGORITHM

A very efficient algorithm by Aho and Corasick [i] applies to the case when there is more than one
scarch string. The principle of this algorithm is that one first builds a "transition diagram” from the set
of scarch strings, and then traverses the text using this diagram as a guide. Thus in the standard algo-
rithm all search strings must be known at the outset.

Since our algorithm is based on a modification of Aho and Corasick's, we shall first present the key

aspects of theirs. Our presentation is slightly different from the one in their original paper; it is close to
the one we gave in [4] .

3.1. Data Structures

Aho aad Corasick’s algorithm uses three data structures as internal representation of a search string
sct: & tree T, called "goto function” in [1] (it is in fact a trie); an "output table” O; and a fallu"re funtf-
tion" F. Together, these three structures constitute what may be termed the "transition diagram” associ-
ated with the search string set. We deseribe them in turn.

3.1.1, The Tree

The brenches of the tree T are labeled by characters. Tree T is associated in a natural way with
the set of search strings: for example, the search string set {A, CAN, AN} may yield the tree of Fig. 1.

c A N
0 2 —> 3 —> ¢
A
l -
N

Figure 1: A String Matching Tree

An important property of this tree is that each node has an associated character string. For exam-
ple, in the above tree, node 0 is associated with the empty string, node 3 with string CA, etc. From now
on, we will not make the distinction between a node and the associated string; for example, we
say that string AN is a suffix of node 4 (that is, of the associated string CAN), or that string CAT does
not appear in the above tree (that is, no node of the tree is associated with this string).

If CCis the character set and the nodes are numbered from 0 to N, i.e. we define

type NODE = 0..N ;
then the tree may be represented as a two-dimensional array

T : array [NODE, CC| of NODE ;

where the child of node n through branch labeled ¢ is T fn, ¢/. By convention, the root is numbered 0 and
T [n, ¢/ is 0 if there is no branch leading from node n with label ¢. We will not distinguish between the
tree and the associated array; note that in practice the array will usually be sparse, requiring a suitable
implementation (hashed, linked etc.). 2

3.1.2. The Qutput Table

For any node n, the output set of n, written O [n/, is the set of suffixes of n which are search strings
(we shall carefully distinguish between the suffixes of a string, which include the string itself,"and its
proper suffixes, which do not). On Fig. 2 below, corresponding to the search string set {4, CAN, AN},
the output sets (some of which are empty) have been written next to the corresponding nodss.

3.1.3. The Failure Function

The lailure function Fis defined on all nodes except the root. For such a node n, F [n) is the longest
proper suffix of n that appears in tree T. F [n/ may be node 0, the root (i.e. the empty string). It is impor-
tant to note that the inverse of Fis a tree spanning 7T, with node 0 as its root.

The dashed lines on Fig. 2 represent the failure function for the search string sct {4, CAN, AN}.

-
SN D {4}
¥ ¢ A
—_— —
%] rf 2 /3 4/ {CAN, AN}
i = art
v et e -
I P i
{A} 1 € e

M s &

Figure 2: A Completed Transition Diagram

3.2. The String Searching Algorithm

Assuming a transition diagram consisting of the above three data structures has been constructed,
the string searching algorithm is a simple traversal of the text, guided by the transition diagram:

procedure Recognize (tezt : in STRING)
_ = - Search tezt for strings represented by T, O and F.

n: NODE;
begin

n:=0; -- Start at the root

for ¢ in tezt loop - - Ezamine nezt character
while n# 0and T [n, ¢/ = 0loop - - Find worthy successor node

n=F[n]

end while ;
n=T/n,¢l;

Report all strings in O [n] as oceurring at this point of the tezt
end for
end procedure Recognize
This algorithm clearly makes one T transition per character of the text. It is proved in (1] that the

number of F transitions is at most | the length of the text. Thus the time complexity of the searching
algorithm is O (J).

3.3. Constructing the Transition Diagram

To execute the above algorithm, the three data structures T, O and F must have been built from
the scarch string set §. This is done in two steps:

Butld_tree ; Busld_failure
The first step builds T and initializes O; the second builds F and completes O.

We describe these two steps below. We assume that the data structures T, O and F are global to 2all
the proccdures given and have been properly dimensioned (an upper bound for N is lsum, the sum of the

lengths of the scarch strings) and initialized (all values of T and F to zero, all values of O to the empty
sot).

3.4. Constructing the Tree

The first step may be done as [ollows:

procedure Build_iree ;
last := 0 ; - - Number of the last entered node
for sin Sloop - - enter search string s into tree

Enter_in_tree (3);

end for

end procedure Build_tree

where Enter_in_tree (local to Build_tree) is given below.
procedure Enter_in_tree (s : in STRING) ;

- - Enter new sear¢h siring s into tree T.

n, n’: NODE ; X
begin

n:=0; --Start at root

for ¢ in sloop - - Ezamine nezt character

n'=T/n,ef;
if n'=0then - - Create new node
last ;= last+1 ; n’ := last ;
Enter_child (n, n’, ¢)
end if ;
no=n
end for ;
Enter_output (n, s)
end procedure Enter_in_tree
The auxiliary procedures Enter_child and Enter_output cach consist of a simple assignment; the only
rcason for pulling them out of the body of Enter_in_tree is to ease adaptation to the "incremental” case
later.
procedure Enter_child (n, n’:in NODE ; ¢ :in CHARACTER) ;
-« Add to the tree a branch from n to n’ labeled .
begin
Tnef:=n"
end procedure Enter_child ;
procedure Enter_output (n :in NODE ; s :in STRING/;
- - Define the outpul set of n as consisting of the sole string s,
begin
O fn] = {3} .

end procedure Enter_output

3.5. Conatructing the Failure Function

For any node n other 'than the root, let Ips (n) be the longest proper suffix of n which appears in the
tree. To complete the transition diagram, procedure Build_failure must set F [n] to Ips (n) for every non-
toot node n, and complete O /n/ accordingly.

) To do this, the l'?uildJm'qu algorithm uses a loop that considers all nodes of T in order of increas-
ing length of the associated strings (i.e. fiest the root, then its children, then their children etc.).

procedure Build_failure ;
Precondition : T is a tree associnted with the given string set
Postcondition : For all nodes i # 0, F fi] = lps (¥)
- - Build the failure function F corresponding to T.
begin
for nin NODE in order of increasing length loop - - Compute F for the children ofn
- - loop invariant "
- - For any child i of a node previously considered, ' fif = Ips (i)
- -end invariant
for ¢ in CCsuch that T [n, ¢/ # 0 loop
Complete_failure (n, ¢); - - Compute F [T [n, ¢J]
end for
end for

end procedure Build_failure

with Complete_failure defined as:
procedure Complete_failure (n :in NODE ; ¢ :in CHARACTER) ;
- - Precondition : For any i % 0 which is either n or a shorter node, F [i] = lps (i)
- - Compute F [T [n, c/f.
n’,m, m’: NODE;
begin
#'=T/nc;m=n; '
repeat .
m.:=F [m]
- - loop invariant
- - mis a proper suffiz of n,
- - and for any proper suffiz p of n longer than m in the tree, Tp, c/=0
- - end invariant
until m = Oor T [m, ¢/ # 0
end repeat ;
m’:=T/[m, ¢f;
Fln):=m'; ’
Ofnl:=0fM) U Ofm}

end procedure Complete_failure

-

oL

(Note that the invariant of a repeat...until loop is written at the end of the loop body since it may not
be satisfied until after the first iteration).

The correctness of Build_failure will follow from the loop invariant of that procedure since any node
but the root is a child of another.

To show that this invariant is indeed preserved by the loop bedy, assume that n# 0 and that
F (i) = lps (i) for all nodes i considered before n. We have to show that for any child n’of n, say n'=
T [n, ¢}, execution of Complete_failure (n, ¢) results in F [n’] = Ips (n’).
. Using the notation zy for the concatenation of z and y (where z is a string and y is a string or a sin-
gle character), we have n' = nec. Thus the longest proper suffix of n’in the tree is either m’ = me, where m
is the longest proper suffix of n in the tree such that T fm, ¢/is not 0, or 0 if there is no such m.

Now the list of all proper suffixes of n which appear in the tree is precisely, in order of decreasing
length, the list of nodes examined successively by Complete_failure, namely F fn), F [F [n]], F [F [F [[n]]],
ete. This is a direct consequence of the inductive assumption: since n is not the root, n is the child of a
previously considered node; thus Ffn/ is the longest proper suffix of nin T.

It is essential for this correctness argument that the set of nodes be explored in order of increasing
length. This can be ensured in three different ways:

o The above Build_tree algorithm may be modified so that the number assigned to any node is
smaller than the number assigned to nodes on the following level in the tree. To do this, Build_tree
should consider successive character positions in all search strings rather than successive search
strings (that is, the order of the embedded loops in Build_tree should be reversed). Then the loop in
Build_failure will just consider nodes in order from 0 to N. This is the solution presented in (4] .

o Another solution is to add a topological sort step between Build_tree and Build_failure which will
re-number the nodes according to the rule stated above.

» The solution given in 1] uses a FIFO queue of nodes in Build_failure to make sure that nodes are
processed in order of increasing levels, without imposing a special node numbering.

3.6. Efficiency

It is shown in {1] that construction of the complete transition diagram, as given above, takes no
more than O(lsum) time and space, where lsum is the sum of the lengths of the search strings.

4. THE PROBLEM WITH INCREMENTAL CONSTRUCTION

Let us now assume that instead of being all known beforehand, the scarch strings become avsilable
as the search proceeds.

There is no particular problem with the construction of the tree; we can exccute Enter_in_lree (s) as
each new string comes along. The real difficulty is associated with the failure functio,r'\ (and with the asso-
ciated "completion” of the output table).

From a practical point of view, it should be noted that the failure function is only useful when some
search strings may be proper suffixes of others. Referring to the book indexing application mentioned in
section 2, this will not occur if all index entrics correspond to words, always enclosed in delimitess in the
text. IF such is the case, the Build_tree procedure as given above is sufficient, and one may apply Aho and
Corasick’s method without a failure function. In many cases, however, one needs to have phrases as wel!
as single words in index eniries, so that a search string may be the proper suffix of another: for cxample
an index to the present paper might include entrics for both strings suffiz and proper suffiz. If such is the
case, one must find a way to build the F function incrementally, as new scarch strings are entered into 7.

Now when a new node n’= T [n, ¢/ is entered, one must compute F [n’f; this in itsell raiscs no
dilliculty since the longest proper suffix of n’in the tree must be of the foem T fm, ¢/ for some proper
suflix m of n, and we may assume inductively as before that all proper suffixes of n arc accessible through
F. 1ut this is not the whole story: when adding n’ we may also have to update the failure value of exist-
ing nodes.

-7-

Fig. 3 illustrates the problem. The dotted lines represent the current values of the failure function.
Assumec we initially had the two search strings A and CAN and we add AN, corresponding to the transi-
tion represented by the double arrow. Then F f4] must be updated to point to the new node 5.

- -
~

7, S \
ve ' Cc N A N
0 2l == g4
” .
\ .
) A/,
] 4
e

N

Figure 3: Node Insertion

The next section presents a solution to this problem.

6. THE INCREMENTAL ALGORITHM
When a new node n’ = T fn, ¢/ is entered, the value of F' [z'f must be changed for some existing node

z"il and only if n’is the longest proper suffix of the string associated with z’. This may only be the case"

if 2’ = T [z, ¢/ for a node z such that n € F* [z], where ¥ denotes (non-reflexive) transitive closure.

Thus to be able to find all the nodes whose F value needs to be updated, we must keep a record IF
of the inverse function of F. Note that F is single-valued but IF may be multi-valued. As indicated in sec-
tion 3.1.3, [F is a tree.

If we have access to [F, then to enter 2 new search string we use the procedure Enter_in_tree as
given in section 3.4. We only need to change procedures Enter_output and Enter_child. Both now have a
slightly different specification and become recursive, as follows. We assume that [F, as the other data
structures, is properly initialized: IF [n] should be initially empty for all nodes n.

procedure Enter_oulput (n :in NODE ; s : in STRING) ;

- - Add s to the output set of any nede which kas n as a suffiz.
begin

Ofnf= 0] U (s};

for z in IF [n] loop Enter_output (z, s) end for ;

erid procedure Enter_output ;

procedure Enter_child (n, n’ :in NODE ; ¢ :in CHARACTER) ;
- - Add branch from n to n’ labeled ¢ ;
- - update failure and inverse functions to account for the insertion of n'.
begin
Tin e/ =n';
Complete_failure (n, ¢); - - Compute F [n’]
IF [F)] = IF [F [n']] U {n%} ;- - Update IF for m’' = F [n’]
Complete_inverse (n, n’, ¢) - - Compute IF [n'[and change to n’ the corresponding values of F

end procedure Enter_child.

-8-

) Pr?ce.::lure C.'omp!etc_/ailurc is as before {section 3.5). Procedure Compléte_tnverse finds all nodes
which will "fail to" a new node and is defined as follows:

procedure Complete_inverse (y, n’ : in NODE ; ¢ : In CHARACTER) ;

- - Recursive Precondition : n’fs a suffiz of ye
- - and T [Bn, ¢/ = 0 for any proper suffiz fn of y in the tree (where n' = nc)

- - Record n’ as new failure value for all 2’ such that ye = Ips (z')
z,z': NODE;
begin

for z in IF [y] loop
- {y=lps (z}}
if T [z, ¢/ # 0 then
z'i=T[z,¢]; --{ycisaproper suffiz of z'; thus so is n’}
- - Remove previous faslure value of z’ ; install new one.
IF[F 2] = IF [F [z7]] = {=} ; - - Set difference
Flej=n5IFnf=1IF [} U {z};

else
- - Try recursively with nodes having z as proper suffiz
Complete_inverse (z, n’, ¢) ;
end if A
end for

end procedure Complete_inverse

8. CORRECTNESS

To prove the correctness of the above incremental algorithm, we first note that termination of the
two recursive calls follows from the fact that IFis a tree, and that the changes brought to T and O when
a new search string is inserted are the same ones that Aho and Corasick’s algorithm would have per-
formed. Thus we concentrate on the partial correctness of the modifications to Farnd IF.

It suffices to prove that an execution of Enter_in_tree as given above leaves the following two pro-
perties of the transition diagram invariant:

o (INV} IFis the inverse of F.
¢ (SUFF) F‘or)any node z # 0, F [z} = lps (z) (that s, F [z] is the longest proper suffix of z in the
tree). ’

Property (INV) is trivially invariant since any modification to Fin Enter_in_trec is accompanied by
the corresponding modification to JF and conversely.

To show that property (SUFF) is invariant, we study in what way function Ips changes when n’ = T
[n, ¢/ is inserted and check that F follows suit. There may be two reasons for change:

e 1- The definition of lps has to be extended for n’ in accordance with (SUFF); the eall to

Complete_failure takes care of this case.

¢ 2- The value of ps [y'/ for some previously cxisting nodes y' may now become n’. These nodes are

those which have n’, i.e. ne, as a proper suffix, and have no longer proper suffix in the tree.

‘{\ssuming inductively that (SUFF) was satisfied beforc the insertion, any such y’is of the form ane
(sec Fig. 4), such that no node of the form fne, where B is a proper suffix of , exists in the tree.

’I’hus. y'= T [y, ¢/ where y= an As expressed by the "recursive precondition” to procedure
Complete_inverse, the required y nodes are exactly those which are considered (in order of increasing
length) by the successive recursive calls to that procedure, starting with y = n.

| .
PR
e
¥
i |
v,J'

Figure 4; Strings and Suffixes

7. EFFICIENCY

The recognition algorithm (procedure Reeagnize) is not alfected by the modification; nor is the per-
formance of the part of the nlgorithm which builds the tree, We must consider the impact of the
madification on the building of the failure and output Tunctions.

Regarding space efficiency, since we must store IF [n] far every node n [presumably as a linked list),
the space requirement for the representation of the failure function is doubled, remaining O (laum),

Regarding lime, we first nalice that for each search string the operations performed by
Complele_failure are s subset of these performed in the original algorithm; there may be fewer operations
beeause some proper suffixes may not have been entersd yel, Thus the tatal time for this procedure will be
Oflsum), For a given search string set, the operations performed by Enter_output (adding elements to the
oulpul sets) are also the same in the incremental algorithm as in the original, although the former may do
them in a different order and will follow inverse # chains,

The case of Complete_inverse is more delicale sinee this procedure may follow vaid chains which the
direet algorithm would never have explored, When inserting n'= T {n, ¢, the maximum number of nodes
which may be searched in this fashion is the number of elements in the set [F nf. Thus the maximum
number of extra operations is K * Y deseendents(n), where K is the size of the charneter set CC and

nENODE o
descendants (n) 15 the number of proper descendunts of node nin the IF tree.
It is casily proved that, for any tree with M nodes and height b, 3] descendants(n) < M * A
n £ NODE
Here IF has the same nodes as T, thus M < bsum, and & <imaz, where fmaz is the maximum senrch string
length.

Thus the overall complexity of the algorithm is iow O (K * lmas * {aum), which is identical to the
original O (lsum) il we consider K and fmazx a5 constunts. In normal practical cases; the constant factors
Lo upply are much smaller than the above analysis would seem to imply.

Acknowledgement: We are grateful to Man-Tak Sling and Don Brady for useful comments and for
pointing vut errord in a previous verslon of this paper.

References

I Alfred V. Ahp and Margaret J. Corasick, “Fast Pattern Matehing: An Aid to B blingraphic Search,"
Communicatians of the ACM, vol. 18, no. 6, pp. 334-340, June 1575,

2. Rohert 8. Boyer and 1. Strother Moarg, A Fast Siring Searching Algorithm," Communications of
the ACM, vol. 20, no. 10, pp: 762-772, October 1977, .

A Domald E Kouth, J. 11 Morris, and Vaughan [t Pratt, “Fast Pattern Matching in Sirings,” TR C5
74-410, Stanlord Universily, Stanford (California), 1074.

1. Bertrand Meyer and Claude Baudoin, Méthodes de Programmation, Byrolles, Maris, 1078, (new edi-
tion, 1484},

[85f)

THE SOFTWARE KNOWLEDGE BASE

Bertrand Meyer

Computer Science Department, University of California
Santa Barbara, California 93106 (USA)

(On leave from Electricité de France, Clamart, France)

ABSTRACT

We describe a system for maintaining useful information about a software project. The
"software knowledge base” keeps track of software components and their properties; these
properties are described through dinary relations and the constraints that these relations must
satisfy. The relations and constraints are entirely user-definable, although a set of predefined
libraries of relations with associated constraints is provided for some of the most important
aspects of software development (specification, design, implementation, testing, project
management).

The use of the binary relational model for deseribing the properties of software is
backed by a theoretical study of the relations and constraints which play an important
role in software development.

Keywords

Software engineering tools, configuration management, project management, formal
description of software engineering concepts. :

This paper appears in the Proceedings of the 8th International Conference on
Software Engineering, London, 28-30 August 1985. ’

1. INTRODUCTION

Studics have repeatedly shown that
management problems are one of the
primary sources of delays and failures in
large software projects (see e.g. 5]).

If bad management is due to bad
managers, one can hardly expect that
advances in software engineering will
alleviate the problem. But bad manage-
ment, or rather bad organization, often
has another cause: the sheer difficulty of
mastering the various aspects of a pro-
ject, and in pacticular of controlling
change. Project managers and project
members alike have trouble keeping
track of what is going on. As the project
develops, its "entropy” increases and it
becomes increasingly difficult to main-
tain a clear picture of the state of its
various components. Here good tools
can play a major role.

The eflort reported in this paper
aims at providing a unified base of sup-
porting tools for various aspects of
software development. To this end, we
introduce the notion of a software
knowledge base, that is to say a repo-
sitory of all useful project information.

The software knowledge base is
used by managers and programmers to
keep track of all interesting properties
of the software components and their
relationships. The software components,
as defined here, include all the relevant
project elements: program modules, data
definitions, requirements, user manuals
and other documentation, specifications,
design documents, test data, test results,
schedules, tasks, personnel data, budgets
etc. The relations between these com-
ponents may be of diverse kinds: we
may want to record the fact that a cer-
tain module of the design implements a
certain module of the specification, that
a cerbain program module uses a4 certain
data definition module, that a certain
Lask is assigned to a certain person, ete.

We use Lhe expression "software
knowledge base”, or SKB, to denote the

compendium of information associated
with a software project. The system
used to record, access and manipulate
this information, as described in this
paper, is called the SKB system when-
ever there might be a confusion.

Several aspects of the SKB system
are present in previous project manage-
ment systems. The ISDOS system (34] is
a set of project documentation tools,
which make it possible to record project
information as relations between entities
of various predefined kinds; these ideas

" were further developed in the SREM sys-

tem (3] written at TRW, which particu-
larly emphasized the notion of traceabil-
ity (i.e. ability to locate over the whole
data base the consequences of a change
made to some element). Simpler yet
very useful tools for configuration
management and version control are
gaining acceptance: Make (15| and SCCS
[32] on Unix, DEC's CMS, Softool’s
CCC, the "System Version Control”
component of Gandalf [20], Adele (14],
RCS, ete. The idea of collecting all use-
ful project documents in a single data-
base is expounded in the Stoneman
report (10}, and used in a current TRW
development, the "Software Master
Database” {6]. The use of relations in
software environments is advocated in
[t1], which relies on general (n-ary) rela-
tional databases; [26] shows that binary
relations may be applied to various
aspeets of programming. The SKB pro-
jeet builds on all these ideas but
emphasizes some original, and in our
view essential, design criteria, which we
shall now describe.

2. DESIGN CRITERIA

2.1. Simplicity

The SKB system should be easy to
learn and use. Managers and program-
mers have enough to do already; they
should not be required to go through an
extensive training period before they can
effectively use the SKB system.

A necessary condition for ease of
learning and use is to base the whole
system on a simple and uniform concep-
tual framework.

2.2 Method-, language- and
system- independence

The SKB system is a set of tools,
not an integrated methodology.
Although its consistent use naturally
leads to some sound methodological
practices, it should be viewed as a way
of helping project managers and
developers, not as a disruption of
current development practices.

Thus the SKB system should not
conceptually imply the use of any par-
ticular methodology, programming
language, computer or operating system.
It should blend well with other software
engineering tools.

We will refer to this criterion as
the "independence” criterion (as a short-
hand for method-, language- and
system-independence).

2.3. Adaptability

Not only should the system be
compatible with existing methods or
languages: it should be able to provide
efficient support for specific methods or
languages in use in, say, 2 company.

Thus the natural counterpart of
independence is the ability to
parameterize,

2.4. Whole life-cycle coverage

The SKB system should provide
benefits across the entire life-cycle of a

software project. Although this criterion
may restrict the power of SKB tools as
applied to a specific life-cycle stage, it is
essential in view of the fact that non-
trivial projects usually have a long his-
tory. A system that would only apply
to, say, the initial phases of specification
and design, would stand little chance of
playing a significant role: so much of the
software process is evolution, refinement
and extension of systems ocecurring after
the first “eycle" has been completed.

2.5. Support for system semantics

Many of the systems quoted in sec-
tion 1 have little, if any, notion of what
the objects being manipulated really
"are". Most configuration management
systems, for example, focus on just one
attribute of objects, their time stamp,
and know of just one relation, the
dependency relation (there is usually
also the notion of a "permission” attri-
bute in the systems which support pro-
tection). These systems are not
equipped to deal with other properties
of the objects such as the "A is an imple-
mentation of B" relation quoted above.

On the other hand, some of the
more complex systems do know about
"types” of objects (e.g. specification, test
data set, ete.), but then they violate the
independence ecriterion since these types
are defined once and for all. The prob-
lem is thus to be able to record semantic
properties ol software objects while
retaining flexibility.

2.8. Formal analysis

The design of the SKB system was
based on a systematic analysis of the
properties of software project elements;
some elements of this analysis are given
below (section 5), in the form of a
review of software relations and their
abstract properties (constraints).

This approach contrasts with most
published work on software engincering
tools: although the necessity for a sys-
tematic requirements analysis is one of

the tenets of software engineering, it
seems to have seldom been applied, let
alone in a formal way, to software
engineering tools and environments. The
formal specifications we know in this
field are a posteriort exercises applied to
existing designs, e.g. [18], which describes
some aspects of ISDOS, and (12] which
describes the system version control
component of Gandalf. The enalysis
outlined in section § is not a complete
specification of the SKB system, but
provides a sound (we hope) theoretical
basis for the system.

2.7. Object-independence

A software knowledge base is a
model of a certain set of software
objects and their relations. The model is
conceptually and physieally distinet
from the objects themselves; this is in
contrast with systems that essentially
add project and configuration manage-
ment information to the object represen-
tations (usually files on a conventional
host system). In our approach, the SKB
is a separate entity; objects are modeled

by SKB elements, called "atoms"” below. *

Thus a reference to the object
modeled by an SKB atom {e.g. the file
containing a program or other software
object) will merely be considered as one
of the attributes of the atom {the notion
of attribute is made more precise
below).

Such an approach has advantages
and drawbacks. The advantages are
simplicity and portability; the SKB sys-
tem can be built on top of any operat-
ing system without undue modification
to this operating system. The approach
also makes it possible to keep the model
(the SKB) on one computer and the
objects themselves on another if it is
deemed preferable to separate the
development machine from the manage-
ment machine.

On the other hand, the approach
taken makes it impossible to ensure con-
sistency: one cannot prevent users from

modifying the objects without making
the corresponding changes in the model.
However, regardless of the decision
taken, it is hard to ensure consistency
anyhow unless one is to build a manage-
ment system that replicates most of the
functions of an operating system. For
example, if one wants to guarantee that
the management system knows about all
changes brought to the objects, then the
management system should include such
utilities as text editors and the like. We
did not want to follow this path.

Thus we prefer to stick to the more
modest goal of providing a set of
management tools on top of an existing
operating system, with an open architec-
ture which makes it possible to combine
these tools with other software tools. It
is the responsibility of the project
members to maintain an accurate SKB
about the project. In other words, we
accept the possibility that the SKB sys-
tem may be fooled, as & price to pay for
the simplicity, flexibility and indepen-
dence (in the above sense) of that sys-
tem.

Obviously, efforts should be made
to improve the consistency of the SKBs.
In particular, specific interfaces may be
built between the SKB system and the
host system so that information may be
entered automatically into the SKB, as
a result of operations performed in the
host system (e.g. a compilation or an
editing session).

Our approach thus follows the
example set by the Make system [l5],
which achieves simplicity by relying on
dependency information provided expli-
citly by programmers; this system hav-
ing proved to be useful, efficient and
easy to use, other researchers have been
able to come up with tools [35] that
automatically feed dependency informa-
tion into Make for specific cases (source
programs in C, Pascal, Fortran, Lex and
Yacc in the reference cited).

3. THEORETICAL BASIS

The notion of software knowledge
base is based on 2 small number of con-
cepls: atoms, attributes, relations, con-
straints and actions.

3.1. Atoma

The objects in the knowledge base,
associated with physical objects of the
software project, are called atoms. As
implied by the “object-independence”
criterion discussed above, the atoms
have no immediate connection with the
objects they represent; they are mean-
ingful for the SKB operations only, and
their properties are only defined through
their attributes, relations with other
atoms, and constraints on these rela-
tions.

3.2. Attributes

Atoms may have attributes. Attri-
butes are user-definable, although some
predefined attributes are available. The
value of an attribute may only belong
to one of a small number of predefined
types such as Integer, String, Time, File.
The values of the last type are are refer-
ences to files supported by the operating
system (in a non-standard system that
does not have files, we may have to
replace this by a more general notion of
"object").

Typical predefined atom attributes
are time_of_last_change, yielding values
ol type Time; atom_type, yielding values
of type String (some possible types for
atoms are predefined, e.g. "procedure”,
"requirement”, "test data", etc., but new
ones may freely be added); and represen-
tation, yielding values of type File.

Attributes may not be of complex
types; in particular, they cannot yield
atoms. For anything but simple proper-
ties of atoms, relations should be used
instcad (see below).

3.3. Relations

The heart of an SKB consists of a
series of facts about the software pro-
ject, expressed as links between atoms.
Each of these links expresses the fact
that a certain relation holds between
two atoms @ and b. Examples (comple-
menting those in the introduction) are
"a is defined in 5" (where ¢ is a pro-
cedure and & a package in Ada), "ais a
member of 8" (where a is a person and b
a project}, "a is the formal expression of
b" (where a is a module in & specification
and b a paragraph of the requirements
document). More examples will be
found in section 5.

The SKB system only uses binary
relations; the reason is that binary rela-
tions are mathematically simple, have
nice properties, and provide an intui-
tively appealing way to describe struc-
tural properties of systems. From the
theoretical standpoint, any system that
can be described using general relations
(as e.g. with a relational data base
management system) can be described
with binary relations (8, and algorithms
have been proposed to efficiently
translate a binary schema into a more
efficient n-ary one [31].

In practice, we have indeed found
binary relations to be adequate for
modeling properties of software objects.
This is illustrated by the analysis in sec-
tion 5 - where it will be seen that we did
find one case where a ternary relation
seems necessary.

3.4, Constraints

Attributes and relations constitute
by themselves an empty shell; they
describe the structural connections
between software objects (the "syntax"”
of the project), but not their deeper pro-
perties {the "semantics”). The latter may
be expressed by defining constraints, or
conditions on the relations and attri-
butes, which must be satisfied for the
SKB to be in a consistent state. A sim-
ple and important example of constraint

is the "dependency” constraint main-
tained by tools such as Make, which
expresses that the value of the
time_of_last_change attribute should be
greater (i.e. more recent) for every atom
than for every atom to which it is con-
nected by any relation that may be
characterized as a “dependency" rela-
tion. But many other useful constraints
may be defined on software systems;
some will be given below.

Constraints will be expressed as
mathematical relational predicates
involving relations, attributes and
atoms. The abstract formalism used to
construct and manipulate a software
knowledge base is called the Calculus of
Relations, Attributes and Constraints
(CRACQ).

3.5. Actions

An action is associated with a con-
straint and specifies steps to be taken
when the constraint is violated by cer-
tain objects, following manipulations of
the SKB. Actions are not strictly part of
the SKB system since they may involve
commands to the operating system; the
SKB system provides the interface, and
ways to pass attributes of the atoms

(e.g. file names) to the host system.

4. STRUCTURE OF THE SYS-
TEM

The structure of the SKB system
follows from the design criteria of sec-
tion 2 and the theoretical basis
described in section 3. It is represented
in figure 1.

The kernel of the SKB system pro-
vides the basic mechanisms for creating,
accessing and updating the SKB entities:
atoms, attributes, relations and con-
straints.

In connection with constraints, we
introduce the concept of daemon. A
daemon is a mechanism associated with
a constraint, which monitors the SKB in
order to detect possible violations of the
constraint as the information in the
SKB is being updated (i.e. links between
atoms are modified, new atoms are
entered, attributes are changed, etc.).
When it finds that such a violation has
been made, the daemon will report the
inconsistency and trigger the action
associated with the constraint, if there
is one.

Specific
Interfaces| Interface

Procedure
Library
3

CRAC Interface

3

CRAC
i mitives
Atoms
SKB Attribiiss
Kernel Relations Operating
Constraints System
Interlace
[lanmouns| Aclions

Specific
Libesties | Test

Managsment

| Design] —Ilmplementuion

Flgure 1: Structure of the SKB System

Daemons raise an interesting imple-
mentation problem: in a large SKB
involving many atoms, attributes and
relations, it is essential to find ways to
avoid searching the whole structure
(mathematically, a multigraph} for the
consequences of & simple change. Work
on related topics has been done previ-
ously in connection with artificial intelli-
gence [25] and interactive graphies [17].

The SKB kernel is accessible
through a set of primitives, the "CRAC
primitives”, which implement the cal-
culus of relations and constraints, i.e. all
the useful operations on the knowledge
base. These operations are made avail-
able through & uniform interface, the
"CRAC interface”; the idea here is that
the SKB functions (like those of any
good data base management system, or
more generally of any good software
engineering tool) should be equally
accessible to interactive users, non-
interactive users, and other prograrms!.

Thus the CRAC interface does not,
favor any of these types of access.
Several higher-level interfaces should be
provided; figure 1 lists three:

¢ the procedure library, which
makes CRAC primitives usable
from programs (e.g. other software
tools), written in ordinary pro-
gramming languages;
o the CRAC language, which makes
it possible to express CRAC mani-
pulations in an appropriate nota-
tion;
! This is an implementation of what may be
called "Strachey's principle” from the quotation of
Christopher Strachey in Scott's preface to [33]:

R W [y A BHENES (5271 DEloreTyenvss
cide how you are going to say it".

o the Designer’s Sketchpad, a
graphical interface to the calculus,
allowing for interactive description
of the atoms and relations with a
graphical display and a mouse.
The aim here is to avoid the gap
between high-level design decisions,
which are often best expressed in
pictures, and the rest of the
software development process.
Finally, figure 1 includes a set of
“"CRAC Libraries”, each of which pro-
vides a set of predefined relations, attri-
butes and constraints corresponding to

an important aspect of software
engineering. Examples are project
management (scheduling, personnel

management ete.); design {a library
might provide support for a specific
PDL); implementation (an Ada library
manager would fit here); and testing.
This last point is particularly important
in our view and we see lest management
as one of the main berefits of the SKB
system: although there is an extensive
literature on program testing, very little
seems to have been published on the
management of the testing process: how
to keep track of test data sets for each
module, record test results, etc.

5. A TAXONOMY OF
SOFTWARE RELATIONS AND
CONSTRAINTS

5.1, Overview

The fact that useful relations exist
among components of software systems
has been pointed out by many authors.
For example, Parnas (30| describes the
“uses” and "invokes” relations among
modules; systematic methodologies for
sofiware design have introduced the
"abstraction" relation between a
specification (e.g. an abstract data type)
and an implementation [21]; the "isa"
relation (9] is used in Al systems; the
development of software development
environments has recently led several
researchers to consider using relational

databases to keep track of the relations
between the various objects needed in a
software project [11,24]; at the program
level, control and data dependencies
play in important role in studies about
code pgeneration and optimization in
compilers (2], program vectorization
(23,22] , static analysis [16].

Despite this frequent use of rela-
tions for software-related issues, there
have been very few systematic studies of
these relations; most works dealing with
relations just assume that they are
there, and go on using them or discuss-
ing ways to compute or implement them
(an exception is [26] which introduces
some program-level relations and studies
their properties).

The absence of a precise definition
of software relations and their formal
properties is regrettable, since relations
are not just vague connections between
objects, nor just "tables” as in simplistic
presentations of the relational database
theory, but useful mathematical objects
with interesting properties. We feel that
a systematic study of software relations
is essential to advances in software
configuration management. We have
started such a study [28; some elements
from that study will now be reported.
The aim of this section is to present
some interesting relations and the asso-
ciated constraints, giving support, to our
decision to base the design of the SKB
system on binary relations.

Of course, the relations presented
here arc only some of the important
relations that occur in software; the
SKB system is an open system and the
user may introduce any relations and
attributes that may be needed for a par-
ticular application, together with the
associated constraints. The normal way
to do this is to define CRAC "libraries";
the relations and constraints presented
below would normally be part of some
basie, predefined libraries.

5.2. Basic Atom Types

As mentioned above, SKB atoms
are not strictly typed; they simply have
"atom type” as one of their attributes.
Examples of "atom types are "Require-
ment”, “Specification”, "Design"”, “Pro-
gram”, "Test_data", "Variable", "State-
ment", "Module”, "Project”, "Milestone",
"Stafl member", "Unit cost”, ete. In the
spirit of the theory of abstract data
types, these types are only “defined”
through the relations which may hold
between the corresponding atoms and
the associated constraints,

[n the analysis that follows, we
shall be talking about types of software
objects and relations between these
objects. For the SKB project, this
analysis is only interesting insofar as
these properties of objects can be
modeled by properties of the
corresponding atoms.

5.3. Relations between atoms of
different types

s g contains b

This relation holds if and only if the
object represented by b is a constituent
of a. Typically, a will be a system,
deseribed at a certain level of abstrac-
tion (specification, design, code, docu-
mentation ete.) and b will be a com-
ponent (module, chapter ete.) of that
description. We eall part_of the inverse
relation contains™!.

s a models b

This relations holds if and only if a
includes a description of what b does,
that is Lo say if b is one way to do what,
is prescribed by a. We call instances the
inverse relation.

Exaraples: the user manual for a
machine models that wmachine; an
abstract data type description of a type
models an implementation of that type
as a class in Simula or Smalltalk, a
package in Ada ete.

5.4. Relations between atoms of the
same type

¢ ¢ complements b

This relation holds if and only if a and &
cooperate towards the achievement of
some higher aim. For example, various
procedures in the implementation of the
same data type (class, package) comple-
ment each other; so do various subrou-
tines in a numerical library, or Unix
programs commonly used in a "pipe”
fashion, e.g. for text processing the pro-
grams refer, tbl, eqn, troff.

Constraints: complements is a symmetric
relation;

part_of ; contains C complements

In this notation, the semicolon denotes
the composition of relations:
part_of ; contains is the relation which
holds between any two elements ¢ and
¢ if and only if, for some b, a is
part_of b and & contains ¢, Also, if r
and s are two relations, then r C s (r
is a subset of s) means that any pair of
elements connected by r is also con-
nected by s. The appendix describes
these and other notations.
o a specializes b

This relation holds if and only if any-
thing which is described by a is also
described by b (but some things may be
described by b which are not described
by a). The inverse relation, special-
izes™!, may be written generalizes.

Examples: In other branches of science,
the Linnaean classification of living
beings is based upon this relation. In
soltware, a particular elegant implemen-
tation of this relation is the prefixing
mechanism of Simula and Smalltalk: if @
is a class whose declaration is prefixed
by the name ol b, then any property
which has been given in the declaration
of b applies ipso facto to all objects of
class b, but this does not prevent the
declaration of a to add any further pro-
perties which may be needed; the
mechanism can be iterated. A similar

-10-

mechanism exists in the Z specification
language [1].

Constraints: “linear” or "hierarchical”
inheritance, as in Simula and Smalltalk,
means that the relation is a forest. In
Smalltalk, the introduction of the
"metaclass" Class makes it a tree. "Mul-
tiple inheritance” would mean that a
dag is acceptable.

An interesting variant of this relation
oceurs-in many practical cases; it may
be written @ specializes b ezcept for ¢
(e.g., bats have all the properties of
mammals except that they can fly). This
seems very useful to model many aspects
of software, e.g. Fortran 77 is "upward-
compatible” with Fortran 66 (except for
a few "minor” details), version 4.2 of the
XXX operating system is almost compa-
tible with version, say, 7, etc. This rela-
tion is also important in connection
with modular, reusable system
specifications [28]. It is a ternary rela-
tion.

o a refers_to b

This relation holds if and only il a refers
to & by its name. It can happen in a
variety of ways: @ and b can be objects
of the same type (i.e. procedures, where
a calls b) but this is not necessary. In
programming languages, 2 module can
refer_to objects belonging to other
modules (e.g. variables, etc.) either
through the mechanism of block strue-
ture or sharing of data, or by special
facilities which enable a module to
"peep” into the names of entities belong-
ing to another (inspect in Simula, use
in Ada). We call {s_referred_by the
inverse relation.

¢ o needs b

This relation holds if and only if a can-
not be understood (or, if a program ele-
ment, executed) without &.

Constraint: we venture the [ollowing
rule:

needs C is_referred_by*; refers_to *

meaning that @ possibly needs & if and
only il some module ¢ {which could be a
itself) refers to both a and & directly or
indirectly (the asterisk and plus sign
denote transitive closures; see the
appendix).

¢ a declared_in b

This relation holds in block-structured
languages ifl a is declared inside b.

Constraint: declared_in C part_of
e g shares_jinformation_with b

This symmetric relation holds if and
only if @ and b may access some com-
mon information. In block-structured
languages such as Algol 60 and Pascal,
this is done through the block structure
mechanism, as defined by the following
constraint (valid for these languages):

shares_information_with C
declared_in * ; has_declaration *

where has_declaration is the inverse of
declared_tn.

5.5. Relations
modules

between program

The following relations apply to

modules of programs (procedures,
classes, packages etc.).

sacalls b

This is the standard relation

between procedures, which holds if and
only if a may call b.

e g creates b

This relation holds if and only if ¢ may
create b. It exists in a language or sys-
tems where processes can start other
processes (e.g. Ada tasks, Unix processes,
PL/I tasks, Simula classes). The same
relation also applies to the case where &
is a data structure in languages where
data can be allocated dynamically (e.g.
new in Pascal).
e a activates b

This retation holds in systems support-
ing coroutines (e.g. Simula) or parallel
processes (Ada) if and oaly if if a may
re-start a suspended execution of &

«11-

¢ g sends_information_to &

This relation holds if and only if @ may
pass information to b. Let
receives_tnformation_from be the inverse
relation. The following constraint holds
for common programming languages:

sends_tnformation_to
U recefves_information_from C
calls U 13_called_by
However, this is not the case in GSP, for
example, where information may also be
passed through the "rendez-vous"
mechanism; thus in these systems:

sends_information_to
U recefves_information_from C
calls U ts_called_by U activates

More Constraints

Many features of programming
languages may be characterized as pro-
perties of the above relations. For exam-
ple, defining

same_scope =

declared_in ; has_declaration
then in block-structured languages such
as Algol 60:
refers_to C
declaered_in * \J same_scope
but in Ada:
refers_to C
declared_in * \J same_scope U
(declared_in ; refers_to)
In 2ll common languages, we have

calls U creates U activates C
uses

ete,

5.8. Time and system consistency

For the purpose of this study, only
one property of the basic type Time
matters: the fact that it is totally
ordered by a relation which we call
before. The inverse relation is predict-
ably called ofter.

As mentioned in section 3.2, we
define time_of_last_change as an attri-
bute rather than a relation. This is

merely for convenience; mathematically,
an attribute is a (possibly partial) func-
tion, thus a special case of a relation
anyway. Let changed_at be the inverse
of time_of last_change.
Part of the problem of
configuration management is due to the
_fact that no element in a system should
be younger than any element which
depends on it. This is expressed by the
following constraint, which we may call
the fundamental law of system con-
sistency:
changed_at ; depends_on |
time_of last_change C after
where relation depends_on is defined as:
depends_on =
contatns (J instances U gen-
eralizes U refers_to U needs

5.7. Relations between program ele-
ments

Our last set of relations will con-
tain relations between objects of a pro-
gram. These relations play an essential
role in static program analysis, whether
it is for compiler optimization, super-
computer programming (7,23], or pro-
gram debugging.

e a follows b

This relation holds if and only il ais a

statement whose execution may be

immediately followed by that of state-

ment b. It describes the flow of control.
® ¢ accesses b

This relation holds if and only if ais a

statement' or a program module, b is a

~

- 12¢

__eeds_velue_of

program object (variable, etc.), and the
value of b is needed for the execution of
a. For example, il a is an assignment
statement, it accesses the objects on
the right-hand side.

¢ a modifies

This relation holds if and only if ais a
statement or a program module, b is a
program object {variable, etc.), and the
value of & may be modified during the
execution of a. For example, if a is an
assignment statement, it modifies the
variable on the left-hand side.

¢ ¢ needs_value_of 6

This relation holds if and only if a and &
are objects of a program (e.g. variables),
and the value of ¢ may be modified by a
computation which uses the value of 6.

The following constraint may be
called the fundamental law of static
analysis:

needs_value_of C

(modifies 1 ; (follows ; modifies)
M accesses)*t ;
modifies ! ; accesses

To understand this constraint, it
may be useful to look at figure 2, where
t and 7 are statements, and q, b, ¢ are
program objects, and to note that the
solution of

d=r U (t;d)
is
d=r U ft;r) U (t;t;r) U
(et 8) U o
i.e

d=1*;r

-~
~

madifiez

accerses

3ero or more timey

Figure 3: The Static Analysls Constrain

: 8=

6. STATE OF THE SYSTEM
After the initial specification and design phase, the SKB project currently (June
1985) pursucs the following tasks:
o The CRAC calculus has been defined preciscly (13] and is being further refined
to include diverse kinds of object manipulation and user queries.
¢ A prototype has been implemented in Prolog [27]; an alternative approach,
using the relational data base management system Ingres, is pursued con-
currently. An experimental graphical interface (the "designer's sketchpad” men-
tioned in section 4} is also being implemented.
@ The study of useful software relations outlined in section 5 of this paper is being
further refined.
o Two unrelated software projects, one at UC Santa Barbara and one in industry,
have been the object of an in-depth analysis [19] with two complementary aims!
to assess practitioners' needs from their current practices, and to evaluate the
CRAC as a modeling tool.
¢ Finally, efficient multigraph algorithms for the incremental monitoring of con-
straints have been investigated [13].

Acknowledgments

Several UCSB students contributed useful ideas, notably Jacques Delort, Xavier
Glikson and Lucio Mendes. The referee’s comments were helpful. I also thank Peter
Lohr for several important observations. '

S14-

References

i3

11.

12.

13.

14.

Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer, “A
Specification Language,” in On the Construction of Programs, ed. R. McNaughten
and R.C. McKeag, Cambridge University Press, 1980.

Alfred V. Aho and Jefirey D. Ullman, Principles of Compiler Design, Addison-
Wesley, Reading (Massachusets), 1979.

Mack W. Alford, “A Requirements Engireering Methodology for Real-Time Pro- .

cessing Requirements,” IEEE Transactions on Software Engineering, vol. SE-3, no.
1, pp. 60-68, January 1977.

Dines Bjgrner and CIiff B. Jones, Formal Specification and Software Development,
Prentice-Hall, Englewood Cliffs (New-Jersey), 1982.

Barry W. Boehm, “Software Engineering - As It Is," in Proceedings of the §th
International Conference on Software Engineering, Munich (Germany), pp. 11-21,
IEEE, September 1979.

Barry W. Bochm, Maria H. Penedo, E. Don Stuckle, Robert D. Williams, and
Arthur B. Pyster, “A Software Development Environment for Improving Produc-
tivity,” Computer (IEEE), vol. 17, no. 6, pp. 30-44, June 1984.

Alain Bossavit and Bertrand Meyer, “The Design of Vector Programs,” in Algo-
rithmic Langueges, ed. Jaco de Bakker and R.P. van Vliet, pp. 99-114, North-
Holland Publishing Company, Amsterdam (The Netherlands), 1981.

G. Bracci, P Padini, and G. Pelagatti, “Binary Logical Associations in Data
Modeling,” in Modeling in Data Base Management Systems, IFIP Working Confer-
ence on Modeling in DBMS'’s, ed. G.M. Nijssen, 1976.

Ronald J. Brachman, “What IS-A and isn't: An Analysis of Taxonomic Links in
Semantic Networks,” Computer (IEEE), vol. 16, no. 10, pp. 67-73, October 1983.

John Buxton, Requirements for Ada Programming Support Environments: Stone-
man, US Department of Defense OSD/R&E, Washington, D.C., February 1980.

S. Ceri and Stefano Crespi-Reghizzi, “Relational Data Bases in the Design of Pro-
gram Construction Systems,” SIGPLAN Notices, vol. 18, no. 11, pp. 34-44,
November 1983.

Ian D. Cottam, “The Rigorous Development of a System Version Control Pro-
gram,” JEEE Transactions on Software Engineering, vol. SE-10, no. 2, pp. 143-154,
March 1984,

Jacques Delort, “The Caleulus of Relations and Constraints: Definition and Algo-
rithms,” Forthcoming Master’s Thesis, University of California, Santa Barbara,
1985.

Jacky Estublier and Said Ghoul, “Un Systéme automatique de gestion de gros log-
iciels, la Base de Programmes Adele / An Automated Management System for
Large Software, the Adele Data Base,” TSI (Technique et Science Informatiques /
Technology and Science of Informatics), vol. 3, no. 4, pp. 253-260 (French edition},
221-240 (English Edition).

Stuart L. Feldman, “Make - A Program for Maintaining Computer Programs,”
Software, Practice and Ezperience, vol. 9, pp. 255-265, 1979,

Lioyd D. Fosdick and Leon J. Osterweil, “Data Flow Analysis in Software Relia-
bility,” Computing Surveys, vol. 8, no. 3, pp. 305-330, 1976.

17.

18.

19.

20.

21.

22

23.

24.

25.

26.

2.

28.

29.

30.

31

32.

-15=

Michael T. Garrett and James D. Foley, “Graphics Programming Using a Data-
base System with Dependency Declarations,” ACM Transactions on Graphies, vol.
1, no. 2, pp. 109-128, April 1982.

Susan L. Gerhart, “Application of Axiomatic Methods to a Specification
Analyzer,” in Proceedings of the 7th International Conference on Software
Engineering, pp. 441-451, ACM-IEEE Computer Society, Orlando (Florida), March
26-29, 1984.

Xavier Glikson, “Analysis and Modeling of Software Configuration Management
Practices,” Forthcoming Master’s Thesis, University of California, Santa Barbara,
1985.

Nico Haberman et al., The Second Compendium of Gandalf Documentation,
Carnegie-Mellon University, Pittsburgh (Pennsylvania), 1982.

CUff B. Jones, Software Development: A Rigorous Approach, Prentice-Hall, Engle-
wood Cliffs (New-Jersey), 1980.

Ken Kennedy, Automatic Translation of Fortran Programs to Vector Form, Rice
University, Department of Mathematical Sciences, October 1980.

David J. Kuck, R. H. Kuhn, B. Leasure, D.A. Padua, and M. Wolle, Compiler
Trensformation of Dependence Graphs, Conference Record of the Eighth ACM
Symposium on Principles of Programming Languages, Williamsburg (Virginia),
January 1981.

Mark A. Linton, “Implementing Relational Views of Programs,” in Proceedings of
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, ed. Peter Henderson, pp. 132-140, Pittsburgh, Pennsyl-
vania, April 23-25, 1984. Appears as Software Engineering Notes 9, 3 (May 1984)
and SIGPLAN Notices 9, 3 (May 1984).

Alan K. Mackworth, “Consistency in Networks of Relations,” Artificial Intelli-
gence, vol. 8, pp. 99-118, 1977.

Bruce J. McLennan, “Overview of Relational Programming,” SIGPLAN Notices,
vol. 18, no. 3, pp. 36-44, March 1983.

Lucio Dimas dos Santos Mendes, “A Prolog Implementation of the Software
Knowledge Base,” Forthcoming Master's Thesis, University of California, Santa
Barbara, 1985.

Bertrand Meyer, “Towards a Relational Theory of Software,” Internal Report,
University of California, Santa Barbara, July 1984.

Bertrand Meyer, “A System Description Method,” in International Workshop on
Models and Languages for Software Specification and design, ed. Robert G. Babb I
and Ali Mili, pp. 42-46, Orlando (FL}, March 1984, (also more detailed internal
report available from the author). :
David L. Parnas, “Designing Software for Ease of Extension and Contraciion,”
IEEE Transactions on Software Engineering, vol. SE-5, no. 2, pp. 128-138, March
1979.

Naphtali Rishe, “A Relational Database Design Methodology Using Binary Con-
ceptual Schemata,” Technical Report, Department of Computer Science, Univer-
sity of California, Santa Barbara, January 1985.

Mark J. Rochkind, “The Source Code Control System,”" IEEE Transactions on
Software Engineering, vol. SE-1, no. 4, pp. 364-369, December 1975.

33.

34.

35.

-16 -

Joseph E. Stoy, Denotational Semantics: The Seott-Strachey Approach to Program-
ming Language Semantics, MIT Press, Boston, Massachussets, 1977.

Daniel Teichroew and Ernest A. I Hershey, “PSL/PSA: A Computer-Aided Tech-
nique for Structured Documentation and Analysis of Information Processing Sys-
tems," IEEE Transactions on Software Engineering, vol. SE-3, no. 1, pp. 16-33,
January 1977,

Kim Walden, "Automatic Generation of Make Dependencies,” Software, Practice
and Ezperience, vol. 14, no. 6, pp. 575-585, June 1984,

- 17 -

APPENDIX
RELATIONS

Let X and Y be two sets. The set of
binary relations (or just relations)
between X and Y, dencted X+ Y, is
defined as the powerset (set of subsets)
of the cartesian product X X Y:

X—Y=P(X X Y)
In other words, a relation r between X

and Y, ie. an element of X« Y, is a
set of pairs

{lzp v [z vy, -}
with 2, € Xand y, € Yfor all 4.

As a notational convention, the
sets of interest {those between which
relations are defined) will have names
beginning with upper-case letters, e.g. X,
Specification, etc. Names of set ele-
ments and those of relations will be
written in lower-case, e.g. z, r, part_of.
To express that a certain pair of ele-
ments £ € X, y € Y belongs to a relation
r, i.e. that

[ylEr

it is often convenient to use an infix
notation, as in

z uses y

(where z and y might be program
modules), rather than

[z, y] € uses.
We will use the convention that the
name of 2 relation, written in boldface
as in this example, may be used as an
infix operator.

Since any relation in X+ Yis a
subset of X X Y, we can talk about the
intersection of two relations, denoted r
N s, and their union, denoted r U s
We may also express that a relation is
included in (is & subset of) another, by
writing r . C 5.

The inverse of relation r € X+ Y
is the relation r 7 in ¥ +— X such that

yr dz e> zr ¥

The domain of r € X «— Y, written
domain (), is the subset of X containing
all elements z for which z r y holds for
some y € Y. The range of r, written
range (r), is domain (r 1),

The composition of two relations r
EX++Yand s € Y Z written s «
r, is that relation in X «— Z which holds
between elements z and zif and only if

zryand ys z forsome y€ Y
The order of the arguments to the com-
position operator is traditional in
mathematics and has some justification;
to many people, however, it is less
confusing to write the relations in the
order in which they are "applied”; thus
rather than the dot notation we use the
semi-colon notation, with r ; & being
defined as s e r (the use of the semi-
colon is justified by the close connection
which exists between statement sequenc-
ing in programs and composition of rela-
tions; see reference [4].

For any set X; the identity relation
on X, denoted id (X), or just id when
there is no ambiguity, is the "diagonal”
relation which holds only between each
element and itself. We ecall null the
empty relation.

Let r € X+ X (source and target
set identical). The successive powers of
r are defined as follows:

rf=1id

rt=r;rv! (i>0)

A relation r € X« X has a tran-
+

sitive closure, denoted r , and a
reflexive transitive closure, denoted r r
defined as follows:

rt=1r §] r2 U73 & g

re=id U r*

- 18-

A relation r € X «— Xis:

o Transitive if r# C r(or equivalently r ¥ = r)

o Reflexive iff td C r

o Symmetric iff rf = r

o Antisymmetriciff r 0 ¢! C id

¢ Functional iff r*1;r C id (note that this characterizes partial functions)

o Total iff id C r;r!

A (partial) order is a transitive, antisymmetric and reflexive relation. Such an
order relation is total if and only if r U r =X x X

A dag (directed acyclic graph) is a relation r such that r*is a partial order. A
dag is rooted if and only if, for any y € X, the set of z € X such that z r* y is finite; a
root is then an clement of X - domain (r !). It is easily shown that in a rooted dag,
for any y € X there is at least one root z such that z r* y.

A forest is a rooted dag r such that r ! is functional (note that r represents the

relation between parent and child). It is easily shown that s non-empty forest has at
least one root. A tree is a forest with at most one root.

[854]

M:

A SYSTEM DESCRIPTION METHOD

Bertrand Meyer

ABSTRACT

We sketch the principles of a method and notation for use by software designers to describe the
functional characteristics of systems being planned or developed. The method is implicit since
entities are described by their properties only; it is object-oriented since the descriptions
emphasize classes of system objects over functions; it is moduler since it provides ways to
describe complex systems in a piecewise fashion; it is iterative since it encourages the stepwise
refinement of system descriptions; it is formal while retaining some of the advantages of non-
formal specification methods

82285

Table of Contents

1 - PURPOSE, SCOPE, CRITERIA ...
1.1 - Implicitness

1.2 - Object-orientedness ..

1.3 - Syntax and Semantics ..

1.4 - Modular features

1.5 - Mathematical basis ..o e
1.6 - Errors and exceptional cases ...
B:T1= TOOIS sveveeesssrmvssviassssmssessssavsassers
3 - OVERVIEW OF THE BASIC PARAGRAPHS ...
4ul=.A ' Distributed IEileiSYRtem v iidiiiboiiesssediasiiv d iasFhsasivosinsshbessasseotssobssas?
412v= SOT th) srormreems: Ty R SV TR P
4.3 - Attributes .
4.4 - Invariants

— O N D Wt W A A W W

4.5 - Transforms ..
4.6 - Effects
4.7 - Constraintsccccrvecrn, severesdibosentl
4.8 - Extensi . o —
5 - SYSTEM COMPOSITION AND DECOMPOSITION
6 - PROVING THE CONSISTENCY OF A SPECIFICATION ..o
6.1 - Overview ...

6.2 - Consistency of modular specificabions ..o
6.3 - Notations
6.4 - Invariance properties
6.5 - Constraint consistency B e s i M T e OO s soncavmnguisc . S
6.6 - Constraint-Effect Consistency wwmwey 29
7 - FROM SPECIFICATION TO DESIGN AND IMPLEMENTATION ;
7.1 - Design s o . B2
7.2 - Tinportls v

7.3 - Implementation ..
8- ON USING THE M METHOD ..ottt cernieenenenessecsnsbcsostcenveneeresseenscnrecsnes 38
8.1 - General form of a specification ...

8.2 - Incremental description

8.3 - Comploteness ..o siumim s imm e mihseaTons o aiin it oias WoisccTmicphybes - EIMTTSEET anosdiimassnsasitns B9
\ B:4 «=Prool5 memmsprrerrrresmresy v s R e T e e S TS T TSSO TR 4T 5V 39

M: A SYSTEM DESCRIPTION METHOD

8.5 Attributes vers
9- FURTHER WORK |
sl Concrete Syntax ...
9.2- Completeness of the nota”t.i.;n"w
9.3 - Initialization

us Transforms

9.4 - Errors and partia} functions
9.5 - Tools

9.6 - Theoretica) Basis

n

M: A SYSTEM DESCRIPTION METHOD
Bertrand Meyer

1 - PURPOSE, SCOPE, CRITERIA

It is well-known in the soltware engineering community that the initial phases of the
software lifecycle - specification and global design - are the crucial ones. They condition the
smooth proceeding of the remaining phases and the quality of the eventuz! product.

In other engineering disciplines, 2 number of methods, notations and tools are available to
support the corresponding phases. Design decisions can be ezpressed, discussed, evaluated and
recorded using various mathematical techniques. No such widely accepted set of techniques

exists in software engineering; this paper is an attempt to fill this gap.

The proposed approach comprises three components: a method, a notation and a set of
tools. The method is called M. The associated notation is called LM. We shall outline the

required computerized tools (TM), which have not been implemented.
We will first list the objectives and criteria that led to the design of M.

1.1 - Implicitness

In our view, the single most important feature of specifications is that they describe
objects implicitly, not explicitly; in other words, a specification should state properties of
objects, but not give a way to construct these objects, even an abstract construction, using
mathematical concepts. This may also be expressed by saying that the role of a specification is
to say what objects have, not what they are.

As an example of this distinction, consider first the following Pascal record type definition,
a programming variant of the cartesian product of sets as known in mathematics:

type POINT =

record

z, y, 2 real;
speed : VECTOR

end

Then cousider the following characterization of POINT by four functions:

z,y, 2: POINT — REAL

speed : POINT — VECTOR

These two ways of defining POINT may at first sight seem equivalent. The first, however.
is explicit, whereas the second is implicit. This is because the first completely freezes the type
POINT, defined as being "equal” to something; only with the second is it possible to add later a
new property of POINTs, say a mass, without changing the initial definition:

masgs : POINT — REAL

. Although the difference between adding a new definition and changing an existing one may
at first sight seem minor, the picture changes when viewed from a software engineering
perspective. An essential issue in the management of software projects is how to avoid the
constant un-shelving and redesign of previously baselined elements. It is thus much preferable to

4 M: A SYSTEM DESCRIPTION METHOD [< B

be able to work by addition rather than modification, leaving existing elements untouched
whenever possible. :

Such an incremental approach is particularly appropriate at the specification stage, when

i different approaches. To make this possible, however,
specifications must be written with the expectation that new elements will be added later. One
should thus avoid premature freezing, and leave the descriptions as open as possible. [t is
essential to have & specification method that supports this process.

In fact, the conclusion of the specification step can be taken to be that time when one decides to freeze
all the objects involved by equating them with the cartesian product of their attributes as defined so far,
Then implicit definitions can be transformed (manually or automatically) into explicit ones similar in
spirit to the above Pascal type definition. This will elaborated
to use an M description as a basis for system implementation,

further in section 7 when we discuss how

1.2 - Object-orientedness

Software systems may be described as devices that perform certain operations on certain

objects. The description of a system may be structured around the objects or around the
operations.

Using the objects (or rather the object types) as the basis for the description is preferable
from a software engineering point of view, The reason is that, if one consider the whole lifecycle
of a system, repeated changes will occur, so that, many a system bears little resemblance at any
given time to what it was a few months or years before. Practical experience shows, however,
that in this constant evolution (which is the rule, rather than the exception, for most resl

systems), the basic objects manipulated by the system tend to remain more stable than the
operations performed on them.

It is thus essential to recognize and specify early the essential categories of objects that
oceur in the system. In M, this is done by listing the sorta of the system at an early stage of the
specification. The rest of the specification is concerned with expressing properties of these sorts
by defining the applicable operations.

A sort may be understood as just a set in the ordinary mathematical sense.
1.3 - Syntax and Semantics

The description of the relational structure of a system, i.e. what objects are connected to
what other objects and what operations apply to what objects, may be called the syntax of the

system. Its semantics, on the other hand, is the description of the properties of the objects and
the operations.

Describing semantics is a much more difficult task than describing syntax if one is to
remain at the specification level. Many of the specification systems that have been successful in
industry are mostly good at describing the syntax, and their attempts at including the semantics
either use natural language or resort to an operational approach (that is to say, describe
algorithms rather than abstract properties), thus departing from the true realm of specification.
Formal specification techniques, on the other hand, make it possible to describe system
semantics while remaining at the specification level, but they require much effort.

The method used in M is to divide the description of a system into several parts
("paragraphs” in the associated notation). The first stages are concerned with syntax, the later
ones add semantics. The specification task is progressive; by writing the first, syntactical
paragraphs, one may already gain some benefit from the method and associated tools. To
obtain a more complete description, semantic properties will be grafted onto the basic stem.

14w Purpose, scope, criteria ' 5

1.4 - Modular features

i T ok . B, eyt o ih? e e b st e e
(l\)/;lriggli:;z:) r:‘ir:\:p]lzc‘}e:i::e(;sfz? !.weo k:y aspects of modularity [12]: decomposability and
osability. .
mmp”“"'“:"i“b""i i component) s for posponin che ascription o some feaburc
g ey ol enti | isbi ification method should
order to concentrate initially on bhe.essentla] aspects. A rg;llst{t;;pc;:; Tl b dape
g;:::?;ﬁ:::f: rk';e ﬁ;rasl‘il\cr: ;hi:tizp:s::nt;ﬁp:; fe}xlp Z;e:ll:ii?s f:a;te; the overwhelming amount
of detail that confronts them at the early steges of‘a FrOJEf:l. . N
e (e “botteyrant sapect], This propory s pesbeutorly aopartont o sueacion wih
2:‘: c?;‘et!f:h:ss::tr‘i:imi-s‘sllfesa:ll')esof;,v;)ar]erengilncering, reusability, which is just as relevant for
ification as for other phases of the lifccycle.
Spemﬁ;:albu!;es of the M method and the associat'edb.nztzl{:niﬁ:.l\;ed:h:: ﬁ;:rfiizi;e:rzzr;gzv;’;::
cr!ne(;g:ill?ers Cit‘rils:rci:z';li::cslizrnsi;?t'il?e&cfl\rfe)’rf:e;‘)egfgz:gof with others, existing or yet to be written.

1.5 - Mathematical basis

The basic modeling tools used in the description of systems are the sim.pl]e matt}!emaulc:l
notions of sets and functions. Functions may be either total or partial, partial functions play
an important role in connection with error situations.

1.6 - Errors and exceptional cases

The issue of how to deal with erroneous and exceptional‘ cases plagut:s soft\lav;r?r::ltg;é
Much of the complexity in requirements, speciﬁcatliqns arfd desx'gn docur:xen 3 resu
need to account for various kinds of abnormal conditions (illega! inputs, etc.). f
M offers no magic cure to this prob'{‘ehm bl.}'. erpphastliz(:(s) L::“Zee:;:yk?isnt‘his:s;:,::;z:;:b?e
cases distinct. e aim is nol
:Z::sl:ilf.ya::d:;;zlnge?vl:ih the latter, but to keep the former simp!fa and manageable. S
To deal with exceptional cases, M relies on the mat,hen}atlcal con‘cepft oft;.)ar:u:mc\én: ;{:SL
An eztension paragraph provides a way to enlarge the domains of partial functions
version of the specification has been written.

1.7 - Tools

A comprehensive specification method such as M may ,only agh_levedlbsh[uz E:t;enz;:le;ii;ut
t . The tools envisioned her]
ted by good good computerized tools. : > :
Sr:g::yr;rint y‘ang conﬁgguration tools, used to keep track of the vak:wus s:::emﬁc":a.t,l‘zl)ns;tveizt);
i les are specification databases to retrieve A
written or under development. Exampl L d 3 i e
i 1 Ul bine elemenis of system deseriplious,
ifications (e.g. by keywords); linkers to com s iy
:gtizsors to hel;f in writing specifications; analyzers to check for consistency and other properties
both intra- and inter-systems; provers.

[} M: A SYSTEM DESCRIPTION METHOD @17

2 - INFLUENCES

Many of the features of the M method may be found in previous work. We list the
conscious influences below, and confess without any shame to having stolen many ideas from
other efforts. We do hope, however, that the whole is a little more than the sum of its parts.!

o The most direct influence was that of the Z specification language in its various
incarnations ({1] being the last known one), with its emphasis on using simple mathematical
concepts to model prograruming concepts and, in the later versions, facilities for modular system
descriptions (chapters, classes). In a sense, M is nothing more than a restricted version of Z.
Another work based on the same premisses is that of Sufrin (18,19, t4}.

® Another important source of fundamental insights was the work on VDM, particularly
the presentation of the “rigorous approach” in (9], although some of the features of M (for
example the emphasis on implicitness) depart significantly from VDM.

® The work on abstract data types was clearly a milestone in specification. To a certain
extent, M is 2n attempt to make abstract data type techniques available to practitioners.

¢ M has many points in common with formal specification methods such as Special {16],
FDM (10}, Affirm(15]. The main difference is that the emphasis in M has been more on
expressive features (facilitating descriptions) than on proofs. Also, we have aimed at a
compromise between formality and usability, by permitting the uscrs of the method to gain
some benefits lrom a specification even if it has not been completed down to the last quantifier.
Finally, M differs from Special and FDM in that no predefined notion of state is used; the
mathematical basis is elementary set theory. A set representing possible states may be
introduced explicitly if needed (as in the example below), but it is then treated just as any other
set.

¢ Among formal methods, Clear [4,6] stands apart with Z because of its emphasis on
modular, composable specifications. Also along with Z, Clear is also particularly interesting in
that it has been formally defined (in at least two different ways (5, 17]), & task that has yet Lo be
undertaken for M.

¢ We have also drawn some lessons from less formal but industrially successful methods. In
particular, systems such as ISDOS [20] and SREM [2] emphasize the use of specifications in
project management, as repositories of essential information,-and the role of tools.

® Many ideas come from programming languages. The syntax of the notation associated
with M, called LM, follows the Algol-Pascal-Ada line. More importantly, modular features have
been strongly influenced by programming languages: the description of objects was influenced by
Simula and Smalltalk, the import-export clauses are not far in spirit from what may be found in
Alphard, CLU, Modula or Ada. The idea of describing a system by successive "paragraphs” that
yield successive approximations was conceived as a generalization of the Ada device of writing a
package in two parts: a "specification” and a body.

! After presenting talks on this method, we heard comments such as “this is just VDM", "this is just Al-
phard”, ete. Since more than one other method was involved, however, the validity of these comments is trivial-
Iy disproved by reductio ad absurdum, following from the symmetry and transitivity of the "us just" relation.

2 Influences 7

3 - OVERVIEW OF THE BASIC PARAGRAPHS

A description of a system in M is expressed in the notation, LM, as a set of paragraphs.
There is a recommended order for writing these paragraphs, given by figure L.

An important part of a system specification is the interface parugraph, which gives the connection with

other systems. thus permitting the modular approach to system description advertised above. This

paragraph, which does not appear in figure 1, will be discussed in section 5

[et |

Implementation

Figure 1: The Basic Paragraphs and their order.

The sorts, attributes and translorms paragraphs describe essentially what we have culled
the syntax of a system; the other paragraphs give the semantics. It is important to note that M
has been designed so that system descriptions may be incomplete; in particular, the TM tools
should be able to cope with specifications where some paragraphs are missing.

The sorts paragraphs lists the basic classes of objects that are used in the system. For
each sort, a list of some specific elements may be given. -

The operations of the systems are classified as "attributes” or "transforms”. In both cases,
the underlying mathematical nolivn is that of (possibly partial} function. A sitple abiiibuie on
a sort X is a function

gl — ¥

where Y is another sort. A function of this sort represents the possibility of accessing the value
of a particular attribute defined on objects of sort X (like the z codrdinate of “points” in
section 1.1).

An attribute on sort X may also be non-simple, that is to say, involve parameters of sorts
other than X. A non-simple attribute thus corresponds to a function of the form

8 M: A SYSTEM DESCRIPTION METHOD [« g1

JEX UL X Wapk 15 % Uy == Y

for some sorts Uy, Uy, ..., Un.

Transforms, on the other hand, represent operations that may change objects of a given
sort. Mathematically, a simple transform on sort X is a function of the form

/X - X

but usually transforms will invelve parameters other than the objects to be changed, i.e. they
will correspond to mathematical functions of the form

FiXXVIXVy-r XV, — X

The invariants and eflects paragraphs give the basic semantic properties associated with
attributes and transforms, respectively:

¢ Invariants describe properties that the attributes of all objects must always satisfy,

regardless of what operations (transforms) are applied to the objects.

o Effects describe the semantics of transforms by expressing for each sort X, each

transform ¢ on X and each attribute ¢ on X, how (if at all) the value of ¢ may change for

an object of sort X when ¢ is applied to it.

Both attributes and transforms may be partial functions, i.e. undefined for some values,
corresponding to abnormal cases. The invariants and effects apply to the case when these
functions are defined, that is to say, to the specification of the normal case.

The constraints paragraph gives the exact conditions under which each partial function is
defined.

For some of these partial functions, the extension paragraph defines an alternate function,
to be invoked instead of the corresponding primary function when an argument falls outside of
the normal domain.

The design paragraph expresses the basic decisions made by the designer regarding the
architecture of the implementation, by distributing the various elements of the system among
modules.

The implementation paragraph achieves the transition from design to actual
implementation.

3w Overview of the basic paragraphs 9

4 - AN EXAMPLE

To show how the principles outlined in the previous section are applied in practice, we
have chosen to illustrate the method and the notation through a particular example. Although
small, this example cannot be characterized as a toy problem. It will allow us to present the
essential aspects of M, with one very important exception, modular features, whose presentation-
is deferred to the next section.

4.1 - A Distributed File System

We consider the following problem. A computer network (figure 2) includes machines of
diverse kinds, e.g. IBM computers running MVS, others running VM, Vaxes running Unix or
VMS, ete. Users of these machines need to share files. This is the case, for example, when
separate teams are codperating on a particular project.

var_uniz

files

thm_mys

file;
Figure 2: Files on a network

Thus a program running on a machine may need 2 file that resides on another. Since,
however, this is & long-distance network, not a local-area one, it is impractical to let a program
directly access a remote file; so what is needed is a set of tools for copying files back and forth
over the net.

This immediately raises several problems. Onre is that various computer systems support
various file types: for example, IBM MVS has a notion of "partitioned file” (a group of related
sequential files, often a subroutine library), not supported by other systems; Unix and Multics
have "directories”, unknown on MVS or VM. This clearly puts restrictions on possible file
transfers.

A more difficult problem is that of integrity: if we allow taking multiple copies of a file
and then copying back updated versions, then the question arises of maintaining some control
over possibly conflicting updates. Now the integrily of a file or set of files {database) cannot be
defined in ebstracto®: it depends on what you want to do with these files.

Thus we decide on the following policy: the tools we will design do not purport to solve
the integrity problem, but they will make it possible for the designers of any particular
application to implement any reasonable policy they define for application-dependent integrity
control.

2 It may, hawever. be definable in Abstracto.

10 M: A SYSTEM DESCRIPTION METHOD o 4.1

In accordance with this idea, we decide on the following basic operations:

e Copy: this operation will copy a file from a given source computer to a given target
computer.

o Take: this operation is as Copy, but preémptive: once a Take operation has been
successfully performed on a file f, no other program may perform a Take on that file until
the file has been released by its temporary owner through one of the following two
operations.

¢ Return: this operation copies back a previously "taken" file to its original source, taking
into account any changes that may have been performed on the copy. The file becomes
available again for further Take operations.

¢ Free: this operation makes a previously “taken" file available again for further Take
operations. Changes performed on the copy are not reflected on the source.

o Taken: this operation is a query on the state of a file, which finds out whether or not the
file is available for preémptive copy (in a practical package, Take and Taken may have to
be presented as a single primitive to ensure mutual exclusion).

One more design decision is needed here: how should a program reference the files it needs
to access through the above primitives? In principle, a file residing on host emptr, where its
name (relative to the local file system of machine emptr) is local_name, may unambiguously be
identified, from any node of the network, by the pair <emptr, local_name>.

This solution is not satisfactory, however, since it requires programmers to know precisely
where each file resides on the network. Also, file naming conventions differ significantly on
computer systems, and it is unpleasant to require, say, MVS programmers to know about Unix
conventions or conversely. Finally, it seems wise to restrict applicability of the network file
transfer operations (Copy and Take) to designated files, rather than zallowing any program
running on any machine to access any file on any other machine.

We thus introduce the notion of a global name. A file will only be available as source for
the network transfer operations if it has been declared "global". When making a file global, one
must give it a global name, which will be used to refer to the file if it is to be the source of a
transfer operation. A new operation is thus needed:

o Make_global: this operation associates a global name to a file residing on a certain
machine and makes this file available, through its global name, as source for the transfer
operations (Copy and Take).

Clearly, global names must characterize global files uniquely over the whole network
(whereas local names may be repeated: two different computers of the network may have 2 file
called Jill). The Make_global operation may be implemented by creating an entry in a central
catalog of global files: this catalog maintains the correspondence between global names and
physical <emptr, locel_name> addresses. But other implementations may be conceived: for
example, one might choose to have a specialized file server as one of the machines on the net,
containing copies of all the global files. One of the roles of a useful specification is to express
those properties of the system that are independent of the particular implementation chosen.

This concludes the first draft of our system specification. Of course, many details remain
to be spelled oul. Whereas natural language is quite adequate for discussing broad avenues of
initial design, it does not suffice for the following steps, when things must be made precise,
unambiguous and complete. Here formal specifications step in.

{2w@ An ezample i1

4.2 - Sorts

We begin our specification by its first paragraph, the list of sorts, given below. Thi:: is the
sorts paragraph for our example system, which we call DFS, for "Distributed File System”.

systern DFS sorts
COMPUTER ;
FILE ;
COMPUTER_TYPE has {bm_mus, tbm_um, vez_uniz, epple_2_ms_dos, vaz_ums, multics ;
FILE_TYPE has sequential, direct_access, partitioned, directory ;
FILE_MODE has global, nonglobal ;
LOCAL_NAME ;
GLOBAL_NAME ;
FILE.CONTENT ;
KEYWORD ;
USER ;
STATE ;

end system sorts ;

The sorts are the sets of values that may be taken by the various entities of the system
being described. As a notational convention, we write sorts in uppercase and everything else in
lower-case. Because of the emphasis on implicitness, we don't say much about each sort in the
sorts paragraph: we give its name, and sometimes the name of some of its elements, that's all.
There is no way at this stage to express that, say, a POINT has four components (as introduced
in séction 1.1}, or (here) that a FILE is identified by a file descriptor with some concrete or even
abstract structure.

COMPUTER sand FILE are obviously needed as sorts. For the next two sorts,
COMPUTER_TYPE and FILE_TYPE, we list some distinguished elements through the has
clause. Note that there is no claim that these are the only elements (as with a Pascal type
definition by enumeration): the sort is still open. The has clause implies, however, that the
elements listed are presumed to be different.

A FILE_MODE makes it possible to determine whether a file has been made global.

We call LOCAL_NAME the sort containing all the names that may be used to identify
files on the various computer systems involved. No specific property of this sort will be necessary
at this level of the speciﬁcation‘ GLOBAL_NAME, too, will not be described any further; this
sort is used to describe possible global names for files that have been made global.

It is all nice to have names and modes associated with files, but of course if we want to
describe the result of copy operations we must have the notion of FILE_CONTENT. Again, we
need not specify this sort any further; it is enough that we can refer to it.

To "take” a file (preémptive copy), one will need a keyword, used again to release it later.
Hence the sort KEYWORD.

The sort USER is also needed for the Take operation: we shall need to record who has
"taken" a given file. By "user”, we actually mean a program rather than a person.

Finally, we need a sort STATE to describe the state of the complete distributed file
system at any given time. The need for such a sort is a common, although not universal,
occurrence in M specifications.

12] M: A SYSTEM DESCRIPTION METHOD w42

Here then is the first paragraph of our specification. The result achieved so far is modest
but non zero: we have listed the categories of objects that play a role in our system. If we are
lazy, or broke, or both, we might stop here and still benefit from having taken the trouble to
write anything at all. This remark applies to each of the steps below, although we won’t repeat
it: an M specification may be partial, and the associated TM tools should be prepared to deal
with it even if some paragraphs are missing. Of course, the full benefit of the method will only
be obtained if the specification is complete, but one may already get partial results before.

4.3 - Attributes’

We happen to be very courageous and enthusiastically undertake the rest of the
specification. The next step is the attributes paragraph, given below (portions of lines beginning
with two consecutive hyphens are LM comments).

A decision which significantly aflects the appearance of M specifications was to
systematically attach every attribute (and transform, see below) to one and only one sort, This
raises no difficulty for what we have called "simple” attributes above, i.e. functions of the form

[X — Y
Such a function will be included as part of the attributes "on X™:
on X attributes

end X attributes

In our example, the attributes on sorts FILE, COMPUTER and USER fall into this category.
In the general case, however, we have already mentioned that an attribute is mathematically a
function of the form

FiX XU XUpX - XUp = Y
We will also describe such a function as being an attribute "on X". To take the extra
parameters into account, the definition of the attribute will be written as:

on X attributes

end X attributes
Here, examples of such attributes are the atiributes on sorts COMPUTER_TYPE (attribute
supporting) and STATE.

Mathematically, the device thal we apply 1o atiributes is called "currying”, it cousists in replacing {for
n>0}af ion of n+1 ar J in our le, by 8 function [’ of one argument {with values in

X), yielding results that are functions of 5 arguments (in U}, U ..., Up)
J:X = (U xUyx '+ xUp = Y)

There is a conscious dissymmetry in the convention chosen here, since we might just as
well choose one of the U, as the distinguished sort to which f is attached. The reason for this
dissymmetry is the concern for modular, manageable descriptions. If we treat X and all U, on
equal footing, then we risk ending up with large, messy attributes paragraphs. Attaching each
attribute to a distinguished sort makes it possible to divide the paragraph into & number of

13 © An ezample

13

syatem DFS attributes

on FILE attributes
locname : LOCAL_NAME total ;
host : COMPUTER total ;
ftype : FILE_TYPE total ;

end FILE attributes ;

on COMPUTER attributes
make : COMPUTER_TYPE total ;
end COMPUTER attributes ;

on USER attributes
where_running : COMPUTER total ;
end USER attributes ;

on COMPUTER_TYPE attributes
supporting (FILE_TYPE) : BOOL total ;

on STATE attributes

Jeontent (FILE) : FILE_CONTENT votal ;

file_exists (LOCAL_NAME, COMPUTER)

<~ The local name of a file

- - The machine where a file resides

- - Sequential file, directory etc.

- - What brand is this computer: ibm_mus; vaz_uniz...

?

- - In thin file type supported on this lype of computer?

« = Glurrent contents of a file

: BOOL total ;

- = {5 there a file of that name on that computer?

file_of_neme (LOCAL_NAME, COMPUTER) ; FILE partial ;

-« If a0, what i3 iL? .

used_globname (GLOBAL_NAME) : BOOL total ;

glabfile (CLOBAL_NAME) : FILE partial ;

mede (FILE) : FILE_MODE total ;

- - Hua this global name been assigned to a file?
- - If s, what file?

- - Has thes file been made global?

plobname (FILE) . GLOBAL_NAME partial ; .

taken (GLOBAL_NAME) : BOOL partial ;
owner (GLOBAL_NAME) : USER partial |

= - [l 4n, under what name?
- --Hua the file with this global name beett reaeryed?

< - If a0, by whom?

key (GLOBAL_NAME) : KEYWORD partial ;

end STATE attributes ;

end system attributes ;

- - and under what keyword?

small sections, each corresponding to a sort.

This device is very close to a successlul modularization technique {or programming languages: the object-
oriented approach to program design embodied by the Simula 67 and Smalitalk languages. The designers
of Simula (followed by those of Smalltalk) introduced a conscious confusion between the notions of
module and type: a module is the implementation of a data abstraction. This is in contrast with the

somewhat [ooser notion of module found in Ada or Modula, where 2 module may be almost any grouping

14 M: A SYSTEM DESCRIPTION METHOD o 4.3

of elements (types, variables. procedures). The Simula«Smalltalk approach has some drawbacks. but it

implements a very strong consistent view of modularity that in practice vields excellent system designs.

These questions are further discussed in [12].

The notation used in LM to denote attributes of objects reflects the chosen dissymmetry:
the argument corresponding to the distinguished sort will be written using dot notation (as for
components of Pascal record types, properties of Simula reference variables etc.); the other
arguments, if any, will be written in parentheses. Thus if f is an object of sort FILE, then its
local name (an attribute defined in the "on FILE" section) will be written

3« locname

The host on which it resides will be written s » host, etc. Referring now to the "on STATE"
section, the value of the attribute file_ezists for a state s, a local name ! and a computer ¢ will
be written

3 file_ezists (I, ¢)
etc.

The last general remark necessary to fully understand the attributes paragraph is that
attributes may be partial functions: some attributes may not be defined in all cases. Being
partial is an important property, so every atiribute definition must be followed by one of the
two keywords total or partial. For any partial attribute, there will be an entry in the
constraints paragraph (see section 4.7) describing the exact conditions under which the attribute
is defined.

A few comments on the attributes of the example may be useful

Note the difference between the attributes on FILE (properties of files which do not
depend on the system state, like the host on which a particular file resides, its local name, its
type, which are considered to be innate properties of the file) and the properties of files that are
defined under STATE because they are state-dependent, like the content of a file.

On sort USER, attribute where_running gives the host on which a user (i.e. program) is
being executed.

If et is a computer type and ft is a file type, then

¢t o supporting (ft)
is & boolean value (we assume the sort BOOL to be one of a small number of predefined sorts),
true if and only if computer type ct supports file type fi. Thus we will expect fbm_mus »
supporting (directory) to be [alse, vaz_uniz o supporting (sequential} to be true, etc. (these
properties will be expressed in the invariants paragraph).

On sort STATE, attribute fcontent gives the current contents of any file. Files will
usually be accessed through their names, so we need to describe the correspondence belween a
fite name and a file; this is achieved through attribute file_ezists, which corresponds to the
query "is there a file with a given name on a given computer?”, [n a state s, given a local file
name { and a computer ¢, the file of name ! on computer ¢ is

s« file_of_name (I, ¢)

Note that attribute file_of_name is partial because there might be no file of name ! on ¢ The
precise condition under which s « file_of_name (I, ¢) is defined is that s « file_ezisis {I, ¢} be
true; this condition will be expressed in the constraints paragraph of the specification.

If ¢ is a global name, then s ¢ used_global_name yields true if and only if name g has been
assigned to a global file in state s. If this is the case, then this file may be obtained as s «
globfile (g).

The "mode" of a fle is global if and only if the file has been made global. If so, the file has
a global name, obtained as s « globname {g).

43 @ An ezample 16

Attribute faken applies to a global name and determines whether the file with that global
name has been "taken” by a user in the current state; this attribute is partial because it only
applies to global names which have been assigned to & file. If s o taken (g) is true for a global
name g, then the user that has "taken" the corresponding file is given by s « owner (g) and and
the key that was used to reserve it is s « key (g).

Note that because of the correspondence between global files and global names (attribute
globname and globfile), the arguments of attributes taken, owner and file could have been
chosen as FILEs rather than GLOBAL_NAMEs.

4.4 - Invariants

The invariants express properties of the attributes which must always hold. The
invariants paragraph for our example is given below.

system DFS invariants
declare | : LOCAL_NAME, g : GLOBAL_NAME, ¢ : COMPUTER, s : STATE, { : FILE ;
iy : fo host s make o supporting (f « ftype) ;
i 8 file_of_name (I, ¢) o locname = I ;
iy 0 3o globfile (34 globname (f)) = f;
50 5 globname (s« globfile (3)) =g ;
s ¢ 3 used_globname (s globname (f)) ;
5 ¢ 8 mode (50 globfile (g)) = global ;

ji ¢ ibm_tnva « supporting (Jt) = (ft € {sequential, direct_access, purtitioned}) ;
Ju o vaz_unic s supparting (t} = (Jt € (sequential, direct_necess, directory}) ;
J30 mullics « supporting (jt) = (fi € {sequential, direct_access, directory});

Jy i vaz_ums . supporting (ft) = (ft € {sequential, direal_aecess, directory})
is ¢ apple_2.ms_dos e supporting (ft) = (fl € {sequentinl, dirept access}) ;

end system invariants

Each invariant has a label (1|, i, j|, Ja, etc. in our example), which may be used to refer
to it. Names are used in the invariants to denole objecls of various sorts; they are introduced
by a declare clause. By convention, any free variable is considered to be universally quantified,
so that invariant), for example, should be understood as if it was preceded by ¥ f € FILE.

The meaning of the invariants should not be hard to understand. Invariant ¢, gives a
consistency condition on file types: the brand of the computer on which file f resides {that is, f «
host « make) must support the file type of f. Invariant i, is a consistency property on attributes
file_of_name and loename: the name of the file of name ! (on a computer ¢, in a state s) is [
Invariants i3 and 4, express that attributes globfile and globname are inverse of each other.
Invariant 15 expresses the relationship between used_global.name and globname, g between
mode and globfile. :

Invariants j; to 75 simply give the properties of attribute supporting by enumeration.

For the more interesting invariants (1, to is), the reader will have noticed that some of the
functions involved are partial, so the meaning of equality must be made more precise. The
appropriate interpretation is "weak equality”: a=6 means "il both e and b are defined, then
they are equal”. (Recall that the precise specification of the domains of partial functions is
deferred to the constraints paragraph).

16 M: A SYSTEM DESCRIPTION METHOD 44

Invariants play a very important role in expressing the fundamental properties of a
system, those which must be preserved by any operation applied to its objects. The search for
relevant invariants rewards the system designer with insights into the really important features.
It also yields two important side benefits®:

¢ [nvariants provide guidance for testing: the first thing to check when monitoring the
behavior of the system, or a prototype of the system, on a set of test inputs, is whether
any invariant is violated. This form of testing is effective because it goes right to the
essential properties of the system, as opposed to "blind” testing.

o Invariants are useful for evolutive maintenance: to check whether a change to the
software preserves the "essential semantics" of the system, one should go back to the
original invariants and see if they still hold.

4.5 - Transforma
So far we have described only the static properties of our system. We come now to its
dynamics, represented by transforms.

The transforms paragraph has several features in common with the attributes paragraph.
In the same fashion as attributes, transforms will be curried, i.e. a transform function of the
form

transf : X X ViX Ve - XV, =& X

will appear as a transform "on X"
on X transforms

...................... reeeeenn

transf (Vy, Vo, oty Vi) e i

end X transforms

As attributes, transforms are declared as either partial or total. Application of a
transform is written using the same convention as for attributes: if z is an element of sort X,
the object (of the same sort) resulting from applying transform trensf to z, with arguments
vy, Vg, ..., ¥y 19 denoted

z o transf (vy, vy, .\, Un)

or just z « transf in the case of a simple transform with no arguments.

An important feature of transforms is that they are entirely specified by their eflects on
attributes. Let transf be a transform on sort X. When defining ¢, the M specifier must examine
all attributes defined on X in the attributes paragraph, and determine lor each such attribute
attr whether application of transf may change the value of atir. In other words, one must
specify whether

z o transf(vy, vy, oy va) e atlr (4, Uy, .,)
may or may not be different from

z o attr (4, Uy, ..., tp)
for arbitrary vy, vy, ..., Un, ty, tg, ..., Un. Here we are assuming that attribute attr has m
arguments; the u; argument list would be omitted for a simple attribute.

Every transform definition will thus be followed by the list of attributes that it may
change in this fashion (preceded by the keyword change) as illustrated by the example below.

¥ [am indebted to J-R. Abrial for these remarks.

4.5 9O An ezample 17

system DFS transforms

on STATE transforms

make_globel (FILE, GLOBAL_NAME) partial
change mode, globfile, globname, used_globname ;
- - Make this file global with this global name

copy (GLOBAL_NAME, FILE) partial
change fcontent ;
- - Copy the contents of the file with this global name into this ather file

take (RLOBAL_NAME, FILE, USER, KEYWORD) partial
change fcontent, taken, owner, key ;
- - As "copy", but also preémptive

return (GLOBAL_NAME, USER, KEYWORD) partial
change feontent, taken, owner, key ;
- - Copy back and release

free (GLOBAL_NAME, USER, KEYWORD) partial
change taken, owner, key ;
- - Release without copying back

end STATE transforms ;

end system transforms ;

This process of doing for each sort the complete "product” of transforms by attributes is
an important part of M specilications. Note that for the reader of 2 specification the "change
..." list mext to each transform definition is useful not only because it highlights attributes
affected by the transform but also, just as importantly, because it makes it possible to infer
what attributes may not possibly be impacted.

The precise description of how every impacted atiribute is changed by a given transform is
deferred to the next paragraph of the specification, the eflects paragraph.

In our example, the five transforms (all on sort STATE at this stage of the specification)
correspond to the operations introduced in the informal draft. For each of them, the reader
should check the list of possibly changed attributes.

4.6 - Effects

Next we return to the semantics of the system by giving the effects of the various
transforms. The structure of the eflects paragraph leaves no place for hesitation: there must be
one and exactly one entry for every item of every "change" list in the transform paragraph.

Precisely, if we have a transform entry of the form

on X transforms

transf (V), Vs, ...
change

-
end X transforms

where attr is defined in the attributes paragraph as

i8 M. A SYSTEM DESCRIPTION METHOD @46

on X attributes

end X attributes

then the eflects paragraph must contain an entry of the form
z o transf (v, ve, vy Vo) v Gtlr (84, Yoy oy Un) = Ejrgugs our (V1 V2 vy Uny Uy, G2, ey Up)]

where Eyony aur [-] is an expression, usually involving the value of the attribute before the
transform is applied, i.e. z o altr (u, Uy, ..., un). Here we are assuming a proper declare line
for sll the variables involved; recall that free variables are assumed to be universally quantified
(that is, preceded by V).

The left-hand side of such an entry is entirely determined by the previous paragraphs of
the specification; so the TM supporting tools should be able to construct it automatically. Of
course, the right-hand side (expression E) can only be provided by the specifier.

The eflects paragraph below describes precisely the result of the various operations in our
example problem. To write it, we rely on the {ollowing useful notation. Let & be a function:

h:X =+ Y

Let a € X and v € Y. We denote by

¢ = replace k at a with v
the function g that is identical to & except that its value for element ¢ is v. In other words, for
any z € X:

g (z) =if z = c then v élse h (z) end if

If k is a partial function, the domain of g is domain (k) U {a}.

The replace... form is not strictly part of the LM notation, but may be considered as a
simple abbreviation (macro) for the if...then...else..end if expression, which is in LM. The
former makes it possible to describe effects more clearly.

In a similar fashion, we denote by
¢ = undefine fat a

a function that is the restriction of f to domain (f) - {a}.

An important point should be noted regarding the meaning of the given effects in the case
of partial functions. The transforms whose effects are given in the effects paragraph, and the
attributes on which these effects are given, may be partial. The convention is that the effects
described by the right-hand sides of the equalities in this paragraph are applicable only when
the left-hand sides are defined. When a left-hand side is not defined, whether the corresponding
right-hand side is defined or not does not matter; all bets are off. -

Note, however, that whenever a left-hand side is defined, then the corresponding right-
hand side must also be defined since its evaluation 1s required to obtain the value of the lelt-
hand side. This consistency problem will be studied in section 6.6.

4.6 € An ezample 19

system DFS effects

declare | : LOCAL_NAME, ¢ : GLOBAL_NAME, ¢ : COMPUTER,
s :STATE, f: FILE, k : KEY, u: USER ;

s « make_global {f, g) « mode = replace s « mode at f with global ;
s« make_global (f, g)» globfile = replace s « globfile at g with f;
s « make_global (f, g} + globname = replace s « globname at fwith g ;
3« make_global (f, g) « used_globname = replace s « used_globname at g with true ;
secopy (9, f) « feontent = replace s o feontent at fwith s « globfile (g}« fcontent ;
s« take (g, f, u, k} « feontent = replace s « feontent at f with 5 glubﬁle {g) » feontent ;
5 take (g, f, u, k) « taken = replace s « taken at g with true ;
s take (g, f, u, k) o key = replace 5 « key at g with & ;
g take (g, [, 4, k)« owner = replace s « owner at g with u;
5o return (g, f, u, k) « fcontent = replace s « feontent at s « globfile (g} with [« feontent ;
sereturn (g, f, u, k) o taken = replace s « taken at g with false ;
s return (g, f, u, k) » ouner = undefine s « owner at g;
sereturn (g, f, u, k) « key = undefine s « keyat ¢,
sefree (g, f, u, k) « taken = replace s « taken at g with felse ;
T gefree (g, f, u, k) o owner = undefine 5 « ownerat g;

sefree (g, f, u, k)« key = undefine s « keyat g ;

end system effects ;

4.7 - Constraints

So far we have been treading on rather unsteady ground since our specification contains
partial functions and we have all but ignored undefined values. This method is useful for
concentrating on the basic cases first, but of course at some point we must say exactly when
operations are applicable and where they are not. This is the object of the constraints
paragraphs. '

In this paragraph, we look back at the definitions of attributes and transforms, and we
include an entry for each function that has been introduced as partial (again, the TM tools
should guide us here by automatically providing the list of entries to be filled). Each entry will
thus correspond to a partial function f (attribute or transform), previously defined as being "on
X" for some sort X, possibly with parameters in sorts A,, Ay,, A, ; the entry will be written
in the form

20 M: A SYSTEM DESCRIPTION METHOD 7 4.7

system [IFS constraints

declare | : LOCAL_NAME, g : GLOBAL_NAME, ¢ ; COMPUTER,
s STATE, [: FILE, k : KLY, u : USER :

a in domain file_of_name for |, ¢ iff 2+ filz_ezists (n,¢);
+in domain globfile for g I » « used_glodnarne fal ;

«in domain glabname for [iff £« mode (f) = global :

4 in domain faken for g iff 5+ used_globname (g) ;

2 in domain owner for ¢ iff « o taken (g) ;

#in domain key for ¢ iff s « taken [g) ;
sin domain make_global for f, ¢ iff not 3. used_plabname (g)
=in domain copy for g, [iff
&« globfile {g) « fiype = [+ ftype and not (5 « taken (s + globname)
s in domain take Tor g, [, u, kiff
2 globfile (g)» flype = fo flype and not (s . taken(s o globname (f)))

and not & « tuken (y) ;

#in domain refurn for g, u, &k iff

3« taken g/ and 5+ ouner (3) = v and s« key (9)=k;

sin domain free for g, u, kil - - Same conditions as for return

sutaken (p)and s« ouner ()= uand s key (9)=k;

end DFS constraints ;

zin domain f for a,, ay, ..., a, iff P -
where P is a condition on z, 4, ay, w1 @n, defining the constraints that must be satisfied by
these arguments to ensure that z « f (i, a3,, 3,) is defined.

One of the benefits of a formal specification is that it forces the soltware designer to give
precise answers to some questions that are very important for the behavior of the eventual
system. We have an example here with the constraints on such transforms as copy and take.
Although it was stated in the informal dralt specification {section 4.1) that take is preémplive
but copy is not, another problem was not addressed: is one permitted to perform a copy whose
source is a file that has been reserved by a take operation? Here we cannot escape this question.
The choice described below is to authorize a copy from 2 source that has been "taken”, but a
copy or teke operation may not use a reserved file as its target. Formal notations naturally
lead to asking (and answering) such important questions.

An importart point to note is the convention used when conditions on the domain of a
partial function refer to other partial functions. The convention is that the expression
J{a)=g(b), where f and ¢ may be partial functions, is a shorthand for

(2 € domain (f) and b € domain (g)) and then fla)=g(b)
where and then is the non-commutative and operator (yielding false if its first operand is false,

regardless of whether its second operand is defined or not). Thus the condition for owner below,
for example, should be understood as

47 © An ezample 21

sin domain owner for g iff s« used_globname (g) and then s« taken (g} ;

This device, which significantly simplifies the expression of constraints, cor.responds to a
particular logic for dealing with undefinedness, analyzed more precisely in section 6.5 below.

4.8 - Extensions

Partjal funclions provide a simple mathematical tool for describing c?mputations wh.lch
should not be attempted. We find this approach preferable to the alt,er.natwe way of dealing
with errors by using explicit "undefined” elements with special properties [7). Our approach
follows from one of the main tenets of M, namely that a spec‘iﬁcatlon .mel.hod should allow the
system designer to concentrate on the essential things ﬁ_rst, without being overwhelmed at once
by all the details that the final system will have to take into account. ‘

As the specification is being refined, however, partial fu.nctxons cannaot u§ually remain
partial indefinitely: in implemented systems, one likes all functions to be total, if only out of
politeness towards the users of the system. .

The extension paragraph (not described any further in this versic:fl 0‘f the‘paper) makes_ it
pessible to improve a specification containing partial functions by ‘assocmhng :«nth every partial
function (attribute or transform) an alternate function, kn_owrlx as its d.oppelga,nger, to be used
in lieu of the original function for arguments that fall outside its domain,

22 M: A SYSTEM DESCRIPTION METHOD o438

5 - SYSTEM COMPOSITION AND DECOMPOSITION

As pointed out in section 1.4, it is essential for practical specifications to allow the
decomposition of system descriptions into descriptions of subsystems, and of re-using existing
specifications when describing new systems.

The modular features of M are based on an analysis of the relationships that may exist
between systems. The following relations are of primary importance.

o 1 - B is a particular case of A. In other words, anything that is true of A is also true of

B (but some properties may be true of B that are not necessarily true of A).

® 2 - B contains an instance of A. For example, A could be the system of "trees”, where B

uses one or more trees.

® 3 - Bis a particular case of a, with some ezceptions. This is like case 1, except that some

of the properties of A may not hold for B. This is very important in practice, since so

many systems are "almost" upward-compatible with existing systems. Thus there must be

a way to import elements from a specification while explicitly rejecting some of their

properties.

M provides support for these three kinds of interaction in the interface paragraph. To
support 1, we include in the interface paragraph a section of the form:

from A use
af;..
end A use
In this notation, @, f, etc. denote "syntactic” elements, that is to say, sorts, attributes
and/or transforms. The semantic properties (invariants, eflects, constraints) of these elements
should not be included: they follow automatically.

If, on the other hand, some of these properties are not wanted (that is to say, in case 3
above), then they can be excluded explicitly. The use section will then contain an except
clause, as follows:

from A use
a; B ;..
except 7, §,...
end A use

where 7, §,... refer to invariants (denoted by their tags, e.g. 13 in our example), effects (denoted
as effect transf on attr), or constraints {denoted as constraint on f).

As a notational convenience, it is permitted to have a use section of the form
from A use

all ;

except 7, §,...
end A use

making all elements of A available to the current system description except those which are
explicitly excluded. [u this case, the excluded elements {gamma, §,...) may include sorts as well
as semantic properties.

5% Syster.n composition and decomposition) 23

Interfaces of type 2 above are expressed within the same notation using a very simple
device: 2 use section may include “renamed” clauses, as follows:

from A use
a;

B renamed {1 ;

end A use

In this fashion, several instances of the specification for the same system A may be used in
the specification for B. For example, assume that we have the specification of a system LISTS
describing the properties of lists. This specification includes sorts LIST and ELEMENT, on the
former sorts, it has attributes such as empty and transforms such as insert_front, insert_back,
append etc. Now assume we have a specification which needs lists of integers and lists of reals.
Then this specification will have sorts INTEGER, REAL, INTEGER_LIST, and REAL_LIST;
its ifiterface paragraph will need two use clauses, as (ollows:

system S interface

from LISTS use
ELEMENT renamed INTEGER ;
LIST renamed INTEGER_LIST ;
empty renamed empty_integer_list ;
tngert_front renamed integer_tnsert_front ;
insert_back renamed integer_inseri_back ;
append renamed integer_append ;
- - ete.

end LISTS use ;

from LISTS use
ELEMENT renamed REAL ;
LIST renamed REAL_LIST ;
empty renamed empty_real_list ;
insert_front renamed real_insert_front ;
ingert_back renamed real_insert_back ;
append renamed real_append ;
E SEte.

end LISTS use

end system interface

The fundamental rule here is that no overloading of names whatsoever is permitted in
the LM notation: any conflict must be resolved by renaming as above. As a consequence of this
rule, if several properties are given for the same object and they are not logically contradictory,
they are considered as cumulative rather than conflicting.

24 M: A SYSTEM DESCRIPTION METHOD @ 3

8 - PROVING THE CONSISTENCY OF A SPECIFICATION

6.1 - Overview

The reader may have noted that the process of writing an M specification, as seen so far,
is rather open; one may write many things, and not much control is exercised, even though the
method uses potentially unsafe features like partial lunctions.

What justifies this somewhat easy-going approach is that at early stages the most difficult
problem is to understand what the system is all about; so the emphasis in the M leatures seen so
far has been on expressive power more than security. One should not prematurely confuse
specification with verification.

This cannot go on forever, however: one of the primary aims of specifications, especially
formal ones, is to significantly increase the trust that users can put in software systems. So at
some point one has to get serious about the consistency of the specification.

Thus we now study the properties that must be proved to make sure that an M
specification is consistent. Such properties are of three kinds:

e invariant-transform consistency (transforms preserve invariants);
® constraint consistency (constraints are meaningful);
« constraint-effect consistency (effects are meaningful under the given constraints).

The rules given below imply relatively tedious proofs. The need for verifications of the
last two kinds should be considered in light of the ease of specification gained by the use of
partial functions. As opposed to other specification methods (e.g. the traditional way of dealing
with abstract data types, see[7,8]), the M specifier does not have to clutter his system
description with special cases for "error elements" associated with each type. He can thus
concentrate on the meaningful properties of Lhe specification. The price to pay for this
simplicity of expression is the need to check the consistency of the eventual specification (and to
correct possible oversights resulting from inadvertently using a function outside its domain). It
is expected that this latter process should be strongly supported by tools.

8.2 - Consistency of modular specifications

When defining consistency, we shall be talking in terms of a single, independent
specification; for specifications with interface paragraphs, the proofs described below need to be
performed on the composite specification resulting from combining the elements of the given
specification with all those it uses from other specifications.

Assuming the specification of S refers to T, we thus request as consistency proof for § a2 proof of the

ification bining the specification of § with all the elements it uses from 7. [t would

clearly be much preferable to separately prove the consistency of T and the conditional consistency of S.
Further investigation is needed on Uhis problem, which is made non-trivial by the versatility of the

modular facilities of M.

6.3 - Notations

Consider a sort X. A function f on X (attribute or transform) may be modeled
mathematically as a possibly partial function of the form

X = (Y = 2

where Y is a one-element set if / has no parameters, and Z is the same as X in the case of a

6.3 © Proving the consistency of & specification 25

transform.

We shall denote by C; the function defining the constraint on f; that is to say, Cy is of
the form

Cr:X — (Y — BOOL)
where BOOL is the set {true, false}. Function [is applicable to z and y if and only if
Ze C/ [y]

has value true (note that we apply to C; the same dissymmetric dot notation used for
attributes and transforms).

If f is a total function, then Cy is identically true. Otherwise, / appears in the constraints
paragraph with a clause of the form

zin domain ffor yiff Iy [z, y]

Ty [z, y] must be expressed in terms of some of the attributes of z; in other words, [y {z, y| is
of the form

Ipzea(y) zealy) o 2o, ()
where oy, ay, - a, are attributes on sort X. Let Atirib (Cy) be the set of attributes
{og, @, * a,.l}, i.e. the set of all attributes on X that take part in the definition of the

constraint on f. Attrid (Cy}is empty if f is total.

Similarly, if ¢ is an attribute on sort X and ¢ a transform on X that may change a, there
will be a line in the effects paragraph of the form

zet(y)ea(Z)=ze B, y, 2]
where E;.,,, is the function defining the effect of t on a. We denote by Attrib (E, ,) the set of
attributes that appear in the expression for z « £y , [y, 2].

Finally, for an invariant of the form z « I (z), we write Attrid (I} for the set of attributes
that appearin I.

8.4 - Invariance properties

The first kind of properties to be checked is that the invariants are preserved by the
transforms.

Let ¢t be a transform on a sort X. The set of attributes on X that may be changed by ¢ is
given in the transforms paragraph. For each such attribute a, the effect £, , of ¢ on a 15 given
in the effects paragraph; note that this clause is only valid when the application of the
transform and of the attribute is defined.

Denote by ALLINV the conjunction of all the invariants involving attributes on sort X.
Let I be one of these invariants, involving ¢ (and possibly other attributes on X). J appears in
the invariants paragraph under the form

ze I (z)

with implicit universal quantification on z and 2.

To say that transform ¢t is consistent with the invariants means that for any such
invariant /, whenever an element z satisfies ALLINV {thus, in particular, I) and ¢ is applied to
z, the resulting element z o ¢ (y) satisfies [.

This property is only required to hold when the transform is applicable, i.e. when the
constraint O, holds on z. Hence the first law of consistency:

28 M: A SYSTEM DESCRIPTION METHOD o 5.4

Invariant-Transform Consistency Rule

For any sort X, any invariant [involving elements of X and any transform ¢ on X,
the following must hold:

Yzgyza{zeClyl A (V2'izel(2)) = z.5,(y,2)

where z ¢ [, , (y,2) is the expression obtained by substituling, for every attribute €
Attrib (1), 2 By o ly,2) for zeafz)in 2 I(z).

As an example, let us consider invariant {3 of the above example specification and prove
that it is preserved by transform make_global. The invariant is

137 seglobfile (se globname (f)) = f;
The property to be proved is:
VY s € STATE, [’ € FILE, g € GLOBAL_NAME,
(Crnake_giosat[f 5 8) A (Vf € FILE, ALLINV)) = 1,

where ¢35 is ¢y with s « make_global ([, g}, as obtained lrom the effects paragraph, substituted
for 5. In other words, ¢; is

s’ globfile (s« globname (f)) = |
where
s'= 3+« make_global ([, g)
Let lhs be the left-hand side of 73. We have
ths = 3" globfile (g°)
with ¢’ = se make_global (f’, g}« globname (f)). The eflect E oo giobat globmame Bives that
g'=if = [then gelse s¢ globname (f) end if
Thus, factoring out the conditional expression, we get:
ths = if f= f"then 3’s globfile (g) elae 3’s globfile (s« globname (f) end if
The value obtained in the then clause is
s« make_global (f*, g}« globfile (3g)
that is to say f’, according to the effect Enare_gtosal, glosfie -
The value obtained in the else clause is
s« make_global (f*, g)e globfile (s« globname (f))

that is to say, applying Enake_globa, giotsile 383in:
if g =3¢ globname (f) then [’ else s« globfile (s globname (f)) end if

where the second case is just f because of the presence of invariant i3 in the hypothesis. Thus
we get the following expression for the left-hand side ths of ¢ (which we must prove is equal to

I

6.4 © Proving the consistency of a specificatior. 27

if f= ['then [’
else if ¢ = s« globname (f) then f’
else /
end if
The value of this expression is / in the first and third cases. But the condition for the
second case, namely ¢ = s« globname (f), is contradictory with the constraint on s« make_global
(7', 9), as defined in the constraints paragraph:
not s« used_globname (g}
when one takes into account the invariant {5

se used_globname (s« globname (f))

Thus the value of ths is / in all legal cases, which concludes the proof that transform
make_globel preserves invariant 4y

Note that as evidenced by this example, it is necessary in general to include the relevant
constraints and all the invariants in the hypotheses for invariant preservation proofs.

A proof such as the above one (for just one transform and one invariant!) is not difficult
but tedious; supporting tools are obviously required.

8.5 - Constraint consistency

The constraint consistency rule cnsures that constraints are meaningful as given in the
specification

The problem here is that the constraint on a transform or atiribute may be defined in
reference to one or more attributes, some of which may be partial, This is quite clear in the
example discussed above: the constrainls on attributes owner and key as well as those on
transforms copy and tfake refer to taken, itsell a partial attribute. Thus the problem arises of
whether the constraints define anything at all.

This problem is solved by imposing a strict order on constraints.

Constraint Consistency Rule

Consider the relation) defined as follows:
if g 1f and only if the constraint on [refers
to ¢ (where f is an attribute or a transform
and ¢ an attribute).

Then the relation @ must be acyclic.

This rule (which is indeed satisfied by our example of section 4), must be understood
together with the convention defined in section 4.7 in the predicate defining a constraint, any
subpredicate involving a partial function is considered false outside the domain of that
function.

This corresponds to a special logic for dealing with undefinedness, different [rom the ones
examined in [3], with the following truth tables.

4 [t may be worthwhile to mention that we had initially overlooked the need for nvariant 3. It is only when
trying to prove the invariance of f3 that we realized the invariant now called t5 was required to carry out this
proof, as shawn here.

28 M: A SYSTEM DESCRIPTION METHOD = X

The symbol_L denotes the result of applying a function outside of its domain.

The first two tables (for equality and inequality) apply to a simple flat domain with
elements 0, 1, 2, L. and can be generalized to any flat domain.

The next three tables (for and, or and not) are to be used for constraints involving
attributes that return boolean results. Suck a boolean-valued attribute, usually total, is often
used in connection with a partial attribute, to serve as explicit characteristic function on the
domain of the latter: in our example, file_ezists plays this role for file_of_name, used_globname
for globfile and taken, taken for owner and key (but globname has a non-boolean attribute,
mode, for this purpose).

=lo t 2 1
o1t f f f
it
Lt
Lty 71 1
210 2 2 1
o7 ¢t t 7
1t [t
2|t ¢ 1 7
Liy s 71 ¢
&l
e
Ly

~—~
l_

-]
- e
.-
e

I._

P—\””<
[T N
e e

J

¢
/
.
Note that {a = b) = (- a v b). But De Morgan's laws are not satisfied when undefined
elements are taken into account: for example, = L v — ¢t = f, but = (_L At)=t. Evena

simple law of boolean algebra such as = = a = a does not hold for | . Also, the basic functions
are not strictly monotonic.

/
/
t
/

1
/
t
/

6.5 @ Proving the consistency of a specification 29

The motivation for this seemingly strange logic should be clear. Logical expressions
appearing in constraints define the conditions under which a given function, say f, may be
applied. Since all the other properties of f (invariants and effects) are meaningless outside of
the domain of f, it is essential to know for sure that f is defined when we need it. Thus if the
constraint on f involvés another partial function, a conservative attitude ("when in doubt, say
nof') is taken: any condition that is not defined is considered to be false.

6.8 - Constraint-Effect Consistency
The last type of property to check relates to the eflects. The effect of a transform ¢ on an
attribute ¢ is given under the form

zet(yealt)=ze B,y 4

where ¢ and @ may be partial functions, and the right-hand side is an expression that may also
involve partial functions. The interpretation given in section 4.6 is that the effect is only
applicable when the left-hand side is delined; but then one should make sure that the right-hand
side is defined. This is the constraint-eflect consistency problem.

Informally, the constraint-eflect consistency rule expresses that whenever the constraints of
the specification imply that the lefl-hand side z ¢ t (y)« a (2} is defined, then they must also
imply that the right-hand side z« B, , (y, 2] is defined.

In other words, if ze Ly , [y, 4 is the condition for the left-hand side to be defined, and if z
« Ry s |y, 4 is the condition for the right-hand side to be defined, the constraint consistency rule

is that

Vg, 42 zelayz] = 2Ry

To refine this rule, we must examine more closely the conditions under which each side of
the "effect” specification is defined.

The right-hand side, z + E; , [y, 7, is usually given by case analysis (as in the example
above; recall that the replace... form is an abbreviation for a conditional expression}):

if z« Cond, (y, z) then z « Val, (y, z)
else if zo Cond, (y, z) then z « Val, (y, 2)

else if z+ Cond,_ (y, z) then z « Val,_, (y, 2}
else z « Val, [y, 2)
end if
The condition for such a conditional expression to be defined is:
zeRi. [y 4=
if z« Cond, (y, z) then z « Defined, (y, 2]
else if z+ Cond; (y, 'z) then z « Defined, (y, z)

else if z« Cond, .| (y, z) then z « Defined,_ (y, 2}

else z « Defined, (y, z)

end if '
where z « Defined, (y, 2) is the condition for z « Val (¥, z) to be defined, obtained as the
conjunction of all the constraints z « G, [y, 2] for every attribute a € Atirsb (Val,} occurring in

the definition of the i-th alternative. This right-hand side is usually less formidable to determine
in practice that the above general form would suggest (an example is given below].

30 e =68 6.6 ~ Proving the consistency of o specification 31

We now examine the left-hand side of the "effects” specification for ¢ and a. This left-

hand side is a function composition {of ¢ and a). A basic theorem on partial functions is that, if 5 o Liake owner 19, 1 0, Ky 9] =
/ and g are two functions and k their composition (in this order), then 5o Cuage 19,/ u, k] and
domain (k) = {a € domain (/) | /() € domain (g)} sel’ ¢, Fr e kv g]
take, pwner 741 TH

Thus, for the left-hand side to be defined, two conditions must be met: . .y X X
The first operand of the and is the condition under which take is applicable, namely.

o The constraint on ¢, namely z« C |y} ; B 13, } il
8o Cake 10,7, 8, K] =

e The constraint on @, namely C,, but applied to the result z’= z « ¢ (y) of applying the

transform. According to the notation introduced in section 6.3, this constraint may be (3¢ globfile (g)s ftype = fo ftype 8nd not (s« taken (3 o globname (f)))
expressed as and not s « taken (g))
Tole'sai(e) s vanle) 2'va, (3)
The second operand is the condition under which owner is applicable to the result of take,
This condition applies to z’, not z. It can be transformed into a condition on z, however, namely, given 3’ = s« take (g, f, u, k):
by using the "effects” defined for ¢ and the attributes in Attréb (T'). The condition will be: e (B s 4y Ky G T EEREANG

ze derived_constraint, , (y, z) = take, owner
) .a g
To expand this condition, we apply the effect Er, taren 0f take on teken, namely

Uofze Bro v, 2l 2o Biaylys 2l v 2o Bio ly, 2]
¢ b i ey | 3 take (g, f, u, k)« taken = replace s « taken at g with true
The last consistency rule follows from this analysis. -
and obtain:
+ ¥ - s : - . 1 H
GoaATain ey Odrdisfamcy Rils geL e, aw’m(g, f,u, k, g’)=if g'= g then truc else s taken (g'} end if
. . It follows from this form that the validity of s « Riske. owner (9, £, ¥, k, g '] is implied by s «
For any sort X, any transform t on X, any attribute a changed by ¢, the following L e, ouner 192 £, 1k, g], 80 thus by 8 o Ligke. puner [0 a/t ::: ‘k, '] as well.
must hold:
Vzoy oz zelialyz] = 2Ry
where
& R, , is the condition for B, , to be defined, and
ezely,ly,2] = zeCiolyl A 2zederived_constraint , (y, z)

and z « derived_constraint, , (y, z) is the expression obtained by substituting, for
every attribute o € Attrib ([,), z « Ey 4 [y,2] for z e a(z) in the expression [, (...)
defining the constraint z « C, (2] on c.

As an example of the application of this rule, let us prove the constraint-effect consistency
of owner with respect to take in the above specification. Their effect clause may be expressed
as:

3o take (g, f u, k)« owner (g')) =
if g = g"then ¢

else s+ owner (g') end if

(Recall that the replace... form is just an abbreviation).

The condition 8 o Rige ouner |9, /1 %, k, g’| under which the right-hand side is defined
follows from the constraint on attribute owner:

516! R!akc,ovmer [91 fou k, g‘/= (g’% g => setaken (g'))

The condition s ¢ Ligke ouwner 19, [4, k, ¢’} under which the left-hand side is defined is of
the form

32 M: A SYSTEM DESCRIPTION METHOD = 6.6

7 - FROM SPECIFICATION TO DESIGN AND IMPLEMENTATION®

Once the specification paragraphs have been completed, it is possible to remain in the
same framework when going on to the next stages, design and implementation.

The relative difficulty of producing a complete specification (especially if the consistency
proofs are performed seriously) pays off at this point. As should be clear from the outline given
below, the existence of an adequate M specification provides strong guidance and help during
the design and implementation process.

As in the previous section, we consider the combined specification possibly resulting from
merging several descriptions.

7.1 « Design

The first non-specification paragraph is the design paragraph. By "design”, we mean here
"architecture”: the aim of this paragraph is to express the design decisions leading to a
decomposition of the software into modules.

Starting from the M specification, such a decision is very easy to express. The whole
description is based on the sorts; thus it suffices to distribute the sorts among modules. The
functions (attributes, transforms) will automatically follow since each has been attached to one
and only one.

Thus a typical design paragraph will have the form:

systemn S design

module MODULE_1 sorta

A;

B, - -ete. (names of sorts of the system)
end MODULE_1 sorts ;

. module MODULE_Z2 sorts
C;
D;
E; --ete
end MODULE_? sorts ;

module MODULE_S sorta
F,; --ete
end MODULE_$ sorts ;

end system design ;

This decomposition embodies the designer's architectural choices. Note that in a pure
object-oriented decomposition & la Simula or Smalltalk there will be exactly one sort per

5 This section benefited from suggeations by Mike Mansur. It is still in tentative form.

7.1 From specification to design and implemeniation 33

module. In general, however, the designer has some leeway in the assignment of sorts to
modules, The main criterion is to minimize the amount of intermodule communication.

7.2 - Imports

In order to evidence such communication, an imports paragraph may be written, that
spells out for every module the elements necded from other modules.

We will again rely on an example. Assume the above decomposition: MODULE_{ is
responsible for sorts A and B, MODULE_2 lor C, D and E, and MODULE_8 for F. Assume
that the attributes paragraph for the system defincs attributes atir!, atérf and and aétr8on A,
attrf on B, attr5 on C and attr6 on E, as follows:

system S attributes

on A attributes
atirl : Btotal ; - - whether "totul’ or "partial’ doesn't mutler for thia discusaion
attr2 (E) : D total ;
attr : C total ;

end A attributes ;
on B attributes
atirf : A total ;
end B attributes ;
on C attributes
attr5 : D total ;
end C attributes ;
on E attributes
attr6 : F total ;

end E attributes ;

end system attributes ;

MODULE_1 is in charge of sorts A and B, thus of their attributes attrl, attr, attr8 and
attrf; because of the second and third, it needs access to sorts €, E and D, managed by
MODULE_2. Access to a sort does not necessarily mean access to the functions on that sort;
the most restricted kind of access just implies the ability to name elements of the sort as
arguments or results of a function (e.g. here elements of sorts £ and D in connection with
attr2). This type of access is not unlike using a "limited private” type from another module in
the programming language Ada.

Access to another module's sorts is not, however, the only type of intermodule
communication that will be required once we consider not only the attributes but also the

34 M: A SYSTEM DESCRIPTION METHOD 7.2

invariants, transforms and effects. Assume lor example a transform transf on A, as follows:

system S transforms

an A transforms
transf (C) total change atir!, attr2 ;

end A transforms ;

end system transforms ;

The effects of transform transf on attributes attr! and attr® are described in the effects
paragraph:

system S effects

declarea: A, c:C, e E, ...,

a s transf (c) e atir! = By aney fa,¢f
astransf (¢}« attr? (¢) = Eyang aner fa, ¢, €] ;

end system effects ;

To define these effects, the expressions Eiranst ettry 804 Ejpangs a2 may need to refer to
attributes of objects ¢ and, in the latter case, e, for example attr5 and .a.ttré'. MODULE_1 is in
charge of transf, a transform on sort A, and is thus responsible for its eflects as well. IrT terms
of information flow, this means that MODULE_! must have access not only to sorts C,D,E and
F, but also to attributes attr5 and attré. o

In .bhe same fashion, the invariants pertaining to a certain sort may involve other sorts
and attributes and thus imply inter-module communication.

. The imports paragraph is used to describe these access requirements. In the example, it
will have the form: ’

system S importa
on MODULE_! imports
from MODULE_2 use C, D, E, attr5, ; .
from MODULE_S use F, attré, ;
end M1 imports

end system imports ;

) There is no new information in the imports paragraph: it is a combined consequence of the
design paragraph and of the previous specification paragraphs. Thus the TM tools should be
able to synthesize the “imports”. In the absence of such tools, however, it may be useful to

72 From specification to design and implementation 35

write this paragraph by hand since it gives interesting information on the structure of the
software.

7.3 - Implementation .
The next step is Lo go to implementation®. Here the method may help in several ways.

The first application is the representation of data structures. A possible policy is to
represent every sort by the cartesian product of its simple attributes; in terms of the discussion
in section 1.1, this means going from an implicit to an explicit definition once the list of
attributes is frozen. (This list may result f[rom combining several specifications if the modular
facilities of M have been used).

Take for example the POINT definition of section 1.1, with attributes rephrased here in
the LM notation:

system POINTS attributes

on POINT attributes

z : REAL total ;

y : REAL total ;

z: REAL total ;

speed : VECTOR total ;
end POINT attributes ;

end system attributes ;

If we decide that this list of attributes is complete, then we can proceed to the
implementation of POINTs as records:

type POINT =
record

I, y, 2 real;
speed : VECTOR

end

I the structure of the simple attribute definitions is directly or indirectly recursive (c.g.
there is an attribute on A with values in B, and an attribute on B with values in 4), then
pointers must be used. Thus the implementation paragraph will contain sections of the
following form, assuming the above example (where attrl and aitrS are attributes on A, yielding
results in sorts B and C respectively, with recursion in the first case}:

8 The step called here "implementation” will result in a program which one may Wwant 1o write in a language
("PDL" or "pseudocode") different from the programming language used for the final coding In such a case what
we call "implementation” is really the software lifecycle step known as "detailed design™ 2 stralghtforward
translation step is needed to produce the executable program.

38 M: A SYSTEM DESCRIPTION METHOD o

~
o

system S implementation

implement A as record ;
implement attr§ as C field ;
implement atir! as B pointer ;

- - ... more (see below)

end system implementation ;

Implementation clauses may also be written for non-simple attributes (those with
arguments} and for transforms. Let us first study the latter case. Transforms will be
implemented as procedures with side-eflects on their first parameters, corresponding to the sort
“on" which each transform is defined. Here the specification provides guidance in the form of &
precise pre-and post-condition. Assume as previously a transform transf on sort A, defined in
the corresponding paragraph as

transf (C) total change attrl, attr2 ;

The implementation part will then contain a clause of the form
implement transf as
procedure
(a:inout 4;
¢:in C)
pre

Constryeny and INVy yranys

poat
Eff s rangy and INV, rony

In this notation, Constrymy, INVy transy and Eff 4 40y 2re boolean-valued expressions
(predicates) involving & and & Constri gy 18 deduced from the constraint on transf in the
constraints paragraph; INV yany i9 the conjunction of all the invariants that involve one or
more of the attributes on A that may be changed by the transform (attrs and attr2 in our
example); and Eff 4 ey is the conjunction of the relevant effects as defined in the effects
paragraph

Thus the specification yields a very strict framework for building the various procedures
involved: the role of each procedure is precisely defined as a precondition-postcondition pair. All
that remains to be done is to write a procedure body that will satisfy this pair {of course this
may still require significant work).

Non-simple attributes (those with arguments) and will usually be implemented as
“lunctions” in programming languuge lerminology, ie. value-relurning procedures with no side-
eflects. Thus for attribute attr on A in the above example, i.e.

attr2 (E): D ;

the implementation paragraph will contain

73w From specification to design end implementation L

implement attr2 as

function (a:in A ; e : in E)return D
pre

Constry and INVg and INVy 4,9

post
INV)

where INVg is the conjunction of all invariants on sort £ and INVp is the conjunction of all
invariants on sort D, which the value returned by the procedure must satisly.

38 M: A SYSTEM DESCRIPTION METHOD =73

8 - ON USING THE M METHOD

We now give some general guidelines that should be helpful to writers of M specifications’,
based in part on the experience gained through the modest (but non-zero) number of non-trivial
system specifications that have been written up to now in M.

8.1 - General form of a specification

As any (non-solitary) worker on formal specifications knows, any such specification usually
seem crystal clear to the person who has written it, and hopelessly obscure to anyone else.
Readability should thus be a basic concern. This is all the more important with a new method
such as M: many readers of a specification can be expected to have trouble both with the
notation and with the object domain of Lhe specification (the real system being described).

The LM comment convention is the Ada one (a comment begins with two consecutive
hyphens and extends over the rest of the line). Comments are useful for explaining local details
of a specification; they usually do not suffice, however, to make a complete specification really
understandable.

Thus when preparing a specification for human readers (as opposed to automatic analysis
tools, referred above as TM), it is in generally advisable to present it as an article, with French
language explanations® forming the bulk of the presentation and the formal material appearing
as inserts. Such inserts may be boxed, as in section 4 above; another acceptable solution is to
write formal elements on odd-numbered pages, with even-numbered pages serving as a running
commentary in natural language. The natural language text should serve both to comment on
the object domain (the system being described) and to explain how the M specification deals
with it.

8.2 - Incremental description

When trying to describe a system, either new or existing, one is often overwhelmed by the
amount of detail to be taken into account. The advice here is not to panic, but to focus on the
basic features first (like those that could be included in a beginner’s manual for the system at
hand), then add more and more features in an incremental fashion. The modular features of the
M method should help to make this a smooth process.

If you are specifying an existing system that you know well, you should design the overall
structure of the specification beforehand. In other words, you should plan the specification as a
set of "systems" in the M sense, each corresponding to a level of abstraction in the description of
the real system being modeled. It is usually a good idea in this case to start out the
specification by writing the interface paragraphs of the successive M systems.

Sometimes, the informal documentation associated with a system may already distinguish between levels

of abstraction, thus easing the task of structuring the M specification, This is the case with such

examples as the 7-layered ISO model for open interconnection of computer systems, the ACM Core

graphics library, etc.

7 Some of these rules obviously apply to other specifications methods as well.
8 English may in some cases be acceptable, as evidenced by this paper.

8.3 o On using the M method 39

8.3 - Completeness

A question often heard about specifications is "When do we know we have written
everything of significance?”. There is obviously no general answer to this question, since
completeness of a specification could only be defined with respect to a formal list of the system's
functions, and that is precisely what the specification is about.

Some guidelines can be given, however. For example, although it is hard be sure that no
attribute or transform has been omitted, the method implies checking each transform and each
attribute on & given sort to determine whether the transform may change the value of the
attribute: this is an incentive to perform a systematic review of possible combinations. In
particular, one may see il there is any attribute not changed by any transform (not necessarily
an error, especially at an early stage in the specification process, but still definitely something to
look at). °

The method also guarantees that once a transform has been declared to change an
attribute, the corresponding effect has to be included.

Finally, although one cannot guarantee that all relevant invariants have been included,
performing some of the proofs associated with the method will often reveal missing invariants.
This is part of our next tople, proofs.

8.4 - Proofs

The ability to prove properties of the specification is an essential feature of [ormal
methods. We have presented in section 6 the required proofs in M. Performing all these proofs
by hand is difficult. In the absence of adequate tools, it is still recommended to do as many
prools as possible; this process reveals much about the system and will more often than not lead
to the discovery of errors or missing elements, as was the case with the example discussed in this
presentation (see the footnote in section 6.4).

8.6 - Attributes versus Transforms

The reader may have noted that the definitions given of attributes and transforms are not
exclusive. We defined an attribute on a sort X as being, mathematically, a function

X XUyxUp X - XUy — Y

whereas a transform on the same sort is a function
[XXViXVy, -+ XV, — X

Nothing in the first definition precludes Y from being the same sort as X, so that any
transform may also be described as an attribute (the reverse, however, is not true in general).
Thus one may hesitate in some cases.

There is, however, a strong criterion for transforms which should help dispel the hesitation
in any particular case. A function may only be defined as a transform on X if one is able to list
precisely the attributes of X that this transform may change; although the exact way in which
each of these attributes is affected will only be given later (in the effects paragraph), one must

still be prepared to spell it out in full detail. If such a complete specification of the function’s

effect cannot be given, then the function is an attribute, not a transform.

40 M: A SYSTEM DESCRIPTION METHOD 7§85

9 - FURTHER WORK

As will be clear from this paper, there remains a lot of work to do on M. We list below
our main curreat focuses of attention.

9.1 - Concrete Syntax

The concrete syntax of the LM notation clearly needs some polishing. The language must
be defined more extensively. Some syntactic sugar is needed; for example, it should be possible
to define functions (attributes or transforms) with an infix syntax. Also, it may be useful to
define functional and relational operators (composition, transitive closure and the like) to avoid
the current restriction to low-level cxpressions of first-order predicate calculus in invariants,
effects and constraints.

So far we have steadfastly resisted the temptation to add nice but non-essentizl syntactic
features, and plan to do so until the dust has settied on the fundamentals concepts.

It should be noted that the M method is, to a certain extent, independent from the
particular notation (LM) presented in this paper. Other choices of specification languages could
still be compatible with the basic principles of M.

9.2 - Completeness of the notation

More important than syntactic extensions is the problem of whether all the facilities
needed to describe actual systems are present - in some form.

One construct, not used in the example of this paper, is most likely to be needed: a
constructor of the form

some z in X where z« £ end

where X is a sort and £ a boolean-valued expression, possibly involving attributes. Such an
expression denotes an element of the sort satisflying the given condition. Note that in
accordance with the "implicitness” essential to the M approach, one only specifies those
properties of z that are needed.

An important problem that needs further theoretical investigation is the intrinsic power of
the basic M semantic device: spelling out the effects of every transform on every attribute it
may change. There may be a need for more partial characterizations of a transform’s effect (by
properties resembling invariants, but involving transforms as well as attributes).

9.3 - Initialization

The formalism lacks a notion of system initialization. In particular, the consistency proofs
(section 6) should include not only invariance proofs as given, but also proofs that the “initial"
elements (those given in the has clauses of the sort definitions) satisfy the invariants. There is
probably a need for an "initial” paragraph, describing properties of these initial objects:
properties such as the invariants called 7, to 75 in the invariants paragraph of our example
(section 4.4), which are quite different in nature from the other invariants, would belong there.

94 © Further work 41

9.4 - Errors and partial functions

We think that partial functions are the right mathematical tool for desling wn.l}
computations that may not always produce a normal result. H'owever, the treatment o
abnormal cases and the notion of doppelganger function must be clarified.

9.5 - Tools
An essential aspect in making M (and other formal methods) practical is t,h? nelslz:!wal':;
tools. We hope to be able to base an support system for M (TM) on two sets of sol
engineering tools currently being developed: ‘ o)
e Cépage, a general-purpose screen-oriented sbructur.al editor [11], which :ﬁceaatsi;z
adaptable to any new language, whether a programming language or a spe
language like LM; .
o the Software Knowledge Base, & system [or conl‘fgurat‘lon an? pro;e'f:t n;lnnaglerrzlents,
which keeps track of the entities in a software project (called a%oms),bt. eL rela xond
between these entities [13], and the constraints that must be salisfied by atoms an

relations,

9.6 - Theoretical Basis
L . "
More theoretical work is clearly needed. The position of "M theorctician-in-residence” is

open.

42 M: A SYSTEM DESCRIPTION METHOD

References

I Jean-Raymond Abrial, “The Specification Language Z: Syntax and "Semantics",” Ozford
University Computing Laboratory, Programming Research Group, Oxford, April 1980,

2. Mack W. Alford, “A Requirements Engineering Methodology for Real-Time Processing
Requitements," IEEE Transactions on Software Engineering, vol. SE-3, no. 1, pp. 60-68,
January 1977,

3. H. Barringer, J. H. Cheng, and Cliff B. Jones, “'A Logic Covering Undefinedness in Program
Prools,” Acta Informatica, vol, 21, no. 3, pp. 251-269, October 1984.

4. Rod M. Burstall and Joe A. Goguen, “Putting Theories Together to Make Specifications,”
in Proceedings of 5th International Joint Conference on Artificial Intelligence, pp. 1045-
1058, Cambridge (Mass.), 1977.

5. Rod M. Burstall and Joe A. Goguen, “The Semantics of Clear, a Specification Language,”
in Proceedings of Advanced Course on Abstract Software Specifications, pp. 292-332,
Springer Lecture Notes on Computer Science, 86, Copenhagen (Denmark), 1980.

[} Rod M. Burstall and Joe A. Goguen, “An Informal Introduction to Specifications using
Clear,” in The Correctness Problem in Computer Science, ed. R. S. Boyer and JJ. 8. Moore,
pp- 185-213, Springer-Verlag, New York, 1981.

7. J. A Goguen, J. W. Thalcher, end E. . Wagner, “An Initial Algebra Approach to the
Specification, Correctness and Implementation of Abstract Dala Types,” in Current
Trends in Programming Methodology, Volume 4, ed. Raymond T. Yeh, pp. 80-149,
Prentice-Hall, Englewood Clifis (New Jersey), 1978.

8. John V. Guttag and Jim J. Horning, “The Algebraic Specification of Abstract Data
Types,” Acta Informatica, vol. 10, pp. 27-52, 1978.

9. Cliff B. Jones, Software Development: A Rigorous Approach, Prentice-Hall, Englewood Cliffs

' (New-Jersey), 1980.

10. R. Locasso, John Scheid, Val Schorre, and Paul R. Eggert, "The Ina Jo Specification
Language Reference Manual," Technical Report TM-{L}- /6021 /001 /00, System
Development Corporation, Santa Monica (Ca.), June 1980.

11 Bertrand Meyer and Jean-Marc Nerson, “A Visual and Structural Editor,” Technical
Report TR(CS84-03, Computer Science Department, University of California, Santa
Barbara, March 1984.

12. Bertrand Meyer, “Modularity,” Course Notes for CS 272, University of California,
Computer Science Department, January 1985, (A chapter of a planned book on "Applied
Programming Mcthodology").

13. Bertrand Meyer, “The Software Knowledge Base,”" in 8th International Conference on
Software Engineering, London, August 1985. To appear.

14. Carroll Morgan and Bernard Sufrin, “Specification of the UNIX File System," IEEE
Transactions on Software Engineering, vol. SE-10, no. 2, pp. 128-142, March 1984,

15. David R. Musser, “Abstract Data Type Specification in the AFFIRM system,” IEEE
Transactions on Software Engineering, vol. SE-6, no. 1, pp. 24-32, January 1980.

i6. L. Robinson and Olivier Roubine, Special Reference Manual, stanford Research [nstitute,
1980. o

17. D.T. Sannella, “A Set-Theoretic Semantics for Clear,” Acta Informatica, vol. 21, no. 5, pp.
443-472, December 1984,

18. Bernard Sufrin, “Formal Specification: Notation and Examples,” in Tools and Notations
for Program Construction, ed. D. Neel, pp. 27-53, Cambridge University Press, 1982,

19 Bernard Sufrin, “Formal Specification of a Display-Oriented Text Editor,” Secience of

Computer Programming, vol. 1, no. 2, May 1982.

20.

Bibliography 43

Daniel Teichroew and Ernest A. Hershey, 11, "PSL/PSA: A Computer-Aided Technique for
Structured Documentation snd Analysis of Information Processing Systems,” IEEE
Transactions on Software Engineering, vol. SE-3, no. 1, pp. 16-33, January 1977,

