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TOWARDS A TWO-DIMENSIONAL PROGRAMMING ENVIRONMENT

Bertrand Meyer
Electricité de France, Direction des Etudes et Recherches
Service Informatique et Mathématiques Appliquée
1 avenue du Géndral de Gaulle 92141 Clamart
France

ABSTRACT

The use of modern video display terminals for communication with a
computer has a profound effect on the nature of the resulting dialogs.
Sereen-oriented interactive programs require a new set of tools, techaiques
and methods. We report on studies on these topics performed in a computing
environment based on standard commercial hardware. The paper describes some of
the tools which we have used and the ones we have designed | it then discusses
the methodological issues involved in designing two-dimensional dialogs, and
shows the kind of program modularity which 1s required in this framework.
Object-oriented programming appears to provide the right basis ; we have
applied this methodology using the class concept of the Simula 67 language and
the associated prefixing mechanism.

1 - INTRODUCTION

Interactive facilities play an ever increasing part in all the
application areas of computers. Today, this evolution does not only imply that
the -traditional "batch" mode of submitting programs to computers yields more
and more to conversztional execution ; it also impacts the very form of such
executions : whereas dialogs on typewriter-like terminals and the first GCRT
devices would proceed in a "line by line" fashion, current terminal technology
makes it possible to use the full coatents of a screen as the basic unit of
comnunication with the computer, giving rise to the so-called "full-screen" or
"full-page" mode of interaction.

One of the best-known applications of this technique is the preparation
of documents on a computer using one of the "full-screea editors” now
available on wmany computer systems, most notably mainframes and
word-processing systems. Users -of such tools unanimously appreciate their
power and ease of use, to the extent rhat going back to a line-oriented editor
is resented as a painful experience. Full-screen facilities also find
applications 1n many other domains ; examples are software development and
maintenance aids, application programs designed to be used by non-specialist
users under the guidance of guccessive “menus”, business data processing
(where many '“transactional systems" are being developed) and Computer-Aided
Instruction. In these and many other areas, programmers in ever growing
nunbers would like to be able to provide full-screen dialogs for the execution
of their own programs.
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The construction of such dialogs implies that the texts to be exchanged
between the programs and their users are two-dimensional ; this requirement
adds a new set of difficulties to the general problems of convarsational
programming, which are themselves far from being fully mastered (in particular
as regards the human eangineering, or ergonomic, aspect of dialegs). This paper
studies some of these problems, and describes some of the solutions which have
been implemented at the Direction des Etudes et Recherches of Electricité de
France (EDF), laying the basis for what may be called 2 tuwo-dimensional
programming environment. The discussion focuses on three of the basic issues
of software engineering, as applied to two-dimensional interactive
programming : tools, methods and languages. The ergonomics of dialog systems,
which is another important topic, is touched upon only briefly.

In some respects, it may be felt that the discussion below lags behind
the current "frontier" technology in hardware and software. In particular, we
limit ourselves to the manipulation of text objects, even though considerable
experience has been gained in recent years in two neighbouring domains, namely
graphics systems and Computer-Aided Design, where more complicated visual
objects are processed. It is clear, on the other hand, that some research
laboratories have developed two-dimensional environments which are more
sophisticated than the one described here ; two examples worth noting are the
set of tools built around LISP /14, 15/ and the Xerox PARC SMALLTALK syatem
/3/, which utilizes special-purpose terminalas and s dedicated operating system.

On the other hand, the toola which are described in this paper do not
appear to be so commonly available in the most widely used environments,
whether in industry or universities ; neither do the underlying ideas. It is
quite interesting in this respect to study two recent papers in the
Communications of the ACM on the subject of interactive programming /4, 10/ ;
although quite different from one another, they both discuss how successive
questions should be asked from users, how mnemonics and keywords should be
designed, how errors should be dealt with, etc. ; both implicitly assume that
the dialog considered proceeds in a completely sequential, line~by-line
fashion, without even considering that there may exist other cases. Much of
the discussion in these papers becomes pointless when one goes to a
two-dimensicnal environment.

Furthermore, an important characteristics of the tools described below
should be emphasized, namely the fact that they were developed end are being
used in a standard “production environment rather than ia a computer science
laboratory. The computing center at the Direction des Etudes et Recherches of
EDF is based on [BM bardware (3081, 3033, 370-168, 4341, ete.) under the
HVS-SP operating system. The time-sharing system is TSO ; full-screen
terminals are of the IBM 3270 or compatible series ; most of them are 3278,
3279-2B snd 3279-~38 models (the latter having seven colors, semi-graphic
possibilities and various other options). Most application programs are
written in Fortran. This eoviroanment (which also includes a Cray-1 and many
other computers) is quite representative of many large classical computing
centers,
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2 - THE CHARACTERISTIOS OF TWO-DIMENSIONAL DIALOGS

The usefulness of two-dimensional dialogs stems from the combination of
three properties :

= The second dimension as such, which provides the program user with
an overview of a full page of text, rather than just a single line ;

- The use of a page as unit of communication with the computer, which
allows the user to design first an overall sketch and then look
back on his decisions, correct errors, reverse some choices, before
he sends a page of information to the system ;

- The default facility, which makes it possible for the program to
fill some zones where user response is expected by predetermined
values, so that the user will only have to write the answers if
they are different from these values, but not if the questions are
unneeded in his particular case, or call for the same answer as in
the previous use of the system (one of the criticisms heard most
frequently from users of non-page-oriented interactive programs ia
that one must answer a whole bunch of seemingly useless questions
every time one starts using the system).

It should be noted here that a good page-mode interactive program should
keep a profile of every user, so that the default answer suggested for each
question will be the one chosen by the user during the last execution of the
program, vather than a fixed value assumed to suit all users.

Below is an example of a full-page dialog. It is extracted from the
FORTRAN command procedure in our AL library (see section 3) and shows the
Eirst three screens to be filled when tunalng a Fortran program : the user
types in the names of the files containing source and object code, the
destination of printouts, the compiling options, the libraries used, etc. It
is easy to imagine how many successive questions would have to be answered in
an equivalent line-by-line dialog ; wost answers would be indentical from one
use of the procedure to the next. If full-screen is not available, the
designer of such a dialog constantly faces the contradictory demands of two
categories of users : the sophisticated ones, who would like to use many
advanced features and thus request wmany options, i.e. many questions | and the
more numerous "vulgar' users, who use standard options and want short dialog
sessions.

Worth noting is the presence of an option called "same as last time'
which allows the user, from then on, to remain entirely silent, and directs
the system not to ask any more questions. This option 1is particularly useful
in 8 repetitive task such as the test of a given module.
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HELLO BERTRAND
WELCOME TO THE AL FORTRAN EXECUTION SYSTEM

PLEASE CHECK THE APPRQPRIATE BOX :

SAME AS LAST TIME ===) / /
COMPILATION, LINK-EDIT, EXECUTION )/
LINK-EDIT, EXECUTION we=) //
B EXECUTION wsa) [/ -

COMPILATION, FORTRAN IV EXTENDED

NAME OF THE FILE CONTAINING SOURCE CODE ===2) tryit.forc{first)

COMPILATION LISTING DESTINATION === pre
(TER, PRT, LOC, DMY, SYS=x or file nams) .
cLass (only if SYS=C, R, S or U) =)

RAME OF THE FILE FOR OBJECT CODE ==a) tryit.obj(ficst)

COMPILER QPTIORS :
OPFTTMIZATION LEVEL ===} 2
GENERATED CODE LIST ==2) no

--— COMPILATION WAS OK ---
LINK-EDIT
NAME OF THE FILE CONTAINING OBJECT CODE ===) u—yit.obj(firuc)
LIBRARIES T0 BE INCLUDED
You may request a library by giving either :
~ & keyword (FORTLIB, GENERALE, IMSL, LINPACK, BENSON, ATELBIB...)
_ the actual name of a file containiag the library in load module
form.
»==) fortlib
w=a) 'edf.myownlib.load'

===) ‘edf.peterslib.load’

=ax)

==z}

—

===)

===) generale

It may be said without overstating the argument that, for the programmer
who writes systems having this kind of interaction with their users, the leap
from traditional, line-by-line conversational programs to page-oriented ones
is as big as the leap from non-interactive “batch” programming to
line-oriented interactive programming. The. new discipline may (perhaps
emphatically) be called "two-dimensional programming” ; the second, vertical
dimension introduced by screen dialogs raises meny important issues with
respect to the methods, techniques and tools of interactivity.

3 - COMMAND PROCEDURES : THE DIALOG MANAGER AND THE AL LIBRARY

The Eirst tool which is available to our users is one which is
distributed by the manufacturer. IBM has recently released /8/ & new version
of SPF (System Productivity Facility, previously known as Structured
programming Facility), a subsystem of TSO, the basic iateractive system under
MVS. The main characteristics of SPF, which meke it rather nice to use for
such functions as text editing or file management, are the following :

- the use of two~dimensional dialogs ;

- the presence of "user profiles" which keep useful information from one
interactive session to the next ;

- a particular technique for error processing.
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The main improvement brought about by the new version of SPF is
the set of functions called the "Dialog Managex”" /9/. Thanks to this facility,
any programmer writing command procedures in the command language of TSO may
use some of the internal tools and techniques of SPF, thus being able to take
full advantage of the three properties mentioned above.

The dialog manager may be called through special functions which
have been added to the TSO command language. It is not, however, easy to use
for novice or occasional users ; neither is it readily iaterfzced with
application programs (in particular those written in Fortran). Its mein use in
our environment 80 far has been the implementation of a general-purpose
‘command procedure library, called AL (Atelier Logiciel),

The AL library currently conteins some forty procedures which
encompass a wide spectrum of tools : access to compilers of the various
available languages {Fortran, Cobol, assembly, Algol W, Pascal, Simula 67,
Reduce), file manipulatioa and management, use of specialized programs, access
to on-line documentation, etc. Until recently, all were Lline-oriented
conversational procedures, suffering from the drawbacks mentioned above, It is
interesting to note that our desire to keep the dislogs simple, and thence ta
limit the number of available options, had resulted in the proliferation of
“customized" versions of the more popular procedures : programmers would copy
and modify them, thus hampering our efforts to maintain and improve them.

With the development of two-dimensional versions, these problems

have disappeared : we may now afford to include many options, since the user's .

chaices are remembered from one session to the next and he will usually change
few of them each time ; no more tedious recoding of the same values is
required. During the first use of a procedure, defsult standard values are
pre-filled by the system.

Currently zavailable two-dimensional procedures in AL include
Fortran IV (of which the dialog in section 2 was an example), Fortran VS
(offering access to the I1BM version of Fortran 77), Simula 67, Pascal,
Algol W, Cobol, Apothéce (a system for the management of program libraries).
The entire library will be progressively adapted.

4 - TOQLS FOR TWO-DIMENSIONAL APPLICATION PROGRAMMING : GESCRAN

Once one has discovered the delights of two-dimeasicnal
interactivity, perhaps through the use of SPF and AL, one is often tempted to
apply the same techniques to one's own applicatiaon programs. One available IBM
product makes this possible : GDDM (Graphical Data Display Manager /7/), a
very powerful tool which alse includes semi-graphic facilities. CDDM is also,
however, rather complex and heavy, and clesely tied to IBM hardware and
systems. We thus felt it necessary to design a product which, albeit much less

amhitious, would cater for simple uses while remaining rigorous in its

definicion and more portable.
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The result of this effort is a ‘package called Gescran (for “Cestion
d'dcrans”, screen management) /1/. Gescran is a set of Fortram subroutines,
designed according to the methodological principles expounded in /13/ ; it
allows the programmer to describe and manipulate objects called "screens", to
create rectangular "windows" in these screens, to define and change the
attributes of these windows (such as associated text, color, brilliance,
protection, etc.), and to visuslize all or part of a screen on the available
terminal. It ie Important to note that screens and windows are in no way bound
to the display hardware : they are purely sbstract objects, kmown to the
program solely through a name, which in Fortram is implemented as en integer
variable, used internally to contain an address and control flags ; the only
operation which may be applied to such a variable is its use as an actual
argument in a call to one of the Gescran subroutines. Associstion with a
physical screen occurs only when a visualisation subroutine is called.

7/

Gescran works on the IBM 3270 seriea of screen terminals, but was
designed 50 as to be adaptable to any terminals offecing similar capabilities.
The construction and manipulation of the data structures representing screens
and their windows are entirely independent from the physical 1/0 cperations.

Among  the current developments, we shall wmention a study aimed at
interfacing Cescran with a graphics package, so that the programmer will have
the possibility of describlng a Gescran window as graphical and use the
graphics package rather than Gescran to manipulate this particular window,
provided of course the terminal used provides the cprresponding facilities.

5 -~ COMPUTER-AIDED SCREEN DESIGN : CONSCRAN

An important tocl for the efficient use of Cescran, called Conscran,
provides a higher-level interface for the design of screens as defined above.

The requirement for Conscran stemmed from a problem which had been met
by all Gescran users : before being able to write the sequence of subprogram
calle which describes a set of screens and windows, one must design each
screen by defining the position of its various windows, the parts they play in
the interaction, their contents, color, protection, special features (es.g.
blicking, reverse video}, etc. Until Conscran became available, the best
available technique for this phase was to use a sheet of paper and draw a
picture of the screen. Such a medium end method appear rather primitive when
compared with the aim pursued.

Conscran relies explicitly on concepts teken from Computer-Aided Design
to improve the screen design process. It allows the programmer to perform such
design 1a & two-dimensional interactive fashion : the screens will be 'drawn"
at the terminal, with all the resulting flexibility ; various designs may be
tried, observed, wodified. Conscran automatically generates tha Fgmtran
subroutine containing the calls to Gescran subroutines which are necessary for
the construction of the corresponding screens, thus freeing the programmer
from & rather tedious task. Conscran stores the resulting screen designs in a
data base, thus allowing for later retrieval and modification. It alse
generates a paper "map" of the .screen, showing the position of the varicus
windows, and & "legend' giving their attributes.

Our current efforts go towards extending Conscran to a system allowing
for the design not only of individual screens, but of entire applications as
well, using the same underlylng principles.

Conscran 1tself is a two-dimensional interactive program, writtea in
Gescran. Its aim 1s vhat may be called "Computer-Aided Screen Design'.
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6 ~ THE STRUCTURE OF DIALOG PROGRAMS

Even with the world's best tools, two-dimensional programming raises
several difficult issues. One of the most delicate ones is the structure of
dialog programs. The behaviour of such programs wmay usually be quite
faithfully modeled by a state transition diagram : one execution of the
program will correspond to a path in the associated graph.;

Below is an example of such 2 graph ; this is one of the applications
which we have written with Gescran, the SVP system /5/, which allows users to
ask (non-urgent) questions and get answers from the programming assistance
service on their terminzl. Only the "user” part is shown.

swe

Except for its small size, this example is quite representative of the
structure of page-oriented, wenu-driven interactive programs. At every step
in the execution, associated with ome of the states in the diagram, the
program outputs a screen ; certain zones are then filled by the user ; after
having checked the validity of the answers, the program will perform some
action (ususlly reading or updating a data base). The next step depends on the
user's choice, often expressed by his pressing some function key on the
terminal. The labels of the edges in the graph correspond to these possible
choices.

In a atraightforwerd realization of this scheme, the program for an
interactive, menu-driven application will consist of a nusber of paragraphs®,
one per state, each looking somewhat like the following :

state x :
output screen for state x ;
repeat
read user's answers and his choice c for the next step ;
if error in answer then
output message
wtil no error in answer ;
record answer ;

case ¢ ian
<] : proceed to state xi,
€3 : proceed to state x3,

en @ proceed to state xp

Two-Dir
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Using such a scheme for the actual programming will result in programs
with an intricate branching structure, belonging to the well-known "bowl of
spaghettis' type. It has been argued /2/ that such a structure should be
avoided in the first place, by applying to the state graphs of menu-driven
systems such restricting vrules as are imposed by modern programming
methodology upon the control structures of programs. We thiok that the analogy
is wrong : designing the internal structure of an engineering product such as
4 program is really not at all the same as designing the external structure of
a process invol/ing humans, such as the dialog with & machine. In our opinion,
the structural intricacy of the state graph of many interactive systems is an
inherent property of these aystems, and artificisl "structuring” rules are
pointless in this domain. The complexity of the graph may stem from various
Teagons : there cay be temporary detours (correspending e.g. to "help" keys),
shortcuts (which were introduced at some point because a user requested, quite
legitimately, the possibility to go directly from a certain state to another
one, whereas he previously had to backtrack first to the initial menu), and
mlti-level exirs (corresponding to "escape" keys or 'quit" commands). Note
that these requirements will defeat any effort to implement menu-driven
systems by straightforward application of “structured programing" in its
aaive form.

Some authors have introduced special-purpose contrel structures to solve
this problem ; one example is the language PLAIN /16/, which uses "exceptions"
as in Ada, CLU or PL/I. The use of such constructs seems only marginally
preferable to that of ordinary jumps.

A much better solution, as it seems to us, is to completely disconnect
the description of the overall structure of the dialog, i.e. the traversal of
the graph, from the description of what happens at every step, i.e. the
operations performed while in a given state. The latter miy be treated with
ordinary programming coastructs ; for the former, the finite automaton, as
used in compilation or real-time applications, is a helpful model. It will be
quite useful (although not compulsory) to implement the systems in a
table-driven fashion, i.e. represent the state tramsition diagram by a data
structure (usually am array) rather than a function subprogram ; using this
technique, the changes in the scheduling of states, which are quite common as
projects evolve and users request mew facilities, will be easy to accomodate.

More precisely, we shall make use of ten program units on three
hierarchical levels :

SCHEDULE

INITIAL FINAL TRANS IT ION

QUESTION MESSAGE
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SCHEDULE oaly defines the traversal of the transition graph ; it knows
nothing ebout the particular screens of a given application, and should be
identical for all applications :

SCHEDULE :
var curreat : STATE, label : CHOICE ;
Current := INITIAL ;
I'EEEi[
[EXECUE (current, label) ;
current i~ TRANSITION (current, label)
until FINAL (current)

TRANSITION is the function which describes the state diagram :
TRANSITION (s, 1) is the new atate reached when leaving state s by the branch
labeled 1. As wentioned above, TRANSITION may be represented either by a
function subprogram or by a two-dimensional array, the latter leading to a
more easily adaptable program.

EXEQUTE daes what is required in a given state : ask the right question,
check the answer, perform the necessary action and return the choice ¢ for the
next step :

EXECUTE (in s : STATE ; out ¢ : CHOICE) :
var ¢ : CHOICE, a : ANSWER ; "
Lepeat
a := QUESTION (s} ;
correct ;= CHECK (a, s) ;
if not correct then
" TTHESSAGE (a, s
until correct ;
RECORD (a, s) |
© :% NEXT (a, @)

QUESTION, CHECK, MESSAGE, RECORD and NEXT, on the other hand, are
application-specific. The call QUESTION (s) will output the screen associated
with state s and read the user's answers :

QUESTION (in s : STATE) :
output the screen for state s |
read and return the answer a

CHE®K (a, 8) will return true or false depending on whether answer a is
acceptable or not in state & ; MWESSAGE (a, s) ourputs rhe error message
corresponding to answer a in state s, where CHECK (a, s) is false ; RECORD
(a, s) records answer a in state s, vhere CHECK (a, s) 1s true ; REXT (a, &)
determines from the user's answer a the exit label which was chosen for
leaving state s.

It is natural to look for tools which may help in the construction of
interactive systems described in the above framework. Some of the "author
languages" in Computer-Aided Instruction (CDC's Plato or IBM's IMG for
example) pursue similer goals. Can one use the above scheme to build
general-purpose tools for helping in the design of interactive, full-screen
applications ? As mentioned before, this is our aim in the current extensions
to Conacran.
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It is soon realized that this scheme cannot reasonably be implemented as
presented above if what is sought is a modular, easily extendible system. A
simple remark should convince the reader of this impossibility : if procedures
such as RECORD, CHECK, MESSAGE, QUESTION or WEXT were to be put in a library,
80 as to be re-usdble for various aepplications, then a closer lock at the
above design shows that these procedures must include among their parameters
the state (s), but also the precise interactive application to which this
state belongs. In cother words, any such general-purpose should know about and
discriminate amongst all states of all available applications using them !
This is clearly incompatible with any attempt at modularity.

As it is often the case which such problems, a proper solution may be
found by going from procedure-oriented to object-oriented programming, i.e. by
basing the structure of the program on the main data structures rather than on
the functions to be performed. This is the direction that we have taken ; we
have been greatly helped in this effort by the availability in our computing
center of one of the few gecerally available wmodular, object-criented
languages ¢ Simula 67.

7 - USING A MODULAR , OBJECT-ORIENTED LANGUAGE : SIMULA

Simula 67 /6/ "appears particularly well-suited for the practical
application of the methodological principles introduced above. The main
concepts are those which have been emphasized in /12/ : abstract data types,
top-down program and data structure design, genericity. Similar techmiques
could be applied to a descendant of Simula, Smallealk /3/.

We will only outline part of the system design. In order to implement
the above scheme, it is particularly useful to be able to use a structure
corresponding to the abstract notion of a "state”. The following
chatracteristics are associated with every state s :

- attributes of s : state number, screea to be output when s is
reached ;

- operations which may be requested when the system 1s in state s :
QUESTION, CHECK, MESSAGE, RECORD ;

- actions to be performed when 8 is reached : EXECUTE.

Such characteristics correspond closely to what may be included in the
basic program stiucture of Simula, the class, which is the implementation of
an abstract data type : variables representing the attributes of each state,
procedures  (subprograms} representing the admisaible nsperstions,  aand
statements representing the initial actions. Onme is thus quire naturally led
to the design of a class STATE.

A fundawental property of ‘Simula which will be used here is known as
class prefixing : a class may be used as “parent” of other classes, which will
inherit irs charactevistics, to which they will add their own refinements.
Procedures may be specified at the level of the parent class, their
realizations being given in the descendants ; usually these will not be the
same In every descendant. Such procedures are declared as virtual in the
parent class. Class prefixing and virtual procedures together form one of the
best-known systems for the authentic top-down design of both program and dara
structures., Here they will allew us to define the class STATE with the
following structure :
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class STATE |
comment operations : 4
virtual :
ref (answer) procedure QUESTION ;
boolean procedure CHECR ;
Eocedure MESSAGE
procedure RECORD |
ref (choice) procedure NEXT ;
begin
procedure EXECUTE (c) | ref (choice) ¢ ;

begin boolean correct F
correct = false ;
while not correct do
begm ref_(mswer) a;
i~ QUESTION ;
correct 1= CHECK (a) ;
if not correct then
MESSAGE (a)
end validation ;
RECORD (a} ; :
¢ 1= NEXT (a)
end EXECUTE ;
comment attributes : 5
integer screen ; comment Recall that Gescran uses
integers to denote screens ;

end STATE

Class STATE defines the general properties of a screen. Procedure
EXECUTE has now become part of this class ; the same is true for procedures
QUESTION, MESSAGE, CHECK, REQORD and NEXT. Note that all these procedures have
lost their "STATE" parameter (s in the procedure-oriented version). There is
an important difference between EXECUTE and the other five : at the level of
class STATE, the latter, while needed, cannot be refined, since their precise
implementation may omly be kaown for a given STATE. They are thus defined at
the STATE level as ‘"virtual", i.e. only the procedure headings (pertial
specification) is given. In contrast, procedure EXECUTE is the same for all
STATEs ; thus both 1ts heading and body (which uses calls to the five
virtuals) may be given at the level of class STATE.

For any given application, there will be a certain number of inatances
of class STATE, corresponding to the various’ states of the application. This
instantiation concept is veadily implemented by the prefixing mechanism :

STATE class INITIAL MENU ; begin ... end ;
STATE class COMPILATION OPTIONS ; begm +eo end |
etc.

The body of each of these subclasses will 1aclude the corresponding body
for the procedures QUESTION, CHECK, MESSAGE, RECORD and NEXT.

One of the main benefits of this method is that [t allows a truly
modular construction of interactive applications, the general-purpose and
application-dependent parts being programmed separately, All problems
pertaining to a certain state (formulation of the question, treatment of
errors, recording of answers, etc.) are dealt with in the module (class) for
that state, and there only ; on the other hand, the wodule for a state does
not know anything about its connections with the rest of the application’s
graph. Thus it becomes possible to add or change states, transitions between
states etc. without disturbing anything in any module other than the ones
associated with the states directly involved in the modification, Apart from
its elegance, such a modular, object-oriented programming yields software
products on which modifications and extensions are much easier ta perform than
with programs structured in a more conventional, procedure-oriented fashion.
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8 - CONCLUSION =

We hope to have shown that the two—dimensional aspect of screen dialogs
has important effects on the structure and use of interactive systems. We hope
that the ambitious ongoing developments in the area of integrated software

environments will take into c¢onsideration the key issues which arise in the
design of systems for successful communication between man and machine.
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Principles of Package Design

1. Introduction

For several years some of us at
EDF have been writing software
tools of general applicability. The
term Atelier logicel (software work-
shop) has been used to describe our
team’s activity. The tools which have
been constructed and distributed dif-
fer widely in their nature and mode
of utilization. An important category
is that of subprogram packages. A
subprogram package is a group of
routines which may be called by any
program; its purpose is to provide a
means of performing tasks in some
domain of application which the
available programming language
does not directly address.

Examples of subroutine packages
which we have developed during the
past three years include those listed
in Figure 1. Working on these pack-
ages, we have gained various in-
sights. Our aim here is to convey
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[Software Engineering: G ! dards,
D.22 (Software Engineering]: Tools and
Techniq dules and interfaces, software
libraries, user interfaces; D.2.7 [Software En-
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ming Languages|: Language Constructs-ab-
Stract data types, modules, packages. .
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guages, Reliability,
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software, software tool, Fortran.
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SUMMARY: Subprogram packages are groups of related
subroutines used to extend the available facilities in a pro-
gramming system. The results of developing several such
packages for various applications are presented, with a dis-
tinction made between external and internal design criteria—
what properties packages should offer to their users and the
guidelines designers should follow in order to provide them.
An important issue, the design of reusable software, is thus
addressed, and the concept of abstract data types proposed

as a desirable solution.

some of these to other practitioners
who may be confronted with similar
problems. No breakthrough is
claimed; our techniques are mostly
standard. We feel, however, that
their presentation and a discussion
of the software engineering methods
used in the design of our packages
may be helpful to practicing pro-
grammers working in an “industrial”
environment,

In Section 2, we describe our en-
vironment, a large scientific comput-
ing center, and underscore the need
for subprogram packages in relation
to other kinds of software tools. Sec-
tion 3 is a detailed discussion of ex-
ternal design criteria, i.e., how pack-
ages should appear to the outside
world.  Section 4 presents our
methods for internal design, i.e., im-
plementation to fulfili the require-
ments of the preceding section; the
gist of our approach is that it consid-
ers a package the implementation of
one or more abstract data types. Sec-
tion 5 concludes with some reflec-
tions on the scope of our experience.

Since naming conventions form
an important part of our discussion,
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we have, throughout the text, trans-
lated the French words and abbre-
viations appearing in subprogram
names. The package names them-
selves have been preserved,

2. Why Subprogram Packages

The ideas presented here cer-
tainly reflect to some extent the fact
that our computing center is geared
toward scientific, mostly Fortran
programming; and, to a lesser one,
that it uses three IBM computers
(370-168, 3033, 3081) under MVS,
to which a Cray-1 has recently been
added.

The first question the reader may
ask is why we concentrate on collec-
tions of subprograms. Our aim is to
extend the range of facilities offered
by the existing language. There are
at least four other solutions.

(1) convincing users to switch to a
better or more powerful lan-
guage;

(2) writing JCL procedures;

(3) writing conversational proce-
dures;

(4) designing special-purpose pre-
processors.

July 1982
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Briefly, we shall discuss why these
choices are not always satisfactory.

Solution (1) is certainly the ideal  optimization). They usually have no  hardly more readable than the object and inter-routine type checking, re- thoug}; ‘;’e did msllst Llhat users read n(ﬁompane;
one. However, the sad fact is that  associated run-time systems, let  code produced by a compiler. cumion.letc. part of the manual at least once, our ru opn:at%gem'

most programmers in industry use
first-generation languages and are
unlikely to try another one. If your
aim is to produce tools that will be

Preprocessors present another
well-known problem. Often simple-
minded, they do not provide all the
services expected from a well-engi-
neered compiler (cross-references,
symbol tables, data flow analysis,
useful error messages, source level

alone debugging aids. Since they
generate code in existing program-
ming languages, they rely on the as-
sociated facilities. This makes run-
time errors a source of distress: they
must be traced back through a pro-
gram-generated program, which is

Ensorcelé—

free-form input and output
Chronos— ¢ time measurement

Additionally, it should be noted
that preprocessors only add surface
improvements to Fortran. They usu-
ally do not provide remedies for this
language's intrinsic limitations with
regard to data structuring, dynamic
allocation, pointer variables, intra

Subprogram packages do not suf-
fer from these defects, although, ad-
mittedly, they raise other problems

3.1 Overall Simplicity

In the area of simplicity our cen-
tral thesis was that most program-
mers would not use a subprogram
package if it required constant reli-
ance on a reference manual. Al-

ideal was that they should then be
able to employ a package for stan-
dard applications without further
reference to any written document.

\ USER 7

APPLICATION
PROGRAM

PACKAGE

SYSTEM

system,
etc.)

Textes— textimanipulation which we discuss in the next two  In practice, we have not succeeded

used, you had best conform to the Axédir— direct-access file management : To th tential u thi X P ST 5

majority rule. (An even sadder fact, Gescran— full-screen programming sections. To the potential user, they i reaching this goal completely, but  Fig. 3. Hierarchy of Programs and Pro-
Trie internal sorting offer a very neat way of enriching  we have nevertheless succeeded in  gram Users.

as we shall see in Section 4, is that
the tool writer is usually barred from
using modern languages because of
technical constraints.)

Solutions (2) and (3) (batch or
conversational procedures) are ade-
quate for tools intended for “end
users”, but not for tasks whose exe-
cution is initiated by programs.

Solution (4) (preprocessors) may
seem attractive but there are many
drawbacks involved. One is that it
may lead to the proliferation of pre-
Processors serving various purposes,
which will not be, as a rule, mutually

Fig. 1. Packages and Their Aims.

Initialization and Termination
answer)
CALL LEAGGE

Defining Screens and Creating Windows
CALL MXLSGE (,;;
CALL CREWGE (nw, ns, il, ir, iu,
CA{IL DELWGE (nw)
CALL BRIWGE (nw, b)

CALL PROWGE (nw)
CALL FREWGE (nw)

May [ use full screen? (yes, it answer = 0)
Leave full-screen node.

Define ns as the name of a screen.

Set to n the maximum number of window
lines.per screen.

Create window nw in screen ns with i, ir,
iu, id as coordinates

Delete window nw.

Assign brightness b to window nw.

Make window nw protected.

Make window nw free (unprotected).

the existing programming language
with new instructions, implemented
as subprogram calls.

3. External Design Criteria

A subprogram package is a col-
lection of mutually related subpro-
grams. Just how they should be
“related” to each other will be stud-
ied in more detail in Section 4. For
the moment, we turn to an important

question: How should these subpro- .

grams be presented to their potential

concentrating all the necessary infor-
mation for normal use of a package
on a single page. This we consider a
mandatory requirement. For an ex-
ample, see the reference sheet for the
package Gescran as outlined in Fig-
ure 2,

The most important aspect of our
approach is that we do not try to
write complex packages providing a
wide range of services and satisfying
all users’ fantasies. Instead, we con-
centrate on a careful study of user
needs and strive to offer simple and

ity tasks. The application program/
subprogram package/system hierar-
chy is pictured in Figure 3; other
levels may, of course, exist. We shall
refer to the programs which call our
subprograms as application pro-
grams; on the other hand, users will
be those individuals (or programs)
who (which) run application pro-
grams. (These terms, especially the
latter, are two of the most misused in
data processing; we shall strive to use
them precisely.)

compatible. As an example, consider CALL CAPWGE (nw) From now on, convert letters in window users? This problem is vital, espe-  efficient answers to the most impor- A
s : 3 = tant of th of decidin: Self-restraint is necessary be-
the case of a Fortran programmier w to capitals. cially in light of the fact that pro- an Il gourse; dectamg :
CALL ASIWGE (nw) From now on, leave any character in win- cause there is at least one level, that

who wishes to use the control struc-
tures of “structured programming.
His programs output results to var-
- ious graphic devices, and they re-

Changing or Examining the Internal Image

CALL REFWGE (nw, tabcha)

dow nw as it stands.

Replace contents of window nw with tab-
cha.

grammers are often reluctant to in-
vest the effort necessary to learn a
new methodology. They will not be
lured into using our packages unless
some very attractive arguments con-

which issues are the most important
is a design decision since often user
needs are either unexpressed or, if
expressed, require much work to be
transformed into realistic specifica-

of an application program, between
users and our subprograms. The lat-
ter must thus be as invisible to users
as possible. This is especially impor-

quire that some arrays have dynamic CALL BLAWGE (nw) Fill window nw with blanks. X ; tant in connection wit B
bounds (i.e., the bounds are read on CALL ASSSGE (nst, nss) Assign valus of screen nss to screen nst. vince them to do so. tions. ey ;nﬁ) fon with errors (Sec
CALL BLASGE (ns) Filt ail unprotected windows of screen ns J).

a file before processing begins).
Many preprocessors, such as Ratfor
[5], are available for the first pur-
pose; others, such as Fortran 3D
[t1), serve the second one (note,
however, that the current release of
the latter product uses the subpro-
gram package formula); still others
exist for the third requirement. The
input languages for these preproces-
sors will, in general, use wildly dif-
ferent conventions. Their treatment
of errors will not be the same. Some
of them, in generating Fortran code,
will delete comments, while others
will recognize comments under a cer-
tain predefined syntax as directives.
Their combined use will thus be very
difficult and, in many cases, impos-
sible.

CALL NBCWGE (nw, n)

CALL EXAWGE (nw, tabcha)

Input and Output (Affecting the External Image)

with blanks.

Asslgn ta nm the number of changes to
window nw since the last input opera-
tion.

Assign to tabcha the current contents of
wiridow nw.

CALL WRISGE (n1s)
CALL REASGE (ns)

Manipulating the Cursor and Function Keys

CALL POSCGE (nw, nline, ncol)

CALL EXACGE (nw, nline, ncol)

CALL EXAKGE (ns, m

Typed nput-Output (interface with Packsge Ensarcela)

Display screen ns on the terminal.
Input screen ns from the terminat.

Position Ihe cursar in window nw, al po=
sifian [rfine neol]

To what posilion [nine, meal] was the cur-
sor in window aw? [0, O] Il not in win-
dowi

Assign lo o the number of the function key
used lo send the screan conlents.

CALUUNIGGE (nw)
CALL UNIIGE (nw}

Direct subsequent output to window nw.

Obtaln subsequent input from window nw.

Fig. 2. Reference Sheet for Gescran.

In the following. subsections we
shall list those desirable qualities
which our packages should possess
and explain exactly how these design
criteria—namely, simplicity; self-re-
straint; ease of use; homogeneity,
safety—were met.

3.2 Self-Restraint

Our subprograms are called by
other programs or subprograms: they
are not directly concerned with solv-
ing “interesting” problems, but
rather with performing general util-

Foreword (""How to Use This Manual ')
Section 1—Introduction

3—Restrictions and Caveat
4—Examples

Appendix A—Error Messages
B—List of External Names
C—Portability
D—Performance

2—Individual Subprogram Deseniption

5—Notions on the implemantation

E—Controt and Data Flow Graph
F—Quick Reference List {last page)

Fig. 4. Structure of the Manuals.

3.3 Ease of Use

Documentation

Documentation is organized in
terms of simplicity, ease of use, and
homogeneity. All packages are doc-
umented by manuals with the same
structure, as shown in Figure 4.

Order of Arguments

One key to ease of use is consis-
tency of design. This criterion be-
comes even more crucial as new
packages are employed and the num-
ber of avallable subprograms grows.
It requires that a set of regular, co-
herent conventions be strictly ob-
served for all distributed products.
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An important area requiring a
homogeneous policy is parameter or-
der. In a language environment not
providing for key word parameter
transmission, actual arguments to
any subprogram must be given in a
fixed order, which matches that of
formal parameters for the subpro-
gram. Package users must thus know
this order; such a constraint often
becomes a source of annoyance and
errors. It is therefore desirable that
the package designer adhere to some
convention.

For example, in the Textes pack-
age, which allows character string
manipulation using pseudo-string
variables that appear to the compiler
as integer variables (see Section 4.6),
the syntax of some typical calls
would be what is seen in the box
below. itext, jtext, and ktext are
pseudo-variables, i and j integers.

The order of arguments decided
on here was the following: in assign-
ments the destination should always
precede the source. This is consistent
with the syntax of most program-
ming languages:

A:=f(B,C,...)

Moreover, since the package’s
aim is to provide the equivalent of a
“string” data type as it exists in, say,
PL/I, the chosen order aims to imi-
tate the syntax of languages which
do offer operations on this type; e.g.,
CALL CNCTTX (itext, jtext, ktext)
follows the PL/I pattern itext = jtext
| ktext.

The rule of consistency in the
order of arguments may conflict with
other, equally important criteria con-
cerning the homogeneity of design.
For example, in the Axédir package
for direct-access file management,
there is a read routine whose call has
the following form

CALL REAFDA (file-id, target,
record-number, error-indicator)

This conforms to the “destination
first” rule, although the file identifier

422

comes before the target for reasons
of consistency with the rest of the
package. For the write routine, how-
ever, we chose the syntax

CALL WRIFDA (file-id, source,
record-number, error-indicator)

since we thought it would be easy to
remember that corresponding argu-
ments occupy exactly the same po-
sition in both operations, “target”
for read and “source” for write being
symmetric. The destination first rule
is thus violated by WRIFDA.

3.4 Homogeneity

Number of Arguments (operands
and paramelers)

The question of arguments in-
volves simplicity as well as homoge-
neity. Not only should arguments
appear in a carefully chosen order,
but the number of them should also
be small if programmers are to re-
member the calling sequence.

Of all the subprograms listed in
Figure 1, 71 percent have zero, one,
or two arguments, and less than 4

percent have more than four (a func-

tion result being counted as an ar-
gument). The maximum number of
arguments is six.

Requiring short argument lists
has an immediate consequence: since
any means of data transmission be-
tween an application program and a
package subprogram other than ar-
gument passing (such as explicit
COMMON  block sharing) s
banned, every subprogram may per-
form only a well-defined single task.
In our case, this property became
another motivation for requiring

short argument lists, rather than a
consequence of this requirement, It
is indeed integral to our design phi-
losophy (see Section 4).

Such an approach has interesting
practical consequences which distin-
guish our packages from many com-
mercially available ones. Let a sub-
program, say f; be used to implement
an operation with a certain number,
say n, of operands. It is often the case
that several operating modes are
available, described by a certain
number, say m, of parameters or op-
tions. Quite commonly, n is small,
but m may be large and will grow as
users request new refinements.

At this point, the reader may ask
for a precise definition of the distinc-
tion between parameters and oper-
ands. Although the difference is in
many cases intuitively obvious, an
absolute definition does not exist,
Rather, the distinction should be
thought of as design decision which
the designer bases on the following
guidelines:

—The number n of operands
should remain small.

—The system should be able to
set default values for parameters.

—During the package’s evolu-
tion, as parameters are added (or
removed), the specification of oper-
ands for any single subprogram must
not be changed.

Thus, the distinction between pa-
rameters and operands is partly a
pledge made by the designer with
respect to the future of the package.

There are three ways of specify-
ing .a subprogram f with both oper-
ands and parameters:

CALL CRETTX (itext)

CALL CNSTTX (itext, "xyz . ..")

CALL CNCTTX (itext, jtext, ktext)

CALL SUBTTX (itext, jtext, i, 1)

(CREate a Text variable)
Create & new string variable, of name itext
{pseudo-declaration). I

(CoNStant Text)
Assign the character string ‘xyz . . .' to the string
variable itext.

{CoNCatenate Text)
Assign to itext the vails of jtaxt concatenated to
that of ktext.

(SUBText)
Assign 1o itext the value of the substring of jtext
starting at position i, with / characters.
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(a) Include all necessary oper-
ands and parameters in every sub-
program call, as in
CALL f(opnd,, .. ., opnd,,

parmy, ..., parms),

(b) Include only operands, asin
CALL f(opnd,, ..., opnd,)
and provide other subprograms, one

per parameter, to set the values of
parameters, in the form

CALL setval;( parm;)

with the understanding that the ith
parameter will remain set to the
value parm; until a new call to setval,.

(¢)y Use a mixed-mode ap-
proach, with some parameters in-
cluded in the calls to f and others
separately.

Throughout our packages, we ad-
hered to the second approach (b},
which we find preferable for two
basic reasons:

(1) It allows the package de-
signer to set default values for all
parameters, thus freeing the user
from providing arguments corre-
sponding to options not of primary
concern.

(2) Including parameters in the
operation invocation inevitably leads
to problems as the package evolves:
although operands usually do not
change if the initial design is sound,
requests for new parameters will ap-
pear. We have experienced this phe-
nomenon over and over again. For
example, users of Ensorcelé (free-
form input and output) requested
new facilities for output formatting.
To meet their request, we added a
“color” parameter to the Gescran
subprograms when color displays be-
came available. Had we included pa-
rameters in the calls, all the calling
programs would have had to be

changed, making it very difficult to
entice anyone into using our pro-
grams afterwards. Thanks to our
seemingly drastic policy, we have so
far been able to avoid such a situa-
tion.

Note that the use of a language
allowing subprograms to have both
positional and key word arguments
(such as Ada) would solve the prob-
lems inherent in situation (1}, but not
(2).

One may object that our tech-
nique increases the size and external
complexity of packages since there
will be one subprogram per param-
eter per operation. This does not
worry us too much because there is
not much difference in added com-
plexity between a new subprogram,
on the one hand, and a new argu-
ment to an existing subprogram, on
the other.

Another possible drawback is
that application programs will con-
tain many subprogram calls when
they require nondefault options. For
example, if a user wishes to output a
real number X in a particular format,
using Ensorcelé, the sequence of in-
structions could be as long as the one
listed'in the box on this page.

Although such code may seem
horrendous to experienced program-
mers, we find it quite acceptable (and
have even come to like it!). It is really
very readable since every call has a
clearly stated single purpose. Also,
remember that parameters remain
set until explicitly changed so after
initialization, there will usually be
fewer calls to the parameter-setting
routines (unless, of course, the user
program wishes to often change op-
tions).

All in all, we feel our strictly
functional approach, with a clear dis-
tinction between operands and pa-

CALL SAVPAR
CALL EXPON (5)

CALL BLANKS (3)

Save the current values of Ensorcelé parameters.

Real numbers will be outpu! using the exponent (£) format if their
absolute values are not in ]107%, 10*°[.

Output items will be separated by at least three blanks,

CALL ZONE (9) items will be justified to the right in zones ot length 3 (or a multipie
thereot if they do not fit).
CALL NBRDIG (8) At least eight significant digits shauld be printed.
CALL PUTZER Tralling zeras should be written (default: blanks).
CALL WRIREA (X}  Write X,
CALL RESPAR Restore previous parameler values.
413 Communications
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rameters (and between operation
and parameter-settirfg subprograms),
is very helpful in the design of co-
herent, easy-to-use, and simply
maintained packages.

External Subprogram Names

An important component of ho-
mogeneity as well as the aforemen-
tioned criteria of ease of use is how
external subprogram names are cho-
sen. This issue is a delicate one
(which we had not well understood
when we started our work) because
of four conflicting requirements:

(I) the desire to provide mnemonic
names, as expressive as possi-
ble;

(2) the need to avoid possible con-
flicts with names of subpro-
grams or data segments in the
application programs;

(3) the need for a coherent set of
naming conventions, which
grows with the number of avail-
able packages and subprograms
(and the size of the program-
ming team);

(4) for subprograms callable from
[BM Fortran, the tight 6-char-
acter limit.

At the outset, we had, with clarity
our goal, concentrated on the first
requirement. The reader may have
noted names such as BLANKS and
ZONE in the Ensorcelé example
cited in Section 3.3. Inevitably, this
led to conflicts with names chosen by
application programmers and we
had to adopt a more balanced strat-
egy. All of our current subprograms
have 6-character names with the fol-
lowing structure:

—Three letters which are an abbre-
viation for a “verb” denoting the
action to be performed, e.g., REA
for read, SET for set;

—One letter indicating the type of
object to which the action applies,
such as I for integer, C for cursor;

—Two letters which are a code as-
signed to the package, e.g., GE for
Gescran.

Thus, the subprogram positioning
the cursor somewhere in Gescran has
the name SETCGE.
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Using this technique, we have
been able (with some care) to avoid
name clashes. Additionally, the
method is simple to explain in the
package manuals so the name may
be considered mnemonic for the ap-
plication programmers.

3.5 Safety

Treatment of Errors

An important but difficult issue
is that of errors: How should a gen-
eral-purpose routine react in an error
situation?

First, we shall define precisely
what an error is in the context of our
packages. A subprogram in such a
package is intended to complete
some actions and/or to compute
some values. An error arises when
the subprogram detects that an ac-
tion cannot be performed or that a
requested value does not exist. In
cither case, it means the subprogram
is able to determine the fact that a
certain element does not belong to
the domain of a certain function
(which is part of the subprogram’s
abstract specification).

The possibility of an error made
in writing the subprogram being
ruled out, the cause of the error may
be either of the following:

—The user has provided illegal ar-
guments to a subprogram.

—Some well-founded request can-
not be satisfied because of external
conditions (e.g., dynamic memory
allocation fails since no more
space exists).

What policy should the package
writer adopt in regard to such errors?
There are two conflicting require-
ments: safety and self-restraint,

(1) Safety implies that no op-
eration not conforming to the appli-
cation programmer’s intent and, in
particular, no modification of the ap-
plication program’s state other than
those explicitly provided for in the
package’s manual should ever be
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performed. Additionally, the appli-
cation program must be able to find
out about the error and take any
corrective action it wishes.

(2) The need for self-restraint,
on the other hand, stems from the
fact that it is very difficult to decide
what action to take on the sole basis
of what is known to the subprogram
(the same situation is experienced by,
say, the writer of a lexical analyzer
in a compiler). It suggests that the
package should be able to make a
reasonable correction, without un-
necessarily bothering the calling pro-
gram, let alone causing a system in-
terrupt.

One way to ameliorate the prob-
lem of errors is to avoid illegal ar-
guments by enforcing as few restric-
tions on subprogram calls as possible
(which in effect means expanding the
specifications  to include most
“error” cases as peculiar but legal
ones). Because of such a policy, we
experienced very few error cases in
our first packages and were able to
adopt a rather haphazard approach
to error treatment (see the “error-
indicators” in the calls to the Axedir
subprograms in Section 3.3).

Recently, we have arrived at the
following approach. A small pack-
age, called Errare, which is com-
prised of only three subprograms has
been designed:

(1) CALL RECEER (n,
‘message’), RECE standing for REC-
ord Error, sets a global error indica-
tor to n and outputs the message
along with other information, in par-
ticular the operating chain (in order
to avoid avalanche effects, a shorter
text is output whenever n is equal to
the previous error indicator).

(2) INDEER (0), an integer
function with no arguments (a
dummy argument is required in For-
tran 66), returns the value of the
global error indicator (as set by the
last call to RECEER,; zero if none).

(3) CALL SETUER (n), SET
Unit, directs subsequent message
output performed by RECEER to
output unit number » (recall that in
Fortran, 1/0 devices are designated
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by integers between one and 99). If
SETUER is not called, error output
will be printed on the standard out-
put file.

With these subprograms, a pack-
age subprogram takes the following
course of action when it detects an
error.

—Record the error number and out-
put a message with RECEER.

—If an action was requested, do not
do anything,

—If a value should have been com-
puted, then two subcases arise:
when a sensible approximation ex-
ists, use it as a substitute; other-
wise, return a value chosen to be
as “out of bounds” as possible
(e.g., a negative integer if an ad-
dress was requested).

This technique seems both self-
restrained and safe. It is self-re-
strained because INDEER is a pub-
lic function. Thus, if the application
programmer wishes to correct errors
possibly occurring in a package sub-
program, he can do so by testing
INDEER after the call; the program-
mer will thereby remain in full con-
trol of all events since the package
itself does nothing abnormal except
outputting a message. The technique
1s safe because it guarantees that no
illegal action will be performed by
the subprogram. On the other hand,
if no reasonable value can be com-
puted, the result will be so absurd
that it will inevitably lead to program
abort shortly after the call unless the
application program regains control
with INDEER. It is certainly much
better to provoke a “negative ad-
dress” error than to allow the pro-
gram to work on an erroneous but
physically meaningful address.

The use of “abnormal” values,
such as negative numbers when an
address or array index would have
been required, 15 only possible be-
cause of the lack of strong type
checking in Fortran. The transposi-
tion of this technique to languages
with stronger type requirements re-
quires the presence of an undefined
value in every type. This condition is
met by languages like Algol W and
Simula 67 in which all programmer-
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defined types are pointer ones with
a special empty value (called null or
none) as one of their elements. No
such possibility exists in Pascal or
Ada whose record types, for exam-
ple, do not possess a void value.
One advantage of our methed is
that the treatment of errors does not
interfere with other criteria. In par-
ticular, in terms of argument lists,
the external specification of package
subprograms does not have to be
changed. Better general solutions are
hard to find, short of an exception
facility like those in PL/I or Ada.

3.6 Functions vs. Subroutines

Almost all of our subprograms
are subroutines (actions) rather than
functions. Using a function may
seem preferable in the case of a sub-
program returning a single value and
having no side-effect; the reader may
have wondered while reading about
the Textes package (Section 3.3) why
we used a subroutine to compute the
concatenation of two strings, Indeed,
if we want to output the concatena-
tion of jtext and ktext, we must write
what appears in the box above in-
stead of the much more natural

CALL PRNTTX (fenux (jtext,
ktext))

where fenttx would be a function
returning the concatenated string.

We found three objections to us-
ing functions.

(1) In many systems, including
ours, Fortran functions cannot be
called from Cobol programs
(whereas subroutines can). Since we
do have a few Cobol users, subrou-
tine interfaces must be written any-
way.

(2) A function type must be de-
clared in the calling program, except
when it is integer or single-precision
real and follows the Fortran default
rule (which eliminates logical, dou-
ble precision, and the Fortran 77
character type). This is a source of
errors in systems with no checking at
link or load time.

(3) Animportant issue in decid-
ing whether to express the same se-
mantics as x = f{a, b,...) or CALL
f(x, a, b, ...) is that only the latter
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INTEGER itext }
CALL CRETTX (itext)

CALL CNCTTX (itext, jtext, ktext)

CALL PRNTTX (itext)

pseudo-declaration of string varlabie

assign to itext the concatenated string
output

construct gives the subprogram
writer access to all the operands in-
volved, including x, which may be
needed in order to make f safer and/
or more efficient. Both safety and
efficiency were at stake in the choice
made for the Textes package. On the
one hand, since string operands are
integers for the compiler, our subpro-
grams must be able to check whether
both sources and target have been
correctly  pseudo-declared, thus
avoiding dangling run-time refer-
ences. On the other hand, the pack-
age uses quite an elaborate memory
management algorithm 7] and will
save a lot of space when itext is the
same string variable as jtext or when
the previous allocation for itext is
greater than or equal to length
(jtext) + length (ktext).

In view of these factors, we only
use Fortran functions for integer
functions giving the value of some
attribute of an object. This occurs in
the sense of Section 4.2 (that is, an
“accessor function” as defined in
connection with abstract data types).
For example, the length of string
itext is denoted by LNGTTX (itext ).

4. Internal Design Techniques

.4.1 Framewo}k

In the previous section we de-
scribed our basic aim: to provide our
products’ potential users (the appli-
cation programmers) with packages
whose external appearance is sound
and coherent. The key to success is,
of course, that these properties be
matched by the stability and consis-
iency of internal design. As Jackson
[3] remarked about early attempts to
define modular programming, words
like “functional integrity” are not
very useful as practical design guide-
lines as long as they remain unsup-
ported by more technical definitions
of the methods used. The concept
which we have found most fruitful
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as a design base for sound subroutine
packages is abstract data types, a
notion now well-established in aca-
demic and research circles although
practically uhheard of by most prac-
ticing programmers.

4.2 Abstract Data Types

An abstract data type is the for-
mal definition of a data structure or
class of data structures, as character-
ized by purely functional properties.
The definition of an abstract data
type T comprises three parts:

— a list of domain names, one of
which is T;

— a list of function names with as-
sociated functionalities, i.e., do-
mains of the arguments and re-
sults (at least one of these do-
mains must be T for every func-
tion); these functions are the ab-
stract representation of the oper-
ations available on the type;

— alist of logical assertions on these
functions, which describe the op-
erations’ formal properties.

A definition comprised of these ele-
ments is a formal specification of the
data type.

An implementation of an abstract
data type is a set of data definitions
and subprograms operating on the
data defined, such that each datum’s
type (with the ordinary meaning of
the word “type” in programming
languages) is associated with one of
the domains in the abstract data
type’s definition. Each subprogram
corresponds to one of the functions
and satisfies its functionality require-
ment with respect to input and out-
put arguments. The values of these
arguments satisfy the assertions for
every call of the subprogram.

Some have argued that a good
way, perhaps the best, to construct
truly modular programming systems
is to organize them as sets of abstract
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data type implementations. This
claim is supported by practical evi-
dence [13].

1t and other reasons explain why
we have used abstract data types as
the model for our packages. In fact,
every one of our packages is the con-
scious implementation of one or
more abstract data types. In partic-
ular:

— The Textes package imple-
ments the “text” or “string” type
with operations like the creation of
a constant text, the extraction or
modification of the ith character, or
concatenation.

— The Chronos package imple-
meants the “time counter” concept.

— The Axédir package imple-
ments the external array type with
“initialize,” “read,” and “write” as
operations.

— The Gescran package imple-
ments the “page” (or “screen”) and
“window"” abstract data types with
operations like *define window in
screen,” “write into window,” or
“visualize screen.”

It is therefore not surprising that
the main design choices we encoun-
tered in implementing packages are
conveniently expressed in terms of
abstract data types. In the following
subsections, we study some of the
most important, namely: linguistic is-
sues; heirarchical design; static vs.
dynamic instanciation; information
hiding.

4.3 Linguistic Issues

The programming language for
writing a package should offer a
structure  corresponding to  the
schema just presented. This is indeed
the case in many recent languages.
Foremost among these, from the
practitioner’s point of view, are the
pioneer, Simula 67 [1, 8], and the
youngest, Ada {2]—the former be-
cause of its availability on a variety
of machines, the latter on account of
its intended wide circulation,
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These languages, like their rela-
tives (Lis, Clu, Alphard, Euclid,
Mesa, Modula), include a program
structure (“class” in Simula and
“package” in Ada} with three cate-
gories of elements: data definitions,
subprogram declarations, and state-
ments. Such a structure may be used
to implement an abstract data type
(or an object of such a type, see
Section 4.5); its three components
correspond to data representation,
operations, and initialization, respec-
tively. Given an instance, 4, of a
class/package and x as one of its
components (subprogram or data
element), an external module which
is entitled to “use” A4 may reference
x. This is done either with a “dot
notation”, A.x, or directly by its
name, x, provided that the external
module has “acquired” 4 in some
fashion (inspect A4 in Simula, use A
in Ada) and there is no name con-
flict.

This kind of solution is very con-
venient, both from the package
writer and application programmer’s
point of view. The former designs
and implements the package as a
single module, separately compilable
and verifiable: all the relevant infor-
mation is concentrated in a single,
coherent entity. The application pro-
grammer, when requesting a func-
tion performed by the module, sim-

ply supplies the names of the module

and the function.

Unfortunately, it is usually im-
possible to write subprogram pack-
ages in such a language, even if one
is available. Although “first-genera-
tion” languages like Fortran and
Cobol and the assembly languages
for most machines are geared toward
a very simple, static allocation policy,
newer languages (including not only
“modular languages” but also PL/I,
Algol W, and Pascal) require a much
more ambitious memory manage-
ment scheme, usually with a stack
and a heap, the latter being subject
to garbage collection. Therefore,
even with well-engineered language
systems permitting separate compi-
lation and linking with modules writ-
ten in other languages, the system
for the more elaborate language must
exercise control at run-time. For
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most systems, this preciudes the
use of such a language for writing
subprogram packages since the
latter must be accessible to any
program.

The tool writer is thus placed in
a very frustrating situation. He
knows the right language(s) in which
to write a subprogram, but he re-
mains unable to use it. We, for in-
stance, have a very good Simula sys-
tem [9] but must resort to Fortran for
subprogram packages, with all its
drawbacks: no data structure other
than the array, no control structure
other than the If and Goto, no
pointer variables, no dynamically
created elements, no parameterized-
dimension arrays, no recursion, and,
of course, no “class” or “package”
structure.

4.4 Hierarchical Design

In order for each element of a
package to remain simple and un-
derstandable, it is necessary that the
package’s structure consist of several
layers in all but the most trivial cases.
For packages seen as implementa-
tions of abstract data types, this
means such an implementation will
use objects belonging to other types,
also defined abstractly, ie., used
through their properties rather than
representation. Thus, a package is
generally implemented as a hierar-
chy of types. Such a hierarchy is
illustrated in Figure 5. Ensorcelé |
(output) appears as a means for ma-
nipulating a stream of “printable”
objects, which is represented using
the concept of unbounded character
string, itself implemented as a se-
quence of lines.

Out of the many advantages of
this approach, two are worth noting.
First, it allows the designér to push
down all machine- and system-de-
pendent elements to the lowest levels
of the hierarchy, thus increasing
portability (for example, Gescran
was built for the IBM 3270 termunals,
but only a few subprograms must be
recoded for other similar devices).
Second, it lends itself to top-down
design, which, as Wirth pointed out
[12], should apply to data as well as
control.
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stream

character
string

line

WRIIEN
WRIREN
WRITEN
etc.

(write Integer)
(write real)
{write string)

T

ES4INT
ES4REA
atc.

(convert integer into string)
(convert real Into string)

T

ES4WRI
RETLIN

(fill line)
{write current line)

Fig. 5. Hierarchy of Types for Writing (Ensorcelé 1).

4.5 Static vs. Dynamic
Altocation

A package implementing an ab-
stract data type may provide one of
the following:

(1) one object of the type;

(2) afixed number of objects of the
type;

(3) anunlimited number of objects,
within the limits of the available
space at execution time,

Solution (1) provides for the im-
plementation of what may be called
an “abstract object” rather than a
type. It is used, for example, in En-
sorcelé which acts on a single stream
of objects.

Solution (2) 1s quite natural in
Fortran because of the arrays’ static
dimensions. For example, one pack-
age similar to our Textes in terms of
the services offered [10} provides a
fixed number of text variables, cor-
responding to the size of an array in
a COMMON block. Of course, this
often results in unpleasant repercus-
sions since the limit may appear too
large (entailing undue space use) or
too small (requiring recompilation-of
separate versions of the package).
We have seldom used this technique;
an example is Chronos, which sets
an absolute limit of 100 time
counters.

Solution (3) comes closest to what
is offered in languages providing
user-defined nonstatic types. Every
object of the type needed in the ap-
plication program must be explicitly
created by it (new statement in Sim-
ula or Pascal). This is the most pow-
erful solution; its main drawbacks
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within our framework is that a few
non-Fortran (or nonstandard) rou-
tines for dynamic memory allocation
must be used. Packages like Gescran,
Axédir, and Textes provide an un-
limited number of instances (char-
acter strings in the first, files in the
second, “‘screens” and “windows” in
the third).

4.6 information Hiding

One of the main goals of the
abstract data type approach is a clear
separation between what is visible to
application programmers and what
remains private to the package de-
signer. The latter category should in-
clude all elements dependent on non-
essential hardware, system, imple-
mentation, or design peculiarities.
We have found two techniques use-
ful in enhancing this property: the
careful choice of names and the use
of pseudo-variables.

Internal names are chosen so as
to seem mnemonic only to team
members. Like external names (see
section 3.4), they follow a regular
pattern and make collisions unlikely.

The notion of a pseudo-variable
is more important. In the case of
packages offering an unbounded
number of type instances, the indi-
vidual objects must be nameable by
the application programs, although
Fortran does not offer a declaration
other than for standard types. The
solution is to declare the objects us-
ing names which appear to the com-
piler as those of integer variables.
Actual “declaration” will then be ef-
fected by 2 call to an instantiating
subprogram. Such pseudo-variables
were used in the Textes example
cited in Section 3.3.

Internally, the integer variable
will usually contain a pointer to the
location assigned to the object and a
code allowing package subprograms
to check that the variable has not
been modified by an illegal opera-
tions. Indeed, the only legal kind of
operation in which such a pseudo-
variable may appear in an applica-
tion program is parameter transmis-
sion. Any other use (e.g., integer ad-
dition) is forbidden and will nor-
mally be detected in the next call to
a subprogram of the package.

This technique seems the best
way of adapting abstract data type
concept to Fortran: an object is only
available through its name and a set
of well-delimited operations. The re-
sulting programming style is not, of
course, typical of Fortran. In the box
below, an example of Gescran pro-
gramming appears.

5. Conciusion

We believe that the principles ex-
pounded upon in this paper may be
applied with equal success to widely
different kinds of software, and we

INTEGER SCREE, WINDO1, WINDO2

CALL REPWGE (WINDO1 , string 1)
CALL REPWGE (WINDOZ, string 2)

CALL CREWGE (WINDO1, SCREE, 2, 5, 7, 12) Pseudo-declaration of WINDO1 and
CALL CREWGE (WINDOZ, SCREE, 6. 15,1, 4)  WINDO2 as windows in screen

Declare pseudo-variables.
Pseudo-dectaration of SCREE as a
sureel pseudo-variable,
SCREE.

initialize contents of windows (RE-
Place contents of windows),

Define WINDO1 as bright (BRllliance

of Window).
CALL WRISGE (SCREE) Display SCREE.
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hope that our discussion has shed
some light on a key problem in soft-
ware engineering: how to write reus-
able software. It should be pointed
out, however, that all of our products
are conceptually small. This was a
deliberate decision on our part since
we. felt modest-sized team best suc-
ceeds with simple, efficient, and re-
liable programs, rather than large-
scale, ambitious ones, Although wé
feel many of our methods would ap-
ply successfully to larger projects, we
do recognize that their applicability
to, say, a vast numerical library re-
mains to be proved.
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NOTE (aott 1985)

Au moment de préparer la version finale
de cette thése, il nous a semblé utile de
compléter cet article de 1984, qui décrit le
prototype de Cépage réalisé 3 EDF, par
un document plus récent (aoidt 1985),
donnant 'état actuel du nouveau produit
en cours de développement, et qu'on
trouvera & la suite du premier. Le second
article (Cépage: Towards Computer-
Aided Design of Software) contient certain
nombre de redites mais aussi des
compléments importants.

[84a]

CEPAGE: UN EDITEUR STRUCTUREL PLEINE PAGE
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RESUME?

Nous décrivons Cépage, un éditeur de documents structurés congu pour etre d'emploi
agréable sur les terminaux actuels. Cépage se trouve au confluent des travaux sur les
éditeurs syntaxiques, du développement des éditeurs pleine page, et des études sur les
environnements logiciels avancés. C'est un éditeur universel, dans lequel la description
du langage est un simple paramétre ; son interface externe est faite pour les enfants
de l'¢re vidéo. Cépage constitue un prototype de ce que pourrait etre un éditeur
structurel utilisable dans un environnement industriel.
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Editeurs structurels, éditeurs syntaxiques, ergonomie des dialogues,
ication homme-machine, environnements de programmation,
formatage des programunes.
ABSTRACT

This paper describes Cépage, an editor for structured documents, designed for ease of
use on modern terminals. Cépage was conceived as the common child of three
influences: syntax editors; full-screen editors; and advanced software environments.
Cépage is universal, the language description being a mere parameter to the system;
its user interface is intended to be acceptable to the children of the video game era.
We think Cépage is a prototype of what a structural editor should look like in order to
succeed in production environments.
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Structural editors, Syntax Editors, Human Interfaces, Man-Machine
Communication, Programming Environments, Program Formating,
Ergonomics.
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CEPACE: UX EDITEUR STRUCTUREL PLEINE PACE

Bertrand Meyer
Jean-Marc Nerson

1. LES OBJECTIFS

élérons & celw de

est un éditeur structurel (terme gque nous pr r :

s n'.ca.éx?:&:"). dans la conception duguel l'interface humaine a élé'étudxée av:c[un soin
to{:l particulier. Il est enlidrement paramétrable et peut s'appliquer A tout langage
défini par une grammaire: langzge de programmation, de spécification, mais aussi
langage de description de documentsstructurés de toute nature {nous appellerons ci-
aprés "documents” les objets que I'éditeur sert & construire).

Cépage s'inscrit dans toute une lignée d'éditeurs structurels dévéloppés auccours
des dernidres années  [Allison1983, Donzeau-Gouget981, Donzeau- oulg]e.
Habermann1962, Hansenl971, 1981, Teitelbaum1981, Wilander1980, ‘_Fe\telbaule& ;
Les éditeurs structurels, par opposition aux éditeurs de lex;ul'classlqueds. z:::’\ceter:r;

i de simples suites de lignes ou de s,
de manipuler des documents non comme } b e fgnesiou dprearactéres;
i me des objets structuréds, en leu{- appliquan! P
:?:iv:nn;nt 3 leur structure. Parmi les principaux avantages de cette mélhode, on
peut citer: ] )

- 1a garantie d'obtenir des documents syntaxiquement corrects; ‘

ibili 0 i tucllement complexes mais

- sibilité d'eflectuer des transformations éven

g::azsgzs correctes, par exemple des transformations de programmes en vue de

leur optirnisation ou de leur transport; . Hrmba

1bili "utii § ie des taches de rouline liées

o bilité de décharger l'utdisateur d'une partie :

l::gs::lsxté, dans un éditeur de textes classique, de fournir tous les détails de la

syntaxe “concréte” des documents; ; .

i i . dre syntaxique dans un autre

-1 sibihté de traduction automatique d'un ca n

(p:rizsemple dans le cas de conversions entre langages de programrnation):

- l'utilisation d'une structure de données normalisée (en général lurbre

syntaxique abstrait) qui peut servir de support 4 d’autres outils logiciels (cf. par
e{c:mple [Schroederi983] ), voire & des enviconnements de programmation
complets ( [Habermann1982] )
En dépit de ces qualités, les éditeurs structurels n'ont pas encore gagné droit de
cité dans l'industrie. L'une des raisons principales de cette :xtauatxun e’f)lL' se{gﬁ‘nois“
t des cas, est de type "lgne & ligne”,
liée & leur interface externe qui, dans la plupar : N A
i § ges de
‘est-a- ue le dialogue avec l'utilisateur consiste en une s | 1 :
icf;néa:::s ?:t.ede réponses. Or les environnements 'de progrmmahop dlspumblels
aujourd’hui offrent de plus en plus couramment des éditeurs de texte pleine page, tels
SP]F (sur 1BM), Emacs (sur Multics et Vax-Unix) ou Vi (sur Vax-Unix), qui hre‘n.t parti des
possibilités d:as terminaux actuels. Parmi les caractéristiques de ces systémes, on
peut citer (Meyer1983a] : '
- L'utilisation de !'éeran complet, de préférence 4 la ligne, comme umté'.de
communication entre le systéme et l'utilisateur, donnant & celurm_une vnxloq
notablement plus large sur le document en cours Ide construction, et lui
permettant donc d'exercer un meilleur controle sur Pensembie du progessus

d'édition;
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- la possibilité, plus facile & fournir que dans un systdme ligne 4 ligne, de
personnaliser le dialague en conservant des informations relatives 4 chaque
utilisateur;

- l'utilisation en parallgle, dans certaing systémes, de plusieurs fenetres,
permettant 4 1'utilisateur de posséder & chaque instant plusieurs vues différentes
sur le document manipulé;

- enfln, et plus généralement, I'application du principe de "manipulation directe
[Shneiderman1983] , selon leguel on maitrise mieux un systéme lorsqu'il fournit &
chaque instant une représentation claire et & jour de l'état courant des objets
traités,

Le bénéfice de ces différentes propriélés est tel qu'il est & peu prés impossible de
convaincre un utilisateur d'un éditeur pleine page de revenir A un éditeur ligne a ligne,
quelles qu'en soient par ailleurs les qualités. Ceci, selon notre expérience, vaut aussi
pour les éditeurs structurels: s'ils sont de type ligne & ligne, ils ne pourront gagner les
faveurs des utilisateurs habitués 4 des systémes pleine page.

Les objectifs de Cépage découlent des réflexions précédentes. Il s'agissait de
combiner les avantages des éditeurs structurels en matidre de sareté et de puissance
avec la commodité d'emploi des éditeurs de textes pleine page, en tirant le meilleur
parti possible des terminaux modernes,

Le projet Cépage ne se voulait pas un projet de recherche, mais plutot un
transfert de technologie, destiné A rendre industriellement utilisables des idées, celles
de l'4dition structurelle, qui ont fait l'objet de travaux importants de la part des
chercheurs, En fait, nous avons du, & notre corps défendant, "inventer" un peu plus que
nous'ne 1'avions envisagé initialement.

Les principales sources d'inspiration ont &t&, pour les éditeurs structurels,
Gandalf et (dans une moindre mesure) Mentor et CPS; comme modéle d'interface
bomme-machine, Smalltalk nous a également influencés.

Selon tout critdre objectit, le prajet Cépage est un petit projet. La spécification et
la conception sont I'ceuvre des deux auteurs de cet article, la réalisation presque
exclusivement du second (Cépege inclut un petit éditeur de textes, écrit par N.
Triquet). Les premitres discussions remontent & la fin de 1982; le projet a
véritablement pris corps au début de 1983, avec pour objectif (qui a &té respecté)
d'obtenir un protolype en é&tat de fonctionnement le 20 décembre 1983 La
programmation proprement dite n'a commencé qu'en septembre 1983. Le programme
comprend environ 6000 lignes en Pascal: il utilise par ailleurs le progiciel Gescran pour
la gestion de linterface écran [Audin1980] , réalisé dans la meme équipe, et qui
représente environ 4000 lignes de Fortran 77 (Gescran est un ensemble de sous-
programmes permettant de décrire commodément les interactions "plein écran” en ne
manipulant que des abjets appartenant 4 quatre types abstraits, appelés écran,
fenetre, zone, terminal et accessibles uniquement & travers les primitives du progiciel
{Meyer1982] : il s'appuie sur le progiciel d’entrée et sortie Ensorcelé [Brisson1982,
Meyer1981] ). Les conditions quelgue peu particuliéres dans lesquelles ce projet a été
réalisé expliquent sans doute que ces paramétres ne correspondent gudre 4 ce que l'on
pourrait déduire de I'étude des bons auteurs [Boehmissz] L

IL peut etre intéressant de noter que Tutilisation partielle de spécifications

formelles, fondées sur le langage 2 [Abriai1980]} puis sur la méthode M [Meyer1984a] .a
rendu quelques services
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2. L'UTILISATION DE CEPAGE

2.1, L'éeran

L’écran affecté A une session de Cépage est divisé en un certain nombre de
fenetres (figure 1). Chacune de ces fenetres remplit une fonction précise:

- la fenetre "document” contient une représentation de I'état actuel du document.
en cours de construction ou de modiflcation; certains des éléments de cette
représentation, affichés entre chevrons (par exemple instruction), correspondent
4 des éléments du document qui n'ont pas encore été aflinés et sont dits non~
terminaux,

- la fenetre "exte” est destinée A recevoir les textes non structurés qu'll peut etre
nécessaire de fournir A certaines étapes d'une session (par exemple des
identificateurs, des commentaires};

- la fenetre "menu” offre 4 chaque étape la liste des choix disponibles;
- la fenetre "type” donne le type syntaxique des éléments délimités (ct. ci-aprés);

- des fenetres “réserves” (non présentes sur la figure 1) donnent des informations
sur des documents ou éléments de documents autres que le document en cours
d’édition; ces fenetres sont utilisées pour changer de document pendant la session
ainsi que pour les opérations de copie et de transfert.

- la fenetre "message" sert A afficher les diagnostics.

2.2, Le dialogue

A chaque étape de I'exécution d'une session de Cépage, le systéme propose 4
l'utilisateur de choisir entre un certain nombre de possibilités & l'aide d'un menu.
Pour utiliser les fonctions de base de Cépage, les menus suffisent; un manuel
d'utilisation n'est donc pas nécessaire pour peu que l'on ait compris les concepts
principaux du systéme. Dans la version [BM actuelle, le choix entre les différents
éléments du menu s'eflectue grace aux touches de fonction du terminal. Sur des
terminaux plus évalués, on peut imaginer d'utiliser une souris.

Chaque fois qu'il est nécessaire de désigner un élément du docurment (par
exemple pour indiquer & quel terminal s'applique un affinage, comme sur la figure 1a),
on utilise a cet eflet le curseur, que I'on positionne sur I'élément en question. C'est la
seule facon d'accéder au document (la notion de numéro de ligne, par exemple, est
ebsente). L'utilisation d'un dispositf plus rapide tel que la souris serait
particulidrement bienvenue ici.

Quelques fonctions plus avancées exigent l'emploi de commandes; ces commandes
sont formées d'un mok unique, et leur existence découle uniquement du nombre limilé
de touches de fonctions disponibles (12). Cépage n'a donc pas de "langage de
commande” au sens classique du terme: toutes les interactions avec le systéme se font
par "pointer-toucher”.

En particulier, I'utilisateur construisant avec Cépage un lexte de programme, en
Pascal par exemple, n'est jamais amené & frapper au clavier des éléments de syntaxe
coneréte, par exemple des mots-clés tels qu' if, procedure, record, cte. Au liey de cela,
un menu lui permet de choisir entre conditionnelle, déclaration de pracédure,
ddclaration de type enregistrement, etc., et le systéme prodult pour lui fa syntaxe
correcte (les taches de routine sont l'affaire des ordinateurs, non ceiles des humains).

Le seul cas ol le clavier {hors touches de function) est nécessaire est celui od
Uutiisateur doit fournir un texte que le systéme ne pourrait invenler seul, comme un
identificateur ou un commentaire. La fenetre “lexte” est utilisée & cet eflet; le texte y
est construit grace 3 un éditeur de textes (pleine page) inclus dans Cépage.
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2.3. Les fonctions de base .
Les principales fonctions offertes par Cépage se rattachent aux catégories
suivantes.
- promenade: parcours du document (montée et descente dans la hiérarchie des
entités syntaxiques, avancée et récul dans les listes);
- construction-modification: affinage, changement d'un affinage antérieur,
insertion et destruction dans une liste;
- copie-translert: reproduction ou déplacement d'un élément de texte (utilisant
'opération de "délimitation": voir ci-aprés),
- archivagerestauration: archivage sur un fichier, sous une forme adéquate, de
I'état actuel d'un document en cours d'élaboration, partiellement ou
complétemnent afliné; restauration d'un document précédemment archivé.
- génération: production de la forme finale d’un document completement afling;
~ controle de session: choix du document courant, passage d'un document & un
autre, définition de bibliotheque ete. (une bibliothéque est un ensemble de
documents; on peut au cours d'une session travailler sur plusieurs documnents,
dont un seul est actif & chaque instant, et passer librement de t'un & 'autre}.

2.4, La délimitation

La délimitation (figure 2) est une opération nécessaire pour les fonctions qui
exigent de l'utilisateur qu'il définisse un sous-ensemble syntaxique du document: ainsi,
pour une copie ou un transfert, il faut délimiter la partie du document & laquetle
s'appliquera l'opération. Cette délimitation s'effectue selon les principes de la
manipulation directe.

Pour "délimiter", on place le curseur & un emplacement quelconque de I'élément &
délimiter, et l'on précise la portée de ce document par une suite de commandes,
effectuées grace aux touches de fonction (indiquées sur le menu de délimitation); &
chaque étape, le systéme fait ressortir I'élément délimité par un changement des
attributs d'aflichage (couleur, affichage en négatif, ete.).

Les commandes de délimitation sont les suivantes:

- englober: inclure dans [I'élément déiimité la structure syntaxique

immédiatement englobante (par exemple, si l'on avait Jusque 14 délimité une

instruction, inclure I'ensemble du bloc qui la contient);

- “désenglober”: annuler I'effet d'une opération "englober” en revenant au niveau

inférieur;

- étendre & gauche: inclure I'€lément immédiatement, antérieur {cette opération

s'applique au cas ob I'élément délimité est une sous-liste; les trois opérations

complémentaires sont exclure 3 gauche, étendre A droite, exclure & droitej;

- terminer (accepter I'élément actuel); annuler.

2.5. Modificaticn du langage

Cépage est entitrement indépendant du langage, la syntaxe (coneréte et
abstraite) est un parametre qui peut etre modifté A volonté. Dans la version actuelle, la
description ou la modification du langage se fait de facon assez classique, par 'entrée
d'une grammaire. Il est prévu ultérieurement de fournic pour cette opération
Uinterface du systéme lui-meme, ce qui revieat & dire que l'un des langages pour
lesquels Cépage sera défini est un langage de description syntaxique (il est bien
conforme aux principes généraux de la conception de Cépage de faire en sorte que
l'utilisateur n'ait pas & connattre la syntaxe concréte de ce "langage”).
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FIGURE 2 - LA DELIMITATION

La portlon hachurée & 614 oé:Imitée (ot apparait en nagatl! ou dans une coulsur
spéciaie). En appuyant sur la touche de lonction 1 {(MENGLOBER"), on
délimite I'snsemble de la zone entourée sn pointiilé.

La modification du langage peut paraitre une opération peu utile en pratique, pour
autant que Cépage soit fourni avec des descriptions des principaux langages. En fait, la
possibilité d'adapter facilement la description du langage & des conditions locales nous
parait une caractéristique vivernent souhaitable, Elle permet en particulier de mettre
en place des normes de programmation d'une facon plus commode (et plus facile &
faire accepter) que par l'utilisation d'outils de controle o posteriori. On peut ainsi
définic des sous-ensembles d'un langage, des conventions relatives aux commentaires,
4 la structure des programmaes, etc.

3. CEPAGE: LES CHOIX TECHNIQUES

3.1. Les structures de données fondamentales

Au cours d'une session, Cépage travaille (figure 8) & partir de deux structures de
données principates:

- la description interne du langage, cu graphe de grammaie,
- la description interne d'un ensemble de documents: foret syntaxique abstraite.

Il est important de noter que ces deux structures de données sont traitées sur un
pied d'égalité. C'est ce qui fait de Cépage un systéme entidrement paramétré par le
langage: la description du tangage est interprétée répétitivement par le systéme. Cect
distingue nettement Cépage d'un systéme tel que Gandalf, paramétrable certes, mais
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Figure 3 : Les struclurcs de données

dans lequel la description du langage est "compilée", é'est-édlre dans lequel on doit
partir d'une version "noyau” de Gandaif et d'une description d'un langage X (ou Z, ou )
pour cbtenir un outil Gandalf-X, ou Gandait-C, adaptée au langage choisi. La solution
adoptée par Cépage offre une plus grande souplesse et explique qu'il soit possible de
modifler facilement le langage. En revanche, elle ne permet pas de prendre aussi
facilement en compte des actions sémantiques, ce qui est un des buts de Candalf.

Le graphe de grammaire est une structure de données permettant de représenter
l'ensemble des propriétés de la grammaire du langage. La syntaxe abstraite est
Utilisée comme base; elle est décrite par un ensemble de types syntaxiques et de
preductions, Chague type syntaxique apparart & gauche d'une production au plus; ceyx
qui n'apparaissent & gauche d'aucune production sont dits terminaux. 1l y a trois
sortes de productions, dites “concaténation”, “unton” et “liste”, illustrées
respectivement par les exemples suivants:

conditionnelle = ¢: baolden i stl, st2 instruction,

instruction = affectotion | conditionnelle | composée

.

compasée = instruction

La syotaxe coocréte est obtenue par "décoration” des productions de la syntaxe
abstraite; par exemple, & toute production de type liste sont associds un en-tete, un
délimiteur et une fin (par exemple begin, le point-virgule et cond dans le cas de
composée). Le graphe de grammaire regroupe I'ensemble de ces informations,
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Figure 4: Arbre Syntaxique Abstrait

Les noeuds internes d'un arbre syntaxique abstrait (figure 4) sont de quatre
sortes, correspondant aux quatre types de productions:

- les noeuds "'concaténés’ ont une arité fixé

- les noeuds "alternatifs” représentent seulement un choix dans une production de

type union;

- les noeuds "liste” peuvent avoir un nombre quelconque de fils.
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- les noeuds “"texte”, correspondant & des él& ts terminaux affinés par
l'utilisateur & I'alde de {"éditeur de textes inclus dans Cépage.

3.2. Autres structures de données

D'autres structures de données complétent les deux précétentes.

Outre les arbres syntaxiques abstraits, trois représentations sont nécessaires
pour les documents:

- la forme visualisable, un ensemble d'éléments destinés 4 etre transmis A Gescran

pour affichage sur le terminal & chaque étape de la session;

- la forme archivable, pour préservation et restauration ultdrieure de I'état

instantané d'un document;

- la forme textuelle, but ultime du processus d'édition.

Par ailleurs, la foret syntaxique abstraite s'accompagne d'un dictionnaire,
contenant les différents éléments textuels nécessaires (identificateurs, etc.). Les
feuilles des arbres syntaxiques contiennent des références au dictionnaire.

3.3. Les algorithmes

I convient de laire remarquer que les objectifs définis précédemment impliquent
I'absence d'analyse syntaxique dans Cépage. La construction d'un texte s'effectue par
choix successils, correspondant A la syntaxe abstraite; la syntaxe concréte est
construite par le systéme, qui effectue en réalité l'opération inverse de I'analyse
syntaxique, appelée parfois "désanalyse” (un-parsing).

On notera que la liberté laissée aux utilisateurs dans la description du tangage
permet d'établir en pratique un bon compromis enlre la facilité d'utilisation st le
degré de détail auquel descend le systéme; par exemple, on peut envisager de
considérer ezpression comme un terminal. Une autre technique pour ce type d'entité
syntaxique, non mise en ceuwre dans la version actuelle de Cépage, est celle de
[Kaiser1982] , intermédiaire entre “analyse et "déanalyse"

S'il n'y a pas d'analyse syntaxique, un autre type d'algorithmes a posé des
problémes sérieux: la construction de la forme visualisée. il s'agit de proposer 4
chaque instant une représentation aussi riche que passible de I'état du document, en
tenant compte des limites imposées par la taille physique du terminal.

Avec un éditeur de textes, pleine page ou non, on ne peut en général fournir quun
extrait du document formé d'une suite contigué de lignes (cerlains éditeurs offrent la
possibilité d'exclure des groupes de lignes de la partie aflichée afin de se concentrer
sur les éiéments les plus intéressants & un moment donné). Un éditeur structurel doit
etre capable de fournir une vue globale du document ou d'une partie de celw-ci, meme
s'il ne peut la représenter sur I'écran avec tous ses détails. La solution est I' &lision: on
remplace certains éléments du document par une abréviation - plus précisément, par
une simple indication de leur type. Ainsi, une procédure de 2000 lignes pourra etre
figurée par la simple indication “procéddure”; nous appelons ce type d'abréviation
abstraction. Le second type d'abréviation eflectue par Cépage est le rétrécissement,
qui consiste en une abstraction appliquée & une ou plusieurs sous-listes d'une liste,
comme dans-

231 wnstructions™;

p := ezpression;

"'57 instructions”

A chaque étape de la session, ie systéme détermine le foyer sur lequel l'ulilisaleur
semble voulour concentrer son attention d'aprés les dernidres opérations qu'll a
effectuées, et cherche & aflicher une vue aussi détailiée que possible d'une portion du
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document, de part et d'autre du foyer, déterminant les abstractions et
retrecissements nécessaires. Il en déduit {a forme visualisable qui est transmise &
Gescran pour affichage.

La recherche d'une bonne représentation visualisable s'est révélée une tache
d'une difficulté inattendue. Nous avons été surpris par le peu de documents
disponibles; si 'on excepte une bréve allusion dans [Barstow1984] , la seule référence
publiée est & notre connalssance [Mikelsonsi981] , qui est difficilement utilisable du
fait de son imprécision et des caractéristiques particulidres de l'environnement déerit.

L'abondante littérature sur le formatage des programmes ('prettyprinting”,
paragraphage} est ici de peu d'utilité, I'hypothise fondamentale, quoique en général
implicite (cf. en particulier [Oppen1380] ) est que, si la longueur des lignes est Lmitée,
le nombrs de lignes, lui, ne 'est pas. Pour un formatage sur écran, les colonnes et tes
lignes sont des ressources sévérement limitées,

Nous avons donc été amenés & concevoir des algorithmes spécialisés décrits
ailleurs [Meyerl983b, Meyer1984b] , et qui dépassent le cadre de cet article. Ces
algorithmes sont linéaires par rapport au nombre de noeuds de l‘arbre syntaxique. 1
s'agit de l'un des domaines ol nous avons da “inventer".

4. L'AVENIR DE CEPAGE

Comme il a été indique au début de cet article, la versicn de décembre 1983 est un
prototype, comprenant cependant les fonctions essentielles du systéme. Les actions
ci-aprés sont ensuite prévues.

- Il faudra étudier les réactions des utilisateurs. La conception de Cépage repose

sur ce que nous pensons etre une bonne base ergonomique pour des systémes

interactifs, opinion confortée par des études récentes reposant sur de solides
bases scientifiques [Card1983] , mais demande, bien entendy, & etre validée
expérimentalement.

- Tl est également prévu d'adapter le systéme & d’autres environnements. Cépage a

été concu pour etre portable; le choix de Pascal, de préférence & un langage

orienté objets comme Simula 67 {utilisé précédemment avec succés dans la meme
équipe pour réaliser des cutils \nteractifs de qualité), &tait justifié par cet objectif.

It est prévu A court terme d'adapter Cépage 4 un environnement Unix, & la fois sur

Vax et sur une station de travaill SUN (2 {'université de Californie); le SUN est un

poste de programmation & base de 68000, possédant un écran 4 haute résolution

("bit-map") et une souris. Ce projet est pour nous particuliérement important,

car c'est seulement dans des environnements matériels de ce niveau que des

outils tels que Cépage pourront, selon nous, tenir toutes leurs promesses; nous
espérons que Cépage sera également adapté & d'autres systémes de ce type (Perg,

Apollo, SM 90...).

- Il convient également d'2jouter les principales fonctions absentes du prototype,

en particulier l'outil de modification du langage, et préparer des grammaires-

Cépage pour les principaux langages utilisés en pratique (le prototype a été testé

avec une grammaire d'un langage voisin de Pascal).

A la lumiére des premidres expériences, nous aurons peut-etre la réponse 2
quelques-unes des questions qut restent actuellerment en suspens, comme celle de
I'analyse syntaxique: faudra-t-il, dans une version uliérieure, ejouter un analyseur
syntaxique, de facon 4 permettre de manipuler par Cépage des programmes existants,
obtenus par d’autres moyens?

Nous espérons que la mise en service des premiéres versions confirmera ce que
nous pensons etre le grand intéret potentiel du systéme actuel, et permettra d'en faire
un élément essentiel d'un environnement de programmation puissant et ergonomique.

163




References

Abrial1980.

Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer, “'A Specification
Language,” in On the Construction of Programs, ed. C.A.R. Hoare and R Perrot,
Cambridge University Press, Cambridge (U.K.), 1980,

Allison1983.

R Allison, “Syntax-Directed Program Editing,” Software, Practice and
Ezperience, vol. 13, pp. 453-465, April 1983

Audinl1980.

Eugéne Audin, Gérard Brisson, Bertrand Meyer, and Francoise Vapné-Ficheux,
"Geseran, Manuel de Référence,” Alelier Logiciel 22, Electricité de France, 1980,
(Fourth Edition, 1984)

Barstow1984.

David R Barstow, “A Display-Oriented Editor for INTERLISP." in /nferactive
Programming Environments, ed. David R. Barstow, Howard E. Shrobe, Erik
Sandewall, pp. 288-299, McCraw-Hill, New York, 1984.

Boehm1982.

Barry W. Boehm, Software Engineering Economics, Prentice-Hall, Englewocd Cliffs
(N.7.), 1982,

Brisson1982.

Cérard Brisson, Bertrand Meyer. and Francoise Vapné-Ficheux, "Ensorcelé:
Entrées et Sorties Sans Format (2¢me partie)," Atclier Logiciel no. 6, Electricité
de France, December 1982.

Card1983.

Stuart K. Card, Thomas P. Moran, and Allen Neweil, The Psychalogy of Human-
Computer fleraction, Lawrence Erlbaum Associales, Hillsdale {New Jersey), 1983,

Donzeau-Gouge1981.

Véronique Donzeau-Couge, Gérard Huet, Gilles Kahn, and Bernard Lang,
“Environnement de Programmation Mentor: Présent et Avenir,” in Actes des
Troisidmes Journdes Francophones sur Ufnfarmatique, Gendve, 1981,

Donzeau-Couge.

Véronique Donzeau-Gouge, Gérard Huet, Gilles Kahn, and Bernard lang,
“Programming Environments Based on Structured Editors: The MENTOR
Experience," in [nteractive Programming Environments, ed. David R. Barstow,
Howard E. Shrobe, Erik Sandewall, pp. 123-140, McGraw-Eill, New York.

Habermann1582
Nico Habermann and cthers, The Second Campendium of Gendalf Documentalion,
Carnegie-Mellon University, Pittsburgh (Pa), 1982,

Hansen1971. .

Wilfred I. Hansen, "Creation of Hierarchic Text with a Computer Display,” ANL-
7818, Argonne National Laboratory, Argonne (Ill), 1971 (Also as dissertation,
Computer Science Department, Stanford University, June 1971).

1981.1.W. Lewis , "Beyond ALBE/P: Language and Neutral Form,” in Proceedings of the
Sth [niernational Conference on Soflware Engingering, pp. 422-429, San Diego
(Ca.}, March 1981

Kuiser1982.

Gail E. Kaiser and Elaine Kant, "Incremental Expression Parsing for Synta-
Directed Editars,” Computer Science Report, Carnegie-Mellon University, October
1982,

Tl

Meyer1981.
Bertrand Meyer, “Ensorcelé: Entrées et Sorties Sans Format (lére partie),"
Atelier Logiciel no. 4, Electricité de France, April 1981, (Fourth Edition)

Meyer1982.
Bertrand Meyer, “Principles of Package Design," Communications of the ACH, vol.
25, no. 7, pp. 419-428, July 1982

Meyer1983a.
Bertrand Meyer, “Towards a Two-Dimensional Programming Environment,"” in
Proceedings of the Buropean Conference on Integrafed Computing Systems
(ECICS 82). Stresa (Italy), 1-3 September 1982, ed. Pierpaolo Degano and Erik
Sandewall, North-Holland , Amsterdam (The Netherlands), 1983.

Meyer1983b.
Bertrand Meyer and Jean-Marc Nerson, *'Showing Programs on a Screen,” Internal
Report HI/4590-01, Electricité de France, September 1983,

Meyer1984a.
Bertrand Meyer. .A System Description Hethod, Workshop on Specification
Languages, to appear, Orlando (FL.}, March 1384.

Meyer1984b.
Bertrand Meyer and Jean-Marc Nerson, Showing Programs on @ Screen, Submitted
for Publication, 1984.

Mikelsons1981.
M. Mikelsons, "Prettyprinting in an Interactive Programming Environment,"
SIGPLAN Notices, vol. 18, no. 6, pp. 108-116, June 1981.

Oppen1980.
Derek C. Oppen, “Prettyprinting,' ACM Transactions on Programming Languages
and Systerns (TOPLAS), vol. 2, no. 4, pp. 465-483, ctober 1980,

Schroeder1983.
Anne Schroeder, "Outils d’Analyse des Programmes sous Mentor,” CLOBULE
(AFCET), no. 4, 1983.

Shneiderman1983,
Ben Shneiderman, "'Direct Manipulation: A Step Beyond Programming Languages,”
Computer (IEEE). vol. 16, no. 8, pp. 57-69, August 1983,

Teitelbaum 1981.
Tim Teitelbaum and Thomas Reps, “The Cornell Program Synthesizer: A Syntax-
Directed Programming Environment," Communications of the ACH, vol. 24, no. 9,
pp. 563-573, September 1981,

Wilander1980.
Jerker Wilander, “An interactive Programming System for Pascal," BIT, vol. 20,
pp. 163-174, 1980.

165




CEPAGE:
TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE

CEPAGE :

Vers la conception de logiciel assistée par ordinateur

Bertrand Meyer

Computer Science Department, University of California
Santa Barbara, California 93106 (USA)
(806) 961-4321

and

Interactive Software Engineering, Inc.
270 Storke Road, suite #7
Goleta, California 93117 (USA)

ABSTRACT

The system described in this paper, Cépage, is a powerful tool for creating programs or other
documents in any language with a non-trivial structure. With Cépage, the computer, not the
user, generates the proper syntaz for the documents under construction, and produces on the
terminal screen, at every step of the interaction, a clear and consistent displey of the current
state of the the document.

Cépage applies principles of Computer-Aided Design to provide users with structural views of
programs and other documents, allowing them to look at the program at any chosen level of
detail.

The language is a parameter for Cépage, so that it is easy to use the sytem to support a new
language or a local variant of an existing language. .

The system offers facilities not only for creating and modifying texts, but also for performing
systematic transformations and, in the case of programs, checking and ezecution. It may thus be
used towards interactive testing and rapid prototyping, more generally, as a basis for an
advanced programming environment based on the manipulation of structured: documents
through a sophisticated user interface.

A preliminary version of this paper was presented at the Convention Informatique, in Paris, on
September 18, 1985,
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CEPAGE: TOWARDS COMPUTER-AIDED DESIGN OF SOFTWARE

1 - CONTEXT

Many of the tools used to design software are still very primitive when compared to those
which have been made available by software engineers to the engineers of other fields. This
paper presents a tool whose aim is to provide software designers with facilities similar to what
is known in other application areas under the general name of “Computer-Aided Design”.

A prototype of the system presented here, called Cépage (English-speaking readers should
pronounce its name 2s Sea-Page) was developed at Electricité de France in 1983 [13] using
standard mainframe equipment: an IBM 3081, running MVS—TSO—SPF. The version described
in this paper is an entirely new development; although based on the same fundamental .ideas
and on experience with the prototype, it pursues more ambitious aims aad is designed as a
commercial product. This new product is being manufactured by Interactive Software
Engineering, Inc. (in Goleta, California), initially for a Unix environment!; plans are under way
to port it to other architectures (VAX-VMS, IBM-PC, IBM-MVS, Apple Macintosh)Z.

Cépage will show its best on a bit-mapped display, but scaled-down versions for less
expensive terminals are also useful.

The design of Cépage relies on a simple but (we think) powerful idea: to allow visual
manipulation of structured documents in terms of their structure, not just as if they were mere
sequences of characters. Typical “structured documents” are programs written in some high-
level language; but it is important to add immediately that all documents with non-trivial
structures, such as specifications, designs, schedules, technical reports whose structure follows a
regular pattern and other standardized documentation are equally good candidates for handling
by Cépage.

Since the visual aspect of Cépage is so important to its understanding, we will for the time
being defer any thegretical explanation of the tool and rather give a short “demonstration’ of
the system, to help the reader get a feeling for the kind of interaction that goes on with such a
tool.

2 - EXTRACTS FROM A SESSION

We are using Cépage on a unspecified display. In this paper, we use various font
conventions (roman, italics, boldface) to distinguish the display styles that emphasize the
different types of elements; on an actual screen, Cépage relies on the facilities provided by the
hardware: fonts on a black-and-white bit-mapped screen, different colors on a color display,
various levels of highlighting, etc.

Below is the picture that we might have at a given moment in a Gépage session (figure 1}.

Actually figures 1 to 4 do not show the whole screen, but the main window, devoted to the currently

active document. The screen contains other windows, for such things as session information, help

messages and the catalog of available documents {one may work on several documents at a time and

switch back and forth between them).

2 The kernel version (serving as a basis for the others) is developed on a Sumitomo U-station. a 63000-based
Unix System V workstation with a color bi pped display. The impl ion | is Dilars {Design
and Implementation LAnguage for Reusable Software), an object-oriented language with multiple inheritance
and information hiding, pre-processed into C.

2 VAX is a trademark of Digital Equipment Corporation, Unix of AT&T Bell Laborateries, Macintosh of Ap-
ple Corporation.
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program < NAME> ;

(* Thia is a presentation of CEPAGE )
label <Label_list> ;
< Constant_declarations> ;

< Type_declarations> ;
Y 1 3 Expand
:(Vana“a_detlam!mm} ; i!zju-lwh::_xg___ﬂﬂgi
begin Ohar
repeat hl:eh-\:
< iove In
<Statement> T
until [ Stove to Previown |
< Boolean> Mave to Next
. Efnds
sly Redo
< Statement>; © T
<Statement_list> Gaback
d (* * Suiteh
end (*program®) S
GENERATE
L

Figure 1: A Cépage Document Window

As you see, we are working on a program in some Pascal-like, slightly Adaish language®.
out to be slightly Adaish as well.*

The most original feature of this program is that it is not complete: it contains not only
“true” program elements, appearing in boldface on the figures like label, until, the initial
comment (“This is a presentation of...”), ete., but also things in italics like <Statement>,
<Statement_list> etc. which represent as yet unexpanded program parts (the reader who
remembers his compiler courses will know them as “"non-terminals”). They are distinguished
from the expanded parts by the angle brackets and by the italics font (or, on a particular
terminal, by a diflerent color).

Texts such as the one displayed here are called Partially Expanded Documents (we use
the word “document” rather than “program’ to emphasize again the fact that the underlying
language could describe structured objects other than programs). Partially expanded documents
are the basic entity that Cépage handles. Of course, eventually a document should be
completely expanded, and Cépage can then generate a textual version of the finished product -
which, in the case of a program, may be passed on, for instance, to a compiler; other kinds of
documents might be handed over to a text formater such as troff on Unix, ete.

There is also an instance of <Statement>, in the repeat... loop at the beginning of our
program body, that appears in roman font (again, it might be a color), rather than italics. That
one does not represent an unexpanded statement: quite to the contrary, the statement has
indeed been expanded, and its expansion is so long that, given the size of the window, there is
no way to display the details of the statement without losing some of the context (the whole
program). The expansion of this statement perhaps contains as many as several hundred lines
{which would imply that you are aot a programmer of the most modular kind).

We call abstraction the process of displaying just the name of a non-terminal type, like
<Statement>>, to stand for a possibly large part of a document.

4 So far a9 we know, Pascal-like and Adaish are not trademarks of enybody yet.

29 Eztracts from a session B

Of course, you may at some point want to see some of the abstracted part. Nothing could
be easier: just move the cursor to some position in the <Statement> in roman and press a
mouse button (or function key, depending on the terminal). Of course, as you go down you will
lose some context, which you may see again by moving “out” again, using the corresponding
option in the menu.

For the moment, however, we are interested instead in developing our program a little
more. We have decided to expand the <Statement> that appears just before the end; thus we
have brought the cursor {represented by the hand on figure 1) to the “window” in which the
word <Statement> appears. We look and choose the Ezpand option, again using whatever
selection medium is available: mouse to point in the menu, function key etc. Actually, as the
menu shows, the Ezpand operation is so fundamental that you don't really need to select it
explicitly: just moving the cursor to a non-expanded element and pressing a button or function
key will trigger the expansion mechanism.

The basic interaction with Cépage is normally done in this fashion: Show and Select
(S&S), i.e. indicate a position on the screen and select a function from a menu. S&S is a very
effective way of dealing with computers interactively; Shneidermann (18] indicates that many of
the interactive systems that are really popular with their users rely on the principle of direct
manipulation and on the idea that the user should “see what he has got” at every stage of the
interactive session. This applies not only to editors but aldo to systems for Computer-Aided
Instruction, Computer-Aided Design (an application area which influenced Cépage significantly,
as will be seen below), to video games etc.

The effectiveness of this approach is backed by extensive psychological studies {3]. Of
course, the “S & S" principle is at its best when the display and the selection device (mouse,
joystick) are adequate.

Once we have said that we wanted to expand a particular statement, something new will
appear on the screen. The text of the document does not change, but a new ment pops up,
listing the set of possible statements in the language at hand (figure 2).

program <NAME> ;
(* Thia is a presentation of CEPAGE *)
label <Label_list>> ;
< Constant_declarations> ;
< Type_declarations> ;
< Variable_declarations>> ;

begin
repeat
<Statement>
until EXPAND:
< Boolean> Statement,
o i
< Statement>; ©
repeat...
<Statement_list> [ rm ]
end (*program*) call...
CANCEL

Figure 2: Selecting an expansion in a menu

The new menu allows us to select the type of statement we want. We do not need to type
any keywords (e.g. if, etc.); we just select the choice we want in the menu, and the system will
take care of generating the proper syntax for us. (However, we may also type the beginning of
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the statement if we prefer to work in this fashion, as will be explained. below).

Here assume we decide we want a conditional statement and choose the corresponding
item in the menu, with any available selection facility. The system generates the resulting
structure: figure 3 shows what now appears on the window.

program <NAME> ;
(* This is a presentation of CEPAGE *)
label <Label lst> ;
< Constant_declarations> ;
< Type_declarations> ;
< Variable_declarations> ;
begin MAIN MENL
repeat Expand
jor |un go there and clic| ]
<Statement> h g click
il Change
gl Delete
<Boolean> Move In
end; Mova Out
¥ if <Boolean> then Move to Pravious
< Statement> | Moveto Mext |
else Undo
<Statement> Rudo
end i R Gobaek
< Statement_list> Sutieh
end (*program®) SAVE
GENERATE
QuIT

Figure 3: Result of Expansion

The part which previously read <Statement> has been replaced with the syntax for a
conditional statement.

Note that up to now we haven't used an alphabetic keyboard: the mouse suffices for the
manipulations done so far. We do not have to use the mouse: we could type phrases, or
meaningful beginnings of phrases, if we prefered to. But we may work by S & § if we like. Which
solution makes more sense depends on the user’s individual taste and on the power of the
terminal hardware available,

At some point, for elements such as expressions, it may become tedious to have to describe
the structure; one just wants to type in the stuff. For the elements of lowest levels such as
identifiers or constants, this is the only possibility anyway since they have no further structure.
To enter such elements, one just types them at the place where they appear; they will be
immediately parsed by the system.

For example, one may wish to resort to typing when entering the boclean expression of our
newly built conditional statement, as shown on figure 4.

2O . Eztracts from a session 7

program <NAME> ;
(* This is a presentation of CEPAGE *)
label <Label_list> ;
< Constant_declardtions> ;
< Type_declarations> ;
< Variable_declarations> ;
begin
repeat
<Statement>
until
< Boolean>
end;
o if f (z) # $%2-2 then
<Statement>
else
< Statement>
end ;
< Statement_list>
end (*program®*)

Figure 4: Entering Text

It is important to note that the user has a choice at all levels between menu selection and
typing. In the latter case, an added advantage over text editors is that one may type just the
beginning of a phrase provided it is long enough to dispel any ambiguity; for example, typing
just while at a place where a statement is expected is enough for the system to generate the
entire pattern for a while loop.

We stop here our little demonstration. Other features resemble those which are generally
available in text editors: delete, copy, move, search, replace, “yank™ (i.e. put aside for later re-
use}, etc. There is an important difference, however, since here all such manipulations may only
apply to syntactically meaningful parts of the partially expanded document; so if we have, say

ifz then
b

else

a:=25
call P (z)

end

and want to apply an operation such as delete, copy etc. to a part of the document containing
¢, then this part may only be one of the boxes above. On the other hand, there is no way to,
say, replace “else call” by *‘; goto”, since neither pattern corresponds to a syntactic entity.
This is what is meant by “structural” manipulation.
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3 - THE BACKGROUND: STRUCTURAL EDITORS

A tool such as Cépage is known as a “structural editor” (in other terminoclogy for the
same concept, ‘‘editor” has been used with the qualifiers “‘structure”, “syntax”, “syntax-
oriented”, “language-based”, etc.). A structural editor manipulates documents in terms of their
underlying structure, not as if they were flat sequences of characters. Many of the basic ideas
were contained in Hansen's EMILY system [10]; the best-known structure editors are Mentor,
developed at INRIA (4,5,6], Gandalf, from Carnegie-Mellon {9) and the Cornell Program
Synthesizer {19]. A more recent tool with graphical facilities is Pecan [16,17].

Structural editors offer several potential benefits:
o they guarantee that only syntactically correct programs are generated;
e they provide a unified basis on which to build complete programming environments,

where all tools can rely on a single data structure describing programs (this data
structure, as we shall see below, is the abstract syntax tree);

e they make it possible to perform possibly complex program transformations in a safe
and efficient way;

o they allow automatic translation from one programming language to another;

e they may be used to free the designer from routine tasks like generation of the concrete
syntax.

Note that in listing these benefits we have referred to “programs” to emphasize the most
immediate applications but, again, it should be noted that other kinds of documents may be
handled by structured editors.

Most structural editors have been used so far in academic environments only, which we
think is a pity because of their great potential advantages. In our opinion, the main reason for
this situation is that structural editors have lagged behind in terms of their user interfaces.

In most present programming environments, one or more full-screen editors are available.
These tools make it possible to take advantage of current video terminals to edit documents in
a ‘“direct manipulation” mode; the size of the “window” provided by the system on the
document is the size of the available screen, which gives the user a much wider view of the
document and better control of the editing process than with traditional “line-by-line” editors.

The advantage of full-screen editors over line-oriented ones is so clear that it is impossible
to convince users to go back to the latter once they have experienced the joys of the former. We
were particularly aware of this fact after having witnessed in two different cases how how a
full-screen editor (IBM's SPF and Vi on Unix, respectively} all but ousted the previous line
editors in a matter of months in two different installations; the philosophies of Vi and SPF are
remarkably different, but the results were identical. This is all the more significant when one
considers the resistance of most users to any kind of change in their software habits
- languages, methods or tools.

It was thus clear to us that no structural editor, regardless its other qualities, would
become successful in industry if it did not provide at least the services of modern [ull-screen
editors. Cépage is an attempt to combine the best of both worlds.

A particular attention was devoted in Cépage to the design of the display algorithma:
the idea is to provide users with structural views of their programs or other documents, instead
of just the contiguous extracts offered by text editors. The paradigm here is that of computer-
aided design: one should be able to hierarchically ¢raverse a program in the same way that one
explores, say, an electronic system at various levels (system, subsystem, wafer, gate,
transistor...); similarly, one wants to see the global structure of a software system, then a little
more of a particular module, then one of the procedures of that module, then some of its
statements, etc. The display policy will be outlined below.

4 System structure ' 9

4 - SYSTEM STRUCTURE

The structure of Cépage is given by Figure 5. A kernel, or “pilot system”, works on a set
of data structures: grammar graph, abstract syntax forest, display form, visual form, library,
external form. The design of Cépage was done according to the “object-oriented” philosophy,
which may be roughly summarized as implying that a system should be described by the types
of objects it manipulates and their patterns of communication. True to this approach, we shall
present the internal structure of Cépage by describing successively each of its main data
structures.

Abstract
Syntactic
. Forest
Qrm Construct
e Modify
Read TDisplay
Display Show toss éfore
P Cépage External
Analyze Retrieve Form
Generate Modify \\ Interpret
Language \
N\
N\
AN
N
Text Form Crammax
Graph

Figure 6: Cépage System Structure

4.1 - The Grammar Graph

The grammar graph data structure is used to describe the language in which the
documents are written. A distinctive feature of Cépage is that this data structure is repetitively
interpreted by the kerne! system, which means that the system as such is completely language-
independent; the language is a parameter, easy to modify even at run-time. This flexibility may
be used for instance by a software project leader to modify the standard description of the
language used, so as to enforce programming standards. For example, the syntax for the
modified Pascal used in the above figures includes a compulsory comment at the head of all
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programs, procedures and [unctions (the comment used in the examples was This is a
presentation of CEPAGE).

In a different application of the same concept, one might wish to extend the syntax of
Fortran to include statements such as while... do or repeat... until, which will be translated
on-the-fly into lower-level Fortran equivalents (using IFs and GOTOs). The idea that the
language should be a mere parameter thus allows Cépage to offer a modern interactive
alternative to the concept of pre-processor.

The description of a language, as embodied in the grammar graph, is based on the notion
of abatract syntax. The abstract syntax contains the specification of syntactic types
covering the various kinds of constructs in the language. A syntactic type is defined by a
production of the abstract syntax, which is a description of its deep structure, independently of
its external representation. Thus the production defining conditional statements, which if
classical Backus-Naur Form would be something like

<conditional> = if <boolean>> then <statement> else <statement> end
will just be, in abstract syntax:
conditional = statement ; boolean ; statement

The abstract syntax that we use for describing languages, has three kinds of productions.
The one describing conditional in the above example is called an aggregate production; it defines
the elements of & syntactic type as having a certain number of components ; some components
may be defined as optional as e.g. the label_partin a Pascal program. An aggregate production
is not unlike a Pascal record type definition. A type may also be defined by a choice
production, giving the list of alternative expansions, as in the following example:

staterent = assignment | procedure_cntl] conditional | loop | compound

The third and last type of production comprises list productions. As an example, a
compound statement is defined abstractly as consisting of zero, one or more statements; this is
expressed as a list production, using the star notation:

compound = statement*

The abstract syntax of a language is defined by a set of productions of the above three
types. A syntactic type is defined by (i.e. appears on the left of) at most one production, so
that we can speak of aggregate types, choice types, list types. Syntactic types that do not
appear in the left-hand side of a production are called terminal types; examples are types like
Identifier, Constant etc. that have no further meaningful structure.

The grammar graph contains a representation of the abstract syntax of the language, i.e.
of the productions defining it. The nodes of the graph correspond to the syntactic types; an
appropriate data structure is associated with productions of each kind; for example, the
description of an aggregate or choice type will contain a list of pointers to the nodes associated
with the types appearing on the right-hand side of the corresponding production.

More information must be present in the grammar graph in order for the system to be
able to display readable views of the documents. Such views must be shown in the form familiar
to the user, i.e. the concrete rather than abstract syntax. The operation which makes it
possible to construct a concrete representation from an abstract one is known as un-parsing,
since it is the exact opposite of the “parsing task performed by compilers (and by Cépage, since
the user has a choice between entering by menu or by typing the beginning of a meaningful
phrase). In order to un-parse a document, the system must know the concrete syntax of the
language.

In the grammar graph, the concrete syntax is defined by additions to the abstract
productions. For example, the concrete syntax for conditional , defined above by a production
of the aggregate type, may be included in the grammar graph through a list of elements
representing the following sequence:

41 System structure 11

if @2 then @1 else @8 end

Such a sequence is to be understood as follows. Elements such as if, etc., are called
operators and represent the constituents that appear in the concrete syntax only. Operators
may be keywords of the language; they can also be formating marks like line_break, indent (n)
(meaning “indent right by n positions”), blanks (m) (meaning “skip m blanks”), tab (p) {meaning
“continue at position p of the line” and useful for fixed-format languages like Fortran), etc.
Elements of the form @ represent abstract syntactic elements, indexed relative to their position
in the right-hand side of the abstract production; thus here @1 is the first statement, @2 is the
boolean expression, @9 is the second statement. So the above concrete syntax addition means
that to display a conditional statement we display if, followed by the boolean expression,
followed by then, etc.

In this example, the order of the components of a conditional expression is not the same in
the concrete and abstract forms. This was dome not only for elegance (the order statement,
boolean, statement is more symmetric than the concrete one), but also to point out that these do
not have to be the same. In fact, the notion of “‘order’ of components in the concrete syntax
disappears if, as may happen, some components appear more than once in the concrete form; for
example, we may wish to automatically include at the end of each procedure a comment
reminding the reader of the name of the procedure, so that we will associate with the abstract
production

procedure = name ; parameter_list ; body
the following concrete syntax, using the Pascal convention for comments:
procedure @! (@2) ; @3 end procedure {@1}

Associating a concrete syntax with a non-terminal defined by & list production is simple;
all we need to record in the grammar graph is three operators: a header h, a terminator ¢t and a
delimiter 4; 2 list will be displayed as

r@1d@24d@%..d@n ¢

where @i is the concrete representation of the &-th element of the list. Thus for a compound
statement in an Algol-like language,  is begin, t is end and d is the semicolon.

There is no need to associate concrete syntactic information with nodes of the grammar
graph representing choice types such as statement.

The grammar graph is thus a powerful structure which makes it possible to describe
possibly complex languages in a flexible way. As stated previously, it seems to us very
important to allow for easy creation and modification of grammar graphs.

One of the standard languages supported by Cépage is thus LDL, 2 language
description language. LDL' documents are descriptions of grammars by abstract syntax
productions and concrete syntactic additions, as seen above.

4.2 - The Abstract Syntactic Forest

To represent partially expanded documents, the system uses a a set of abstract syntax
irees, or ubstract syntactic forest.

An abstract syntax tree is not unlike the “parse tree” used by compilers, but it
corresponds to the abstract syntax of the language rather than to the concrete one; in other
words, it contains only essential, structural information, and excludes anything that is only
associated with the external representation of documents (i.e. keywords and more generally
what we have called “operators” above).

Figure 6 gives an example abstract syntax tree.

The relevant praductions of the corresponding abstract syntax are the following (with (Al {€]
and [L} standing for aggregate, choice and list production respectively):
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Figure 8: An Abstract Syntax Tree
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[A] block = var_part ; ct:mpaund

L var_part = var_decl

(A] var_decl = variable_list ; type_description

L] varigble_list = variable

[A) varigble = name

[A] compound = statement

€] statement = assignment | conditional | loop | compound
(A assignment = variable ; ezpression

€ ezpression = variable | constant | binary

[A) binary = ezpression ; operator ; ezpression

[A] loop = ezpression ; statement

The Cépage abstract trees have four kinds of nodes, corresponding ta the syntactic type
categories: aggregate nodes, choice nodes, list nodes and terminal nodes. In the implementation
of an abstract syntax tree, the type of each tree node is known through a pointer to the node of
the grammar graph associated with the type.

The leaves of a tree are either:

o nodes corresponding to elements yet to be expanded (like the leaves labeled var_decl,

boolean and statement in the tree of figure 6); such nodes may belong to any of the four

categories;

o expanded terminal nodes, to which a text has been associated by the user thanks to the

text editor.

Note that choice nodes may only appear as leaves, corresponding to the first of these two
cases,

We have referred above to the basic data structure as abstract syntactic forest rather
than tree. The reason is that users will normally manipulate not one but several partially
expanded documents or sub-documents simultaneously. Each such element is represented by an
abstract tree; their reunion constitutes a forest. At each time, only one element is active; the
list of all available elements is contained in a catalog. Users may [reely add elements to or
delete elements from the forest, using the catalog, and go from one element to the others,
making them active in turn.

All document manipulations performed in response to user requests are executed by the
system as operations on the abstract syntax forest. The available operations are listed in
section 5 below.

4.3 - Display form

Although the abstract forest form of the document is best from the system's point of view,
users need a clear, concrete representation of the current state of the document.

A full-screen text editor can only show a contiguous excerpt of the document, which makes
it, very hard for users to keep a global view of the document and the editing process; often, in
applications such as program design, users end up going constaatly back and forth from one end
of the document to the other. Some text editors (e.g. SPF) provide an eliston mechanism that
makes it possible to mask temporarily certain lines of the text in the output, but this feabure
only yields a marginal improvement in the ergonomics of document preparation.

With a structural editor, it should be possible to do much better. The view offered should
itsell be structural: users should be provided both with the details of the particular local part of
the document in which they are concentrating their attention at any given time, but also with
the relevant structural context, for example the enclosing structures in a block-structured
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language.

The display mechanism used by Cépage is entirely automatic: after each operation
requested by the user, the system will determine the best possible view of the text that it can
present to the user, and display it.

The display algorithm, one of the main contributions of Cépage, is rather complex and
described in another paper [14]. We shall only mention here some of the main problems
involved.

The display task is close to what is known as pretty-printing, i.e. printing of a program
in a form suggestive of its syntactic structure. However, most published discussions of pretty-
printing (see e.g. [15]) are of little interest for an interactive structural editor because they apply
only to the case of paper output, for which it is assumed that the output width is fixed but
there is no constraint on the number of lines. With a screen editor, both lines and columns are
scarce resources: we want to find a representation of a partiaily expanded document in the
limited space available in a given window.

Since the concrete texts may be of arbitrary length, there will in general only be solutions
il we allow abbreviating the parts of a document that are the least relevant at display time.
Such abbreviation was called holophrasting by Hansen [10]. It occurs in Cépage in two
different ways:

e We may perform abstraction by replacing a possibly complex substructure by its

syntactic type name. This was done with the <Statement>> in roman on figures 1 to 4.

o In a long list, we may perform collapsing by replacing a certain number of list elements,
say 35 statements in a <Stetement_list>, by the mere mention

<35 Statements>

The aim of the Cépage display algorithm is thus to un-parse the abstract syntax tree into
a concrete form that will fit into the available window area, performing abstraction and
collapsing as necessary.

Technically, the algorithm produces a list of rectangular windows containing the text of
the various parts of the document; these windows are handed down to a screen management
package, called Screenpack, which takes care of the physical display. Screenpack works on
abstract objects called ‘‘windows”, characterized by attributes which may be modified by
Screenpack’s primitives.

An interesting possibility is for users to attach comments to nodes; there is a special
explain display mode, in which the information displayed for an abstracted node is not just 2
syntactic type indication such as <Statement> (not very informative), but rather the comment
attached to the node, if there is one. Note that this feature supports both top-down and
bottom-up design: in the former case, the comments will normally be written before the nodes
are expanded, in the latter the nodes will be expanded first.

One may imagine systems for displaying programs that go beyond the facilities offered by Cépage and
offer true graphical views of programs. Research on such tools was recently described in a special issue
of [EEE Computer (8], As mentioned previously, the Pecan system [16,17] also offers graphical views of
programs. This line of research is obviously important, and future versions of Cépage may include
graphical views. We have, however, included textual views only in both the Cépage prototype and the
current industrial version, for four reasons: first, designers are used .o manipulating programs and other
software-related documents as texts and, regardless of the useflulness of pictures for explanatory purposes,
text remains the ultimate basis on which to determine what a program really does, what a specification
really means etc.: second, the problem of providing consistent views et & variable level of detail, with
zooming and un-zooming capabilities, seemed to us at least as important as the inclusion of graphical
facilities: third, graphic programming is still at the research stage, as the articles in [3] clearly show, and
we are interested in producing a practical product for today's software professionals in industry: finally,
the variable-level display problem seemed difficult enough with text, as we learned by solving it for
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Cépage [14]: so it was reasonable to first limit ourselves to textual views before we went to graphical

representations.

4.4 - The Library

The library is an external data structure that makes it possible to store and retrieve
partial designs. Thus an editing session may be interrupted at any time and re-started later.
The library is organized as a database, where documents may be retrieved by name.

Technically, abstract syntax trees are stored in the library in an extended Polish form.
Trees, however, are not the only thing to store: since the language description is entirely
parameterizable, a suitable external form must also be found for storing and restoring grammar
graphs, and care must be taken to ensure that each tree is stored together with a reference to
the appropriate grammar graph; an abstract syntax tree without a grammar graph is as
meaningless as a dinner without cheese (un repas sans fromage est comme une belle & qui il
manque un oeil [2] ).

4.5 - The External Form

When a document is ready (completely expanded), the system must be able to generate a
text form suitable for handling by other tools. This is done by simply using the standard display
algorithm, with its output directed to a file or printer and its parameters set up in such a way
that the number of available lines is considered infinite and no abstraction or collapsing may
occur.

5 - THE FUNCTIONS OF CEPAGE

To allow the reader to get a better grasp of the whole scope of Cépage, we now give a
systematic list of the functions that are or will be supported by the current version of Cépage.

5.1 - Moving around

A basic set of functions makes it possible to move around a document, by climbing along
the corresponding abstract syntax tree:

e up (to parent)

e down (to ~th child)

o left (to sibling)

e right (to sibling)

o existence tests: is there a parent, a left sibling, a right sibling? How many children?

The names above refer to the abstract syntax forest. We have been very careful, however,
to make Cépage usable by non-sophisticated users who do not necessarily know about trees and
forests; thus the names of the options in the basic menu (see figure 1 above) are not up, down,
left and right, but (respectively) Move out, Move in, Move te previous and Move to mezd,
expressing the move in user’s terms rather than system terms.

5.2 - Marking

The marking commands make it possible to take note of positions in the document while
moving around, and to come back to them later.

There are three such commands: Mark marks the current position in the document; Back
returns to the most recent position to which one has not yet returned; Forth cancels the effect
of the most recent Back command that has not yet been canceled in this fashion.®

S The effect of commands such as Back and Forth is rather awkward to explain in natural language. The
same applies to Undo and Redo (see below). We have written formal specifications of these ds, which el-
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5.3 - Expansion

The expansion function makes it possible to expand a previously unexpanded node of the
abstract syntax tree. It is executed according to the information contained in the grammar
graph. For an aggregate or list node, no user input is needed; for a choice node, the user must
make a selection between the various possibilities (see 5.7 and 5.8 below); for a terminal node,
he must enter the text to be attached to the node.

5.4 - Cancel/Modify

Canceling a expansion puts an expanded node back into the unexpanded state. In the case
of a choice node, the Modify function allows the user to make a new selection; as much as
possible of the initial expansion will be carried over to the new one (for example, when
transforming an if ... then ... else ... statement into a while loop, the boolean expression and
the then part of the conditional statement will be transferred to the loop).

5.5 - Comment/Explain

The Comment command attaches a comment to a node {expanded or not). The Explain
command changes the display mode so that comments will be displayed with particular
emphasis.

5.8 - Search/Replace

Search and Replace correspond to traditional editor functions. In Cépage, however, the
search pattern and (in the Replace case) the replacement are structured elements similar to the
document being edited: the editor is called recursively to enable the user to define them (in
special windows).

5.7 - Selection

The selection facility allows the user to make a choice among a set of predefined
possibilities and allows the system to determine which item was selected. The way in which the
list of choices is displayed and the user makes his selection (pointing with a mouse in a menu,
pressing a function key, typing an ordinary key etc) depends on the terminal hardware.

5.8 - Parsing

The parsing function makes it possible to read a text typed in by the user and to build the
corresponding syntactic structure (subtree of the abstract syntax tree). The text can be
incomplete: the parsing method used in Cépage allows the system to fill in the missing parts if
the text typed is incomplete but unambiguous.

5.8 - Undo/Redo

Undo makes it possible to back up to previous states of the editing session by canceling
the effects of previously issued commands. Redo cancels such a cancellation.

iminate any potentisl ambiguity
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5.10 - Record/Replay

The record/replay facility makes it possible to archive the succession of commands issued
during an editing session and to replicate them. It thus allows recovering from a system crash.

6.11 - Catalog management/Copy

Catalog management keeps several documents during an editing session, one of which is
the “active” document, the others constituling the ‘‘catalog”; this function allows the user to
select an element of the catalog as the new active document, to copy part of the active
document into a new entry of the catalog, or to copy an element of the catalog onto an
unexpanded node of the aclive document.

6.12 - Delimit

The delimiting Tunction enables the user to define a part of a document, to be used as
parameter for a function such as cancel, copy ete. Since the “moving around" functions are
particularly simple to invoke, delimiting is mainly useful for selecting sublists.

5.13 - Save/Restore

The save/restore function copies documents (which may be partially or totally expanded)
from memory to files and back, using an appropriate external representation.
5.14 - Library management

Library management maintains databases of (partially or totally expanded) documents,
stored under the external representation mentioned above.
5.16 - Generation

The generation [function creates textual versions of totally expanded documents.

5.18 - Language description

The language description function makes it possible to translate descriptions of languages
to be supported by Cépage into their internal representations (grammar graphs). The
descriptions must be expressed in a language called LDL (Language Description Language}), not
further described in this paper.

5.17 - Interactive language description and modification

The interactive language description and modification function is similar to the previous
one but uses Cépage itsell to enter and modify LDL descriptions (grammars). It thus relies on a
grammar graph obtained by applying the previous function to the description of LDL in LDL.
This function provides for incremental language modification, i.e. makes it possible to construct
and modify 2 grammar graph in a stepwise fashion, as the corresponding LDI. deseription is
being developed and updated.

5.18 - Semantic checking

The semantic checking function makes it possible to perform verifications on documents; it
is only applicable if the language description includes the definition of the corresponding
semantic constraints. :
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5.19 - Execution

The execution function makes it possible to execute the active document, considered as an
executable program. It is only applicable if the language description includes dynamic semantics
for each operand type. A partially expanded document may be executed: when execution
reaches an unexpanded element, the user is interactively asked to provide the results of the
execution. This facility is a first step towards making Cépage into a tool for rapid prototyping
and program testing.

5.20 - Display

The display function displays an abstract syntax tree or subtree in a given window area,
finding the best representation it can {a detailed description of the display algorithms for
Cépage may be found in the paper [14]).

5.21 - Library of primitives

The library of primitives is a set of procedures which enable outside programs to access all
of the above Cépage functions and the Cépage data structures. By making these Cépage
internals” accessible to other software tools, it is planned that Cépage will be used as the
kernel of a more complete software environment, in which tools of various kinds (e.g. for static
program analysis, complexity analysis, program transformation, testing, text processing, etc.)
will be able to take advantage of the basic data structures and functions provided by Cépage.

6 - THE NEXT STEP: PATTERN-BASED INTERACTIVE PROGRAM
GENERATION

We have emphasized three aspects of Gépage:
o editor, i.e. system for creating and modifying documents at the source language level;

e program development system, with facilities for program checking, testing, and rapid

prototyping;

o basis for & programming environment.

These are the short term goals. To conclude with a more futuristic view, we will now
present a more remote but very promising application of this system towards solving the
problem of software reusability. We may call the Cépage solution pattern-based interactive
program generation.

Most of the software being written today is of a repetitive nature: there exist a small
number of basic program patterns (counting, searching, socting, comparing, exchanging,
assigning, creating...) on which programmers compose endless vatiations. Most of this work is
done at the lowest reasonable level, that of common languages; the use of shared, standard
components is not, despite a [ew exceptions such as libraries of numerical software,
commonplace This situation stems in part [rom the fact that each new situation may be
slightly different from the ones encountered previously. For example, even though most search
routines share a general organization (go to the beginning of the table, loop until either the
required element has been found or the subset of the table in which it may appear has been
exhausted, report “found” or “‘absent”), the representation details will considerably vary from
one case to the next. .

It is not easy to construct software components that provide a suitable answer to the
problem of reusability. Consider the simple problem of providing the users of a computing
center with a tool for sorting arrays. Assume that the algorithm is chosen to be, say, Quicksort,
which is well explained in computer science textbooks, so that one does not have to worry about
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this aspect of the question. A particular problem instance is characterized by how elements will
be compared and how they will be exchanged. The solutions open to 2 software toolsmith are
the following:

e A - Provide procedures for the most frequently occurring cases: e.g. increasing and
decreasing sort of integer, real, etc. arrays.

« B - Provide a single procedure (or operating system command) with many parameters or
options.

e C - Provide a single procedure with two procedure parameters, corresponding to the
comparison criterion and the exchange mechanism.

« D - Have a sorting procedure “skeleton” and manually create a tailor-made version for
each user who requests it, flling in his particular sorting criterion and exchange
mechanism, with the help of a text editor.

e E - As D, but use a macro-processor to generate the various versions.

None of these solutions solves the reusability problem satisfactorily. Solution A is too
partial; in many cases, the users will want to sort an array of pointers, leaving the elements
themselves in place, or use only part of the elements as keys, etc., so it is unlikely that many
actual cases will be covered by the library routines. In solution B, the options may cover a
larger number of cases, but the tool will require coding many options, thus using a reference
manual, a cumbersome and error-prone process. Solution C will work but with great
inefficiency, since the procedures passed as parameters will be called repeatedly in the inner
loops of the sorting program; the overhead, which is typically a factor of 10, will be
unacceptable in many cases. Solution D, using an editor to generate tailor-made versions, is
tedious and error-prone. Solution E implies learning the conventions of the particular macro-
processor on hand, which may be at odds with those of the programming language used, even if
they were designed by the same group®; furthermore, macro-processing is not interactive: the
user must first provide actual arguments in the adequate formalism, then wait for the macro-
processor to generate a text for inclusion in his program.

Structural editing may provide a better solution. A simple idea is to apply the notion of
abstract syntax. A sorting program may be defined as belonging to the following syntactic type:

sorting = comparison ; ezchange

One can thus envision a simple extension of the editing process in which the user
interactively describes the comparison criterion and exchange mechanism to be used in a
particular instance, and the system generates the appropriate sorting procedure by the same
expansion mechanism (abstract to concrete) which was used to sutomatically produce the
digplayable form

if ¢ then A else Bend
from the description of the language, the user providing only ¢, A and B. The only difference is
that the amount of text gemerated by the system will be proportionally larger in the case of
program generation.

We believe that such interactive, pattern-directed program generation is possible in the
Cépage framework as presented above. The basic mechanisms are already present; in particular,
since the language is a modifiable parameter. it is possible to extend the basic constructs such as
conditional, loop etc. with libraries of program patterns such as search, sort, or even payroll,
ete. Such patterns will be defined in the same way as basic language constructs: by their
abstract and concrete syntax.

_The idea of program patterns is close to the concept of “plans” used in the Programmer’s
Apprentice project [20]. We think, however, that reusable, parameterizable program modules

6 For example, on Unix, the macro-processor embedded in the C compiler [11] and the M4 macro-processor
[12' have different conventions regarding parentheses, commas, reserved words etc,
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can be implemented in the Cépage framework without recourse to the Artificial Intelligence
techniques used in the Programmer’s Apprentice.
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1. BACKGROUND

In previous work, we have investigated the application of modern software engincering techniques to
the design of veetor programs {e.g. (15,5,6,7] ete.). Our general approach has been to investigate super-
computcr programming not as a sct of recipes designed to yicld maximum performance on some or other
specific machine architccture, but rather as a systematic design activity, in which the concern for
elliciency must not offset other important software qualitics such as correctness, reliability, extensibility,
portability and others.

Techniques which can be applied towards this goal include asscrtion-guided stcpwise program
devclopment (10] and the use of abstract data types for the specification of "virtual vector machines” as
modcls of actual vector processing hardware.

This paper continucs our previous efforts by studying the application of another well-known pro-
gram construction method, program transformation, to the devclopment of an cfficient veetor program
corresponding to an important algorithmic concept, cyclic reduction. We start from a correel but very
incfficient program, obtained as a straightforward implementation of the basic mathematical idea and
expressed in terms of high-level operations of the abstract "vector machine”; we then perform a serics of
transformations, cach aimed at removing some of the inefliciency while preserving Lhe semantics of the
program. The final version, for which we offer an Ada implementation, is an elficient, readily veetorizable
program.

2. THE TOTAL REDUCTION PROBLEM

2.1. Statement of the Problem

Consider a set S with a binary operation, written ®, which gives § the structure of a monoid, i.c. @
is associative and has a zero element, written 0. Note that @ is not required to be commutative. Elements
of Swill be called scalars.?

We define V = VECTOR [5}, the set of finite sequences of elernents of S. An element v of V, called a
vector, is of the form

v= <v1, Uy e v">
where v, € Sfor i=1, 2 ... n. The number of elements of a vector vis written 1o

We define the shift operation

iV =V
such that
T(<Y,, 0y, 00 >) =<0, v, vy, 0 >
The total reduction problem is, given a vector & € V, to find ancther vector ¢ € Vsuch that
z=a® 1z Yavi
which can also be written, in scalar terms:
{31 = a7
5 = ¢ Oz

o equivalently:
7= a'.@ ., @ a“,@ - ®a,
fori=1, 2, ... d.

2 This use of the word "scalar” does not quite conform to standard mathematienl usage. but is common in

fiscussions af vector progr




2.2. Applications
The total reduction problem, as defined by /1/ above, has scveral applications. The most obvious

ones are the sum of Lhe clements of ¢, oblained by taking ordinary addition for @, and linear recurrences,

which may be written as . .

e, b

0 1

2l

!

Zt—1

U

which is an instance of the total reduction problem obtained by taking for @ the product of 2 X 2
malrices.
But some classes of non-linear recurrences lall into the same model, a straightforward generalization

e *z,_, + b

£ o=
' ¢ fni + 4

which can be put into the form of /1/ by again taking for @ the product of 2 X 2 malrices and writing
the cquation as

g=u /v,

Y
v,

A useful particular case where this is applicable is Cholesky factorization: consider a symmetrie
matrix with diagonal

<d,, dy, .. d>

and subdiagonal

<31, LR >.

n-t
The recurrence to be solved {or Cholesky (actorization is

where

b,;‘,| +ﬂge = d;
b *a =g

i.e. by climinating b;:

2
81

3
o = &y — =3
a-y

which is a problem of the above form if we take 5, = g
3. THE VECTOR MACHINE

3.1, Vector operations

Equation /1/ does not seem to lend itself naturally to efficient solution on vector processors such as
the Cray-1 or Cray-XMP, which lavor the exccution of "extension” operations {15,5]. Roughly speaking,
cxtension operations are those which can be cxecuved in parallet on all the elements of & vector (or more
generally, in Lhe casc of the Gray machines, en whole vector slices). A typical extension operation is the
addition of two vectors, clement by clement. !

' It shoubd be noted that on the Cray machines or on the CDC Cyber 205 vector operations are not actu-
ally performed on afl elements in parallel, but rather use pipelining. For most practical purposes, however,
pipelining may be conxidered as a form of parallelism.

Such operations on vectors may be exccuted by vector hardware much more efficiently than by just
applying repetitively their non-vector, or “scalar” counterparts. More precisely, a scalar operation which
takes time S when applicd to onc element will take time

teat {n}=n*S

when applied to a vector of n elements. A true vector operation, when applicd to this vector, will take a
time approximately equal to

tet (R)=U + n*V

where U'is the start-up time and Vis the asymptotic unit veetor time. On a vector machine, of course, V
must be significantly less than 8.

The performance of vector addition in both sealar and veetor mode on the Cray-1 is illustrated by
the diagram below. Vector mode becomes better than scalar mode for vector lengths n > U/ (S-V). The
non-linearity of actual vector processing time, which is apparcnt on the figure, is duc to Lhe fact that the
Cray processes vectors by slices of maximum length 64, hence the discontinuity at n = 64 (and also 128,

192 cte.). 3

scalar mode
execution time
(microseconds) 1

vector mode
-2

64 n
1

.,

The performance of an operation cxecuted in vector mode may be characterized by two paramcters
[13}:

- the asymplotic vector speedup p =

S
12
U d .
v cfined as the value of n for which the per-clement per-

- the "half-performance length” n, =
)
U+ n*Vv

formance is half the asymptolic one, i.e. 2 * V; Lhis parameter gives an idea of

n
the minimum length for which the benefits of vector mode offset the penalty incurred for short vee-
tors because of the startup time.

On a Cray-1, depending on the operation, p varies belween 7 and {0 and n; between 20 and 30.

Ouly those parts of 2 program which conform to certain rules may be exceuted in veetor mode and
thus achieve high performance. For Fortran programs on the Cray-1, the rules are the following {15] :

- 1. only "DO" loops are "vectorizable”;

- 2. these loops may only contain "primitive” operations snch as assignment and arithmetie on
boalean operations (no jumps, ete.),

- 3. the data clements accessed during successive loop iterations must be cegulinrly spaeed 1n
memory, i.e. array indexes must be lincar functions of the loop index;

- 4. no "backward dependeney”, in which a statement updates an array value a (1) und uses a provi
ous value of the same array, a (i-p) (Tor some p > 0), is permitted;

- 5. no "cross dependency”, in which an array value may be updated by ouc statement of the loop
and used by another, is permitied.
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In the last two cases, vectorization is inhibited by the compiler not because the hardware ecould not
carry out the computation in vector mode, but because the vector semantics of the program may be
different from the standard (sequential) semantics implied by Fortran and other common languages. If, on
the other hand, one fecls certain that the dependency is only apparent, for instance il the element
updated in a loop with index is a (2% +1) and the value used is that of e (2%) (so that the array slices
updated and used are in fact disjoint), then one may foree vectorization; the Cray Fortran compiler will
aceept a special direclive, IVDEP, to that effect.

The above rather stringent rules seem to preclude the vectorization of many simple algorithms; for
example, the formula which we have given for total reduction, i.c. /1/ above, clearly implics repeated
backward dependencies.

[n order to obtain vectorizable versions of this and other algorithms, more perspective is needed on
the "vector machine” and the operations it may perform.

3.2. An Abstract Model

Rather than studying at the scaiar {e.g. Fortran) level what can be vectorized and what cannot, it is
preferable to provide a formal model of the machine at the approprinte level of abstraction. Ilere we con-
sider a vector computer as a virtual machine associated with an abstract data type, type V =
VECTOR (S}, snd capable of performing a certain number of operations.

There is in fact probably no such thing as the vector machine, but rather various models adapted to
various applications. We thus tailor our specification to the problem at hand. Rather than giving a com-
plete formal description’ of the abstract data type "vector”, we concentrate on some uscful operations and
their essential propertics.

Operation Type Notation Properties

Zero v 0 All clements

Vector zero

Length V — Integer ]

Access to

—_

Blements V X Integer S v

Extension letz=v@ w:

of & Sealar |d=minfiul jul);

VX V=V v® w z, = 1,0y,

8pomtmn (i€ Ll
Jrof = |4+ 1;
(ro). =

Shifu V—V TV vy for£> 1,

Ofori=1

Odd Part V—= Vv Ov Ou, = sy

Ilven Part V—V Ey Bv, = uy

Merge into let 2=

Odd and VX V—V alternate (v, w) alternate (v, w):

foven Parts Oz=v;Ez=w

A,

On a vector computer such as the Cray-1, all the operations in the above table {except Tor “length"
and "access Lo clement” which require constant time) are "extension operations” which can be exccuted in
veclor mode. It should be noted, however, that some vector computer architectures may be more restric-
tive: the CDC Cyber 205, for instance, requires array elements to be contiguous, not just equally spaced,
so that operations such as "odd part”, “even part” and "merge” do not qualify.

The above list of operations is by no means exhaustive; more complete lists may be found in e.g.
[6,7). Tt should also be noted that for some applications it may be useful to introduce opcrations extract-
ing other "slices” than just the odd and even parts. The operations given here will suffice, however, for
our purposcs.

Among the abstract propertics of these operations which are particularly interesting are the follow-
ing (for any vectors v, w € V):

Ery = Qv /i/

Oty = 1By fiif
Ofv@w) = 0v Ow /il
E{v@®uw) = Ev @ Eu fiv]
r(v@w) = 7 @rw 1374

4. CYCLIC REDUCTION

The above properties, expressed at the vector rather than scalar level, provide the key to an efficient
solution of the total reduction problem /1/ by a vector algorithm. The idea to be applied here is a very
fruitlul heuristics, using the concept of recursion and close to techaiques such as “red-black ordering”
which can be applied to the development of several efficient vector algorithms.

In the “total reduction” equation
=¢@rz 1/

let us try to reduce the problem size by a lactor of 2 by applying operators O and E (odd and even parts)
to both sides, yiclding:

Oz=0{(a® rz)

Ez=E(a® rz)
i.c. by applying properties /i/ to /fiv/:

Oz=0a @ rEz 12/

Ez=Ea©Oz /3/

The interesting fact here is that by substituting the value of Ez, as obtained from /3/, inte /2/, and
using the associativily of @ combined with property /v/ above, we obtain a new equality:

Oz = (0a @ 7Ee) ® 70z 14/

which is a new instance of the total reduction problem, applied to the new vector variable Oz, a being
replaced by Oa @ 7Ea. This new instance uses vectors of approximately half the size of the original ones.

We thus have the essential ingredients for an cfficient recursive algorithm, known as cyelic reduc-
tion:

- for vectors of length 0 or 1. the result z will be just a:

- IPor larger vectors, we apply the algorithm recursively, using formula /4/, to obtain Oz ; formula

/3/ then yields Bz ;

- we obtain z by merging thase Lwo vectors (alternate operator).




6. PROGRAM DEVELOPMENT

6.1. First Procedural Version

The first version of the procedure is a direct translation of the basic mathematical definition. We
use an Ada-like notation.

procedure total_rcductt'onl (a:in VECTOR ; z :out VECTOR)
var oddpart, evenpart : VECTOR
begin
if |df < { then
z:=a
else - - o > 1
total_reduction, (Oa © rEa, oddpart) ;
evenpart ;= Ea @ oddpart ;
z := glternate (oddpart, evenpart)
end if

end procedure - - tatal_reductiam

The above version is correct but grossly ineflicicnt for several reasons:
- the procedure is recursive;
- it has local vector variables (oddpart and evenpart) which must be aliocated anew for each recur-
sive instance of the procedure;

- it uses two parameters, an input a and an output z, whereas in practice onc usually prefers to

work on a single vector, which is initially the input and will gradually be "transformed” so as to

become the output (the initia! value being saved il necessary).

We shall get rid of these sources of inefficiency through & stepwise process. To make the successive
program transformations clearer, we underline in each version the elements which have been changed from
the previous version.

§.2. Removing Extra Variables

Our first transformalion is a straightforward one, which gets us a little closer to our aim of working
on a single object (z): we note that it is harmless to begin the procedurc by the assignment z := a in all
cases, not just when {of < I (in the other case, this assignment will be overridden by the assignments to
the odd and even parts of z).

procedure talal_rcductiang (a:in VECTOR ; z:out VECTOR)

var oddpart, evenpart: VECTOR
begin
Zas GV
iflal > f then
lo!al_rcductian2 (Oa ® rEa, oddpart) ;
evenpart ;= Ea @ oddpart ;

z = alternate {oddpart, evenpart)
end if

end procedure - - total_reduction,

.g-

The next simplification is to get rid of the local variables oddpart and evenpart by cxtending the
nolation a little: we now allow assigning vector values direetly to the stices Oz and Ez of & vector z. For
example, to change the eyen part of 2 to y, we shail just write

Ez=1y
instead of

z := alternate (Oz, y)

With this ncw notation, the procedure can be simplified as follows:

procedure fotal_reductiong (a:in VECTOR ; z : out VECTOR)
begin
g:=a;
if la > I then
latal_rzductians (Ca @ rEe, Oz );

Ez =FEa® Qz;
end if
end procedure - - total_reduction

£ 4

The next obvious step towards the goal of working wilh only one vector variable is to replace all
occurrences of ¢ with z after the initial assignment z ;= a. We have to be very careful here: in the pro-
cedure resulting from such a transformation, the same vector z will be used as both an in and out actual
parameter of the recursive call. [t should be noted that Hoare's specification of the semantics of recursive
procedures [12] specilically excludes this case.

The replacement will be correct, however, if for the time being we assume a copy mechanism for
parameter passing. In other words we take in to mean "parameler passed by valuc”, i.e. copied upon each
procedure call into a variable local to the procedure instance; and we take out to mear “paramecter
passed by result”, i.e. copied back, on procedure return, from the local variable. To avoid any conlusion
resulting from the fact that we are using an Ada-like notation, it should be nosed that this mode of
parameter passing is not the normal Ada mechanism for in and out paramecters.

procedure tota.l_rzductimu (a:in VECTOR ; z : out VECTOR)
begin
Trm= )
if [ > 1 then
taial_r:duc!ion“ (Oz®rEz, Oz);
Ez.=Ez® Oz;
end if

end procedure - - im’al_rea'ucin'un‘
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5.3. Isolating the Recursion
It is uselful now Lo separate Lhe proeedure into twe parts: one which uses the iaitial vecetor 6 and one
which does not, To this effcet, we transform the procedure into a set of two mutually recursive pro-
cedures, only the first of which depends on ¢ ; Lhe sceond one, called intcrna!_parti, has only z as a param-
cter, of moade in out. Again, this is correct only if we assume a copy mechanism for parameter passing,
i.e. an in out parameter is copicd to (al eall time) and from (at return time) a variable local to the pro-
cedure instance.
procedure tota[_rcduction5 (e :in VECTOR ; z : out VECTOR}
begin
T =las;
! 5[7'-)

end procedure - - tatal_reductions

procedure {nternal port; (z:in out VECTQR)
begin
if |4 > 1 then
total_reductian5 (0z & 1Bz, Oz) ;
Ez :=Et® Oz,
end if

end procedure - - internal_parts

We can now isolate the recursion by cxpanding the call to totel_reduction in internal_part. The
effeet of this call is to assign the value of the first parameter to the sccond and Lo call internal_part recur-
sively. By carrying out this cxpansion, we get rid of the mutual recursion introduced in the previous step:
in the new version, only internal_part will be (direetly) recursive; total_reduction remains useful lor initiali-
zation only.

procedure ,total_rcductione (a :in VECTOR ; z: out VECTOR)

begin

z:=a;
internal_part, (z) ;
end procedure - - totaLreduct:'ons

procedure internal_part, (z : in out VECTOR)
begin
if {4 > 1 then
Qui=0:Q r Fz,
internal part, (Qz) ;
Ex:=Ez® Oz;
end if

end procedure - - internal_partﬁ

5.4. Introducing an Integer Parameter

The remarkable feature of the recursive scheme which we have obtained is that the recursive call
now has a single and simple actual parameter, Oz, where the formal parameter was z. Thus the sequence
of actual parameters in successive recursive calls, starting with the iritial call from total_reduction, will
be .

2

z=4a 0z, 0%z ..., 0™,
where O ¥z (k > 0) is the k-th iterate of O. The value of the exponent for the inaermost eall is

m=1 + llog (}a] ~1)]
(here and in the sequel, logarithms are in base two; for any real number z, lz] denotes the floor of z, ic.
Lhe greatest integer asuch that n < z).

This remark suggests a new version in which the explicit parameter to the recursive part is not z
itsell any more, but k, the number of times operator O must be iterated. Of course all instances of the
recursive procedire must be able to work on z; thus we make z a variable global Lo the recursive pro-
cedure. To this end we make procedure internal_part local Lo the non-recursive procedure total_reduction.

procedure total_reductian7 (a:in VECTOR ; z : out VECTOR)
var m - NATURAL - - i.e. non-negalive tnieger ;
procedure inlemal_part? (k:in NATURAL)

- - local to total_reductiaﬂ,,

begin
if ¥ < mthen
_Q_fz::.O_szTE‘Qk'lz;

internal_pn.rt,, (k1)
EQ* s=EQ* :00%z;
end if

end procedure - - internal_part,

begin - - total_reduction

7
z:=4a;
me= 1+ llog(la} = 1))
internal_part, (1) ; - - initiol parameler 13 one

end procedure - - to!al_reduct:'on7
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5.5. Removing the Recursion
These procedures can be further simplified. The body of procedure intemal_part7 is of the form
if k < mthen
Uk F
internal_part7 (k+1);
Dk
end if
where Uk is the statement
0% =0%0rE0*:
and Dl: is the statement
EO* 2= EO* 20 0%
Thus the exceution of the successive recursive catls amounts to a traversal of Uhe following tree in the
order indieated by the dotted line, t.e. the sweecssive exceution of
v, Uy..U ,0,D ,. D,D,.
where m = [1+log ({a} — 1)]. Note that there is one more instance of D, than of U, since U_is a null
statement.

inlernal_part (1)

internal_part (2)

internal_part (m) N

>
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Thus no recursion is nceded after all: the body of procedure total_réduction, may be readily
represented by

up ; down

where up and down are two simple joops:
- - up:
for k := 1 to m-1do
Uk
end for ;

- - down:
for k == m downto { do
Dk
end for ;

(the mnemonics used for the ‘oops reflect the fact that the index k goes up in the first loop and down in
the second ene).

It is parlicularly interesting to note that, although the recursion initially scemed quite necessary, it
has been completely removed. The above version is truly non-recursive in that it does not secm to contain
any hidden recursive feature, for example a stack lurking in the guise of an integer representing an array
of binary values as in some iterative implementations (sce e.g. [14]) of the Tower of Hanoi, Quicksort, the
Deutseh-Schorre-Waite tree traversal algorithm cle.

8. A SCALAR, VECTORIZABLE VERSION

6.1. The Program

[t is usclul to write U, and D, in a form which is closer to Wow they would be expressed in an ordi-
nary (scalar) programming language, but still easily amenable to antomatic vectorization. We define

slice (low, high, step)

where low, high and step are integers such that low < high and step > 0, as the scb of all integers of the
form

low + k*step

which fall into the range low ..high. Then Uk and Dk can be written as follows:

U (ie. 0= 0% 67 B0 s}
forall i in stice (1 + 2% |d, 2%) do
2fij =z fi)@zfi-2F
end forall
--D, (ie. O "'z = E0*'20 0%,
forall iin stice (1 + 2%, ]d, 2%) do
zfi :=z/€/®=/i~2k'1/

end forall
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We have.used the notation forall ... in ... to emphasize the fact that the above are paralicl loops:
on a veclor processor, ail the vector operations corresponding t6 an instance of Uk or Dk can be performed
simultancously.

Note that the backward dependencics in these loops are only "spparent” in the scnse of section 3.1 :
since hoth loops are low-level translations of veetor operations (U and D, kept as comments in the
above code), Lhe expected interpretation is the vector one (which anyway turns out to be identical to the
sequential loop serantics in Lhis case). Thus if a conservative vectorizer such as the Cray Fortran Trans-
lator inhidits veclorizution of these loops because of the apparcat dependencics, the programmer should
override the inhibition.

Below is a non-recursive version of total_reduction which integrates the various improvements
achieved so far. This version would be readily vectorizable by any simple vectorizer (such as CFT, the
Cray Fortran Translator, on the (7raky-l). A Turther simplification is obtained by using variables step and
half_step, corresponding to 2 £and 2 ¥ respectively, in licu of &

procedure tota.l_rcductz‘ong (a:in VECTOR ; z : out VECTOR)

var step, half_step : NATURAL ;
size : NATURAL ; - - size will stand for |d|

begin
size = [d| ;
forall ¢ in slice (1, size, 1} do
zff =afif;
end forall ;
step = 2 ; half_step == 1 ; - - This corresponds to k =
while step < size do - - U,
forall ¢ in slice (1 + step, size, step) do
zfif =z [i] @ z [i - half_step]
end forall ;
half_step = step ; step = 2 * step
end while ;
- - here {1 < half_step < size < step = 2%half step}
while step > 1 do - - Dk
forall iin slice (I + half_step, size, step) do
T fif =z [tf ® z [t - half_step/
end forall ;
step .= half_step , half_step .= hall_step /2
end while

end procedure - - latal_reductian‘{
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6.2. A Timing Diagram

The diagram below may be helpful in visualizing the operations performed on z during ar cxccution
of the procedure. It applies to the case Jof = 9. The elements are represented horizontally; the vertical axis
represents time. Hxecution of the operation

2 fif =25 @ z [

al lime tis pictured as

Elements: 7 {

t -

The two main loops ("up” and “down”) appear clearly on the diagram: the first one is executed in
steps | to 3, the sccond one in steps 4 to 7.

It is interesting to note that this dingram follows dircetly from the non-recursive veesion of the pro-
cedure; it can also be deduced from the initial recursive version (by expanding the call graph), but the
deduction is much more difficult.

o

Ilements: | 2 3 1 6

~1
x
=3

""&.\‘
t=4 \

Note that there is & minor possibility for extea parallelism, botween sleps dand 8, thit our develop-
went method has not eaplured.

The time needed for total reduction of a veetor a using cyelie reduction on the Cray is approsima-
tively

tyer, =2 (r=1)*U + (2%(n~1) = r}*V
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where r = [log (Ja]) ) This time should be compared to gy = (n=1) * § for the trivial algorithm (con-
stants U, Vand § were introduced in section 3.1). For the Cray, the cutoll point at which cyelie reduetion
hecomes more efficient is approximately |d = 40.

7. AN ADA VERSION

Below is an implementation of the algorithm as an Ada function, embedded in a generic package.
The following poinls are worth noting:
- the generie mechanism of Ada provides a way to wrile the package so that it can be applied to
various cases; the same generic package can have many instances depending on what the type
SCALAR and the "+" operation, which corresponds to the operation written @ above, arc chosen to
be: for instance the type INTEGER and integer addition, a matrix type and matrix multiplication,
ete.
- The Ada generic mechanism is flexible but strictly syntactlical: Lhe language provides no way to
specify that the actual generic paramecters must have predefined semantie propertics, for instanrce
that "+" must be associative. A language such as LPG (Language for Generic Programming, [4])
makes it possible to impose such conditions on generic parameters.
- Procedure ADD_TO_VECTOR is the onc which performs the veetor operations (corresponding to
U, and D, as defined above). These operations must be expressed in scalar form, using loops (for ...
in ... loop ... end loop). Thus on a vector computer an Ada program such as this one will require
the intervention of a vectorizer, similar to those which exist for Fortran {e.g. CF'T on the Cray-1), in
order to take advantage of the vector computation facilities of the hardware.
~ The loop in procedure ADD_TO_VECTOR scems to involve a backwards dependency. Tlowever,
this is only an apparcnt dependency, as delined in section 3.1, since the loop updates s and usces s -
offset, but these two slices are disjoint whenever offset 3 s.step; which is the case for the two calls to
ADD_TO_VECTOR in the package. This implies, however, thal a vectorizing Ada compiler would
still have to provide some kind of "vectorize at any risk"” dircetive similar to Cray Fortran's IVDEP.
The fact that vector programmers should still resort to such low-level and error-prone techniques in
Ada is all the more disappointing that Ada comes close to providing adequate notations for true vector
programming; it has vector opcrations such as vector assignment (used below in the initializing statement
z := a of function TOTAL_REDUCTION) and the notion of slice; however, an Adz slice must be a con-
tiguous subarray, whereas the slices which we nced here are not contiguous, which is why we must use
loops.
On the other hand, a language such as Actus [16], explicitly designed for use on vector computers,
readily allows for non-contiguous slices, but lacks the generic [acility of Ada.

generic
type SCALAR is private ;
with function "+" (X, Y : SCALAR) return SCALAR is <> ;
package CYCLIC_REDUCTIONis
type VECTOR is array (NATURAL range <>)of SCALAR ;
function TOTAL_REDUCTION (a : VECTOR) return VECTOR ;
private
type SLICE is record low, high, step : NATURAL end;
end CYCLIC_REDUCTION ;

N i 5

package body CYCLIC_REDUCTION is

procedure ADD_TO_VECTOR (z : in out VECTOR ;
s :in SLICE

offset :in NATURAL)
--z(s)i=1z(s)+ 2 (s- offset)

is

bottem : constant NATURAL = s.low ;

top : constant NATURAL := s.high;

stride ! constant NATURAL := s.step ;

last : constant NATURAL := (top - bottom) [ strde ;
begin

for {in 0..last do
z (bottom + i¥stride) = z (bottom -+ 1 *stride} + z (bottom + i*stride - offset)
end for ;

end ADD_TO_VECTOR ;

function TOTAL_REDUCTION (a : VECTOR) return VECTOR is
initial ; constant NATURAL = o’FIRST ;
final : constant NATURAL := ¢’'LAST ;
size : constant NATURAL := initiel - final + 1 ;
z: VECTOR == a;
step : NATURAL := 2; half_step : NATURAL := 1 ;

begin
(927
while step < stze loop
ADD_TO_VECTOR (z, (initial + step, final, step), half_step} ;
half_step := step ; step := 2 *step :
end loop UP ;
-« here {1 < half_step < size < step = £*half_step}
DOWN :
while step > 1 loop
ADD_TO_VECTOR (z, (initiel + half_step, final, step), helf_step) ;
step = half_step ; half_step == half_step / 2;
end loop DOWN ;
return z ;

end TOTAL_REDUCTION ;
end CYCLIC_REDUCTION ;




8. CONCLUSION

Transformational programming has been advocated by several nuthors, e.g. '[1,2,9,3,8].
whereas other researchers in sofware design methadalogy prefer a more direct approach Lo the syn-
thesis of programs from specilications [10, [1]. Although we do not wish to enter this debate here,
the derivations oblained in this papee may bring some interesting elements,

Isven though the sequence of transformations needed to produce the final program may seem
overly long and complex, we do not know of any other rigorous wuy to derive that program. We
would be interested Lo learn of o more dircct argument, il there is one.

On the other hand, it 15 not elear Lo us whether any of the existing program Lransformaltions
systems (where the term "system” is taken to denole coherent sets of tools and/or methods) may
indeed support the Lmnsform:\tions.dcxrribctl here.

In any case, we feel that the development presented here is another example of the need for
applying systematic techniques Lo the design of vector programs. [Seclive sapercaomputer program-
ming requires a wide range of modern soflware engincering tochiniques; program transformation may

be one of Lthem.
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On Formalism in Specifications-

Bertrand Meyer, University of California, Santa Barbara

A critique of a natural-language specification,
followed by presentation of a mathematical
alternative, demonstrates

the weakness of
natural language
and the strength
of formalism

in requirements
specifications.

6 : 0740-7459/85/0001/0006501.00 © 1985 {EEE

Speciﬁcation is the software life-
cycle phase concerned with precise
definition of the tasks to be performed
by the system. Although software en-
gineering textbooks emphasize its ne-
cessity, the specification phase is often
overlooked in practice. Or, more pre-
cisely, it is confused with either the
preceding phase, definition of system
objectives, or the following phase, de-
sign. In the first case, considered here
in particular, a natural-language re-
quirements document is deemed suf-
ficient to proceed to system design—
without further specification activity.

This article emphasizes the draw-
backs of such an informal approach
and shows the usefulness of formal
specifications. To avoid possible mis-
understanding, however, let’s clarify
one point at the outset: We in no way
advocate formal specifications as a
replacement for natural-language re-
quirements; rather, we view them as a
complement to natural-language de-
scriptions and, as will be illustrated by
an example, as an aid.in improving the
quality of natural-language specifica-
tions.

Readers already convinced of the
benefits of formal specifications might
find in this article some useful argu-
ments to reinforce their viewpoint.
Readers not sharing this view will, we
hope, find some interesting ideas to
ponder,

The seven sins .
of the specifier

The study of requirements docu-
ments, as they are routinely produced
inindustry, yields recurring patterns of
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deficiencies. Table ! lists seven classes
of deficiencies that we have found to
be both common and particularly
damaging to the quality of require-
ments.

The classification is interesting for
two reasons. First, by showing the pit-
falls of natural-language requirements
documents, it gives some weight to the
thesis that formal specifications are
needed as an intermediate step be-
tween requirements and design. Sec-
ond, since natural-language require-
ments are necessary whether or not
one accepts the thesis that they should
be complemented with formal specifi-
cations, it provides writers of such re-
quirements with a checklist of com-
mon mistakes. Writers of most kinds
of software documentation (user man-
uals, programming language manuals,
etc.) should find this list useful; we'll
demonstrate its use through an exam-
ple that exhibits all the defects except
the last one.

A requirements document
The reader is invited to study, in
light of the previous list, some of the
software documentation available to
him. We could do the same here and
discuss actual requirements docu-
ments, taken from industrial software
projects, as we did in a previous ver-
sion of this article.! But such a discus-
sion is not entirely satisfactory; the
reader may feel that the examples cho-
sen are not representative. Also, one
sometimes hears the remark that noth-
ing is inherently wrong with natural-
language specifications. All one has to
do, the argument continues, is to be

January 1985

Requirements \'

\ Spacification \

The \ Global

life cycle Detailed

This “water- \ 5
software life cycle
originated with W. W. \ »

Validation
Development of Large Soft- \
ware Systems: Concepts and \
Y=y g

1970), but many varlants have been o Piskibution \V
published. A well-known one is in - \

software  \l-- DESIGN --- \ ST B
fall model" of the Implementation \

Royce ("Managing the

Techniques,” Wescon Proc., Aug.

Boehm (1975). The IEEE Standard on Soft-

ware Quality Assurance (Standard P732) also Operation

defines a variant.-

Formalism

Table 1.
The seven sins of the specifier,

Noise: The presence in the text of an element that does not
carry information relevant to any feature of the
problem. Variants: redundancy, remorse.

Silence: The existence of a feature of the problem that 1s
not covered by any element of the text.

Querspecification: The presence in the text of an element that cor-
responds not to a feature of the problem but 1o
features of a possible solution.

The presence in the text of two or more elements
that define a feature of the system in an incompati-
ble way.

Contradiction:

The presence in the text of an element that makes it
possible to interpret a feature of the problem in at
least two different ways.

Ambiguity:

Forward reference:  The presence in the text of an element that uses
features of the problem not defined until later in
the text.

Wishful thinking: The presence in the text of an element that defines
a feature of the problem in such a way that a can-
didate solution cannot realistically be validated

with respect to this feature.

careful when writing them or hire peo-
ple with'good writing skills. Although
well-written requirements are obvious-
ly preferable to poorly written ones,
we doubt that they solve the problem.
In our view, natural-language descrip-
tions of any significant system, even
ones of good quality, exhibit deficien-
cies that make them unacceptable for
rigorous software development.

To support this view, we have cho-
sen a single example, which, although
openly academic in nature, is especial-
ly suitable because it was explicitly and
carefully designed to be a “good”
natural-language specification. This
example is the specification of a well-
known text-processing problem. The
problem first appeared in a 1969 paper
by Peter Naur where it was described
as reproduced here in Figure |,

Naur’s paper was on a method for
program construction and program
proving; thus, the problem statement
in Figure | was accompanied by a pro-
gram and by a proof that the program
indeed satisfied the requirements.

The problem appeared again in a
paper by Goodenough and Gerhart,
which had two successive versions.
Both versions included a criticism of
Naur’s original specification.

Goodenough and Gerhart's work
was on program testing. To explain
why a paper on program testing in-
cluded a criticism of Naur's text, it is
necessary to review the methodologi-
cal dispute surrounding the very con-
cept of testing. Some researchers dis-
miss testing as a method for validating
software because a test can cover only
a fraction of significant cases. In the

8

words of E. W. Dijkstra,2 “Testing
can be a very effective way to show the
presence of bugs, but it is hopelessly
inadequate for showing their absence.””
Thus, in the view of such critics, tes-
ting is futile; the only acceptable way
to validate a program is to prove its
correctness mathematically,

Since Goodenough and Gerhart
were discussing test data selection
methods, they felt compelled to refute
this a priori objection to any research
on testing. They dealt with it by show-
ing significant errors in programs
whose ““proofs” had been published.
Among the examples was Naur's pro-
gram, in which they found seven er-
rors—some minor, some serious.

Goodenough and Gerhart
found seven errors—some
minor, some serious—in
Naur’s program.

Our purpose here is not to enter the
testing-versus-proving controversy.
The Naur-Goodenough/Gerhart prob-
lem is interesting, however, because it
exhibits in a particularly clear fashion
some of the difficulties associated with
natural-language specifications. Good-
enough and Gerhart mention that the
trouble with Naur’s paper was partly
due to inadequate specification; since
their paper proposed a replacement for
Naur’s program, they gave a corrected
specification. This specification was
prepared with particular care and was
changed as the paper was rewritten.

Apparently somebody criticized the
initial version, since the last version
contains the following footnote:

Making these specifications precise is

difficult and is an excellent exarnple of

the specification task. The specifications
here should be compared with those in
our original paper.

Thus, when we examine the final
specification, it is only fair to consider
it not as an imperfect document writ-
ten under the schedule constraints
usually imposed on software projects
in industry, but as the second version
of a carefully thought-out text, de-
scribing what is really a toy problem,
unplagued by any of the numerous
special considerations that often ob-
scure real-life problems. If a natural-
language specification of a program-
ming problem has ever been written
with care, thisis it. Yet, as we shall see,
it is not without its own shadows.

Figure 2 (see p. 11) gives Good-
enough and Gerhart’s final specifi-
cation, which should be read carefully
at this point. For the remainder of this
article, numbers in parentheses—for
example, (21}—refer to lines of text as
numbered in Figure 2.

Analysis of the specification
The first thing one notices in look-
ing at Goodenough and Gerhart’s
specification is its length: about four
times that of Naur’s original by a sim-
ple character count. Clearly, the au-
thors went to great pains to leave noth-
ing out and to eliminate all ambiguity. "
As we shall see, this overzealous effort
actually introduced problems. In any
case, such length seems inappropriate
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. for specifying a problem that, after all,
fooks fairly simple to the unprejudiced
observer.

Before embarking on a more de-
tailed analysis of this text, we should
emphasize that the aim of the game is
not to criticize this particular paper;
the official subject matter of Good-
enough and Gerhart’s work was test-
ing, not specification, and the pre-
scription period has expired anyway.
We take the paper as an example be-
cause it provides a particularly com-
pact basis for the study of common
mistakes.

Noise. “‘Noise” elements are identi-
fied by solid underlines in Figure 2.
Noise is not necessarily a bad thing in
itself; in fact, it can play the same role
as comments in programs. Often, how-
ever, noise elements actually obscure
the text. When first encountering such
an element, the reader thinks it brings
new information, but upon closer ex-
amination, he realizes that the element
only repeats known information in
new terms. The reader must thus ask
himself nonessential questions, which
divert attention from the truly difficult
aspects of the problem.

Here, a fraction of a second is needed
to realize that a ‘‘nonempty sequence”’
of characters (8) is the same thing as
“‘one or more”’ characters (9). These
two expressions appear within a line of
each other; the authors’ aim was, pre-
sumably, to avoid a repetition. One is
indeed taught in elementary writing
courses that repetitions should be
avoided, and no doubt this is a good

rule as far as literary writing is con-

January 1985

risles: ™ Gt 31,:1 SIS uun :
(1) liné breaks must be made only wl ereiheglven texl has BLANKor NL,

~{*{2) each line s filled as far as possible, as long as .-
. (3) no Ilne wnll con!aln more than MAXPOS c_haraciers

leen a text conslstlng of Words saparated by BLANKS urby NL(new tlne) i
characters convert it to aline-by-ing form Inaccordance wlth the following
LAY

Original reference, Naur: . atiios uv

250-258. S nime

First version, Goodenough and Gerhart: B,
John B. Goodenough and Susan Gerhart, “Towards 2 “Theory of T at
Selection,” Proc. Third Int'l Cony. Re[table Software, Los Angeles, 1975, pp.
493-510. Also published in JEEE Tmru Sof/wareEngmeenng, Vol SE-1, Ni
Junc 1975, PP 156—173 e §

(U9
Revnsed versxon Goodenough and Gerhan Lo laha msrde
John B. Goodenough and Susan Gerhart, *“Towards a Theory of Test: Data
Selection Criteria,”” in Current Trends in Programming Methodology, Vol. 2,

Raymond T. Yeh, ed Prentice-Hall, Englewood C]]ffs. NJ 1977 PP 4#79
Another paper that uses the same problcm as an example cqrys T

Glenford J. Myers, “A Controlled Expenmcm in Program Tcstmg and Codc

Walklhroughs/lnspecuons," Camm ACM 21, N

760- 68. ! =

Peter Naur, “Programmmg by Acuon Clustcré,” BIT Yol. 9 . No. i 1969 pp. "
ME] o0t ¥i2 0 10}

Formalism

cerned. In a technical document, how-
ever, the rule to observe is exactly the
opposite—namely, the same concept
should always be denoted by the same
words, lest the reader be confused.

An interesting variant of noise is
remorse, a restriction to the descrip-
tion of a certain specification element
made not where the element is defined
but where it is used, as if the specifier
suddenly regretted his initial defini-
tion. An example here is “the output
text, if any” (20). Up to this point, the
specification freely used the notion of
output text (12,17); nowhere was there
any hint that such a text might not ex-
ist. If the reader wondered about this
problem, the specification did not pro-
vide an answer. Now, suddenly, when
the discussion is focusing on some-
thing else, the reader is “‘reminded”’
that there might be no such thing as an
output text, but no precise criterion is
given as to when there is and when
there isn’t.

Another instance of remorse is the
late definition of the “line” concept
(24), to which we will return. We will
meet again the tendency to say too
much, which generates noise, as a
source of contradiction and ambiguity,

Silence. In spite of all his efforts, the
specifier often leaves, along with over-
documented elements, undefined fea-
tures. Commonly, these features are
fairly obvious to a community of ap-
plication specialists, who are close to
the initial customers, but they will be
more obscure to those outside this cir-
cle. An example is the concept of
“line,” which is not really defined ex-
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cept in a parenthetical bit of remorse
toward theend of the text (24), where it
is described as a sequence of characters
“between successive NL characters.”
(By the way, are those characters part
of the line?)

An interesting point here is the cul-
tural background necessary to under-
stand this concept. In ASCIl-oriented
environments, “New Line’’ is a char-
acter; thus, people working on ASCII
environments (DEC machines, for ex-
ample) will probably understand easily
the specification’s basic hypothesis
—narnely, that NL is treated as an or-
dinary character upon input but trig-
gers a carriage return upon output.
These concepts are foreign, however,
to somebody working in an EBCDIC
environment, especially on IBM OS
systems, on which files are made up of
a sequence of “‘records” (correspond-
ing, for example, to lines), each made
up of a sequence of characters. A per-
son coming from such an environment
would not have written the above speci-
fication and will probably have trouble
understanding it.

Besides, the late definition of line is
plainly wrong. It applies only to lines
that are neither at the very beginning
nor at the very end of the text. In both
these cases, a line is not *‘between suc-
cessive NL characters” but between
the beginning of the file and an NL, or
between an NL and the end of the
file—that is, between an NL and an
ET. If we accept the authors’ defini-
tion, the first and last lines of the out-
put may be of arbitrary length; in fact,
an output containing no NL at allis ac-
ceptable regardless of its length, since

it does not have lines according to the
definition given! This is obviously ab-
surd and not what the authors had in
mind, but the use of natural language
leads naturally to such slips of the pen.

Another interesting silence concerns
the variable Alarm. Line 16 specifies
that this variable should be set to
TRUE in case of an error, but nothing
is said about what happens to it in
other cases. The answet is obvious, of
course; but the matter can only be
brushed aside as minor by program-
mers who have never run into a bug
due to an uninitialized variable. . .

It must be pointed out that Good-
enough and Gerhart corrected a nota-
ble silence in Naur’s original descrip-
tion. Naur’s text does not explain what
should be done with consecutive groups
of more than one break character; this
is one of the seven errors analyzed in
Goodenough and Gerhart’s paper.
Their specification’ corrects it by re-
quiring that such groups be reduced to
a single break character in the output.
Although something had to be done
about the problem, note that this solu-
tion is, to some extent, obtained at the
expense of simplicity. Eliminating re-
dundant break characters and dividing
a textinto lines are two unrelated prob-
lems; merging them into a single specifi-
cation complicates the whole affair.

It is probably better to deal with
these two requirements separately, and
this 1s what we do in the formal
specification given below., Some of the
current trends in programming meth-
odology emphasize this approach—
most notably under the influence of
the Unix programming environment,
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which, at least in principle, favors
tools that are simple and composable
rather than large and multipurpose.

Contradictions. There is another
problem with the concept of line.
Given a type 1, one should distinguish
between the types seq[f], whose ele-
ments are finite sequences of objects of
type ¢, and seq [seq [¢]], whose ele-
ments are sequences of sequences of
objects of type t. Such a confusion can
be found in Figure 2, where we are first
told (1) that the inputis a “‘stream,”’ or
sequence, of characters and later (10)
that it “‘can be viewed’’ as a sequence
of words and breaks. As any Lisp pro-
grammer knows, the sequences *

<abacca>
[sequence of objects]

and

<<a>» <ba> <cca>>
[sequence of sequences of objects]

are not the same. Note that the same
problem with respect to the output is
redeemed only by ambiguity; the type
of the output is not clear:

¢ Isit seq (CHAR)] as (21-22) seems
to imply?

s [s it seq [WORD]—that is, seq
[seq [CHAR]}—as (12-13) in-
dicates?

* Oris it even seq [LINE] —that is,
seq(seq(seq{CHAR]]}—if we con-
sider a line as a sequence of words
and breaks?

Thus, asentence that at first appears
to be only noise (9-11) yields a con-
tradiction within a few lines (13-14):
“The program’s output should be the
same sequence of words as in the in-
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The program’s input is a’§iréam of charactars whqge end is

signaled with a special end-of-text charastar, ET. Thera |s exactly
one ET character in each input stream Gharacters ara classified

3
2

3

4 as
5 * break characters—BL (blank) and NL (new line},
] * nonbreak characters—all others except ET,

7 ¢ the end-of-text indicator—ET.

8 A word is a nonempty sequence of nonbreak characters. A
9 break is a sequence of one or more break characters. Thus, the

10 Input can be viewed as a Sequence of words Séparated by breaks,
1t with possibly leading and tralling breaks-and.ending with ET.
2quence of words:

12 The program's output should be the sam
ol .
13 as in the input, with the exception that an.oversize word (i.e., a
-
14 word containing more than MAXPOS characters, where MAXPOS
I

16 Is a positive integer) should cause an error exit from the program
4 f—— e

16 (i.e., a variable, Alarm, should have the value TRUE). Up to the

e lk Z "
17 point of an error, the program’s output should have the following

18 properties: s

19 1. A new ITEé‘sh/ould start only between words and at the be-
20 ginn’mg?; the output text, if any.

21 2..A break in the input is reduced to a single break character in
22 in the output.

23 3. As many words as possible should be placed on each line
24 (i.e., between successive NL charac[ers).

25 4. No liné r-nay congai} Fnore than M;\XPOS characters (words
26 and BLs).

Figure 2, Goodenough and Gerhart's final specification of the origi.nal prob-
lem statement in Figure 1. Analysis of this text, overprinted in blue, is accord-
ing to the following key:

Ambiguity
Overspecification
Forward reference =

Noise
Remorse‘ o e
Contradiction *—

Formalism

put.”” This last comment is remarkable
since neither the input nor the output
is a sequence of words. Worse yet,
even if we parse the input into 2 se-
quence of words, this sequence is not
sufficient to determine the output—
one also needs two binary informa-
tions: whether thereisa leading and/or
a trailing break.

The same sentence (9-11), in its
overzealous effort to leave no stone
unturned, ends up introducing another
contradiction. An. unbiased reader
would be puzzled. How can the input
“end with [the character] ET" (11
and at the same time have a “trailing
break” (11)? “Trailing,” precisely,
means “at the end”’! What's the last
character if there is a “trailing” break:
ET or a break character?

A more experienced reader, such as
a programumer, will have no difficulty
resolving this contradiction; his experi-
ence will tell him that “‘end” markers
follow *“trailing”” characters. But this
reliance on intuition and kn owledge of
the application domain can be par-
ticularly damaging when transposed to
large requirements documeats, which
will be handed down to a group of
system designers and implementors of
diverse backgrounds and abilities.

Overspecification. Overspecifica-
tion in requirements can be annoyingly
close to silence. The reader is told too
much about the solution while he is
desperately tryingto grasp the problem
and figure out—by himself—features
not covered by the text. Overspecifica-
tion is typically, aithough certainly not
exclusively, found in requirements
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documents written by programmers.
Psychologically, this is understand-
able. Animplementation-level concept
is good, concrete, technical stuff,
whereas true requirements deal with
much less tangible material. To a com-
puter specialist, a stack is easier to
visualize than, say, the flow of infor-
mation in a company or the needs of a
radar operator. Thus, many specifiers
have a natural tendency to cling to pro-
gramming concepts. There is a price to
pay for this: Implementation decisions
taken too early may turn out to be
wrong, and important problem fea-
tures can be overlooked.

The example text contains an over-
specification right from the first
sentence: the notion of the end-of-text
character ET. The only reason for the
presence of this notion is Goodenough
and Gerhart’s desire to correct Naur’s
priginal program. Input-output facili-
ties of the version of Algol 60 used by
Naur (and, for fairness, by Good-
enough and Gerhart) do not provide
for end-offile detection when reading,
50 one must assume the presence of a
special character at the end of the file
to make up for this deficiency. But ET
is an implementation detail and should
not be included in an abstract specifi-
cation. Conceptually, the input is a fi-
nite sequence of characters; it should
be transformed into an output that is a
sequence of lines or, depending on the
interpretation chosen, a sequence of
characters. Itis a programmer’s vice to
insist that finite sequences be specially
marked at the end.

Why does the ET character receive
such emphasis in Goodenough and

Gerhart's specification? The reason is
one of the errors in Naur’s original
program, which would go into an in-
finite loop unless the input was incor-
rect (that is, contained an oversize
word). Upon closer examination, how-
ever, a case can be made for Naur’s
solution (without the other errors, of
course). It is not so unrealistic to con-
sider the required program as a poten-
tially infinite process, which takes
characters as input and produces lines
as output, working somewhat like a
device handler (for instance one that
drives a printer) in an operating sys-
tem. Such an interpretation should, of
course, be clearly described in the
specification, which was not the case
with Naur’s text. That decision would
be less arbitrary than the one taken by
Goodenough and Gerhart: their inclu-
sion of ET changes the data structure
at the specification level to accom-
modate the programming language
used at the implementation stage.
The unacceptability of the change is
further evidenced by the fact that the
output does not satisfy the require-
ment on the input. Is it realistic to ex-
pectan existing file to be terminated by
an explicit marker? If it is, the output
produced by the program should satis-
fy thai condition; however, examina-
tion of the specification, which is not
completely clear on this matter, and,
as a final criterion, of the proposed
program, shows that ET will nor be
passed on to the output file. Assume
that we want to write another pro-
gram, for, say, right-justifying the
text, that will take Goodenough and
Gerhart’s output (in “pipe’” mode & la

IEEE SOFTWARE




Dancing the minuel in the open alr,
copper enggaving by Charles Eisen
The Beltmann Archive

Unix). In designing that program, we
will not be able to make the same
assumption on its input. Thus, the
overspecification has opened the way
to serious inconsistencies.

Another overspecification in the
text is the concept of “‘error exit” (16),
which causes a “‘variable,”” Alarm, to
have the value TRUE. Clearly, the no-
tion of a variable belongs to the world
of programs, not specifications. This
piece of overspecification would have
been less shocking if the problem had
been defined as the task of writing a
procedure, with Alarm as one of its
parameters, or as one of the ‘“‘excep-
tions” (in the sense of Clu or Adaj it
might raise. A variable is internal to
the program unit to which it belongs,
whereas the specification of a param-
eter or an exception can be given rela-
tive to the environment of that unit.

The problem of the Alarm variable
is less innocuous than it seems. One
reason for shock at meeting the refer-
ence to this variable in a sequential
reading of the text is that the definition
of the error case (the one in which there
is an oversize word) looks like over-
specification until one sees the fast sen-
tence (25-26), 10 lines down, which
gives the basic line-size constraint,
MAXPOS. The world is really stand-
ing upside down here. Clearly, the
constraint on word size is a conse-
quence of the constraint on line size,
and the definition of the error case
cannot be understood until the latter
constraint has been introduced.

We see here one of the major defi-
ciencies plaguing requirements docu-
ments of more significant size: early
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Figure 3. Output requirement (MAXPOS = 10).

inclusion of detailed descriptions of er-
ror handling, interwoven with descrip-
tions of normal cases, which are usual-
ly much simpler. Here the matter is
even worse; error processing is de-
scribed before the reader has had a
chance to recognize the problem—that
is, before gaining an understanding of
normal processing. Failure to clearly
separate normal cases from erroneous
ones makes the document much harder
to understand.

Mathematically, a program that
performs an input-to-output transfor-
mation often corresponds to the im-
plementation of a partial function,
which is not defined for some argu-
ments of the input domain. Error pro-

cessing then consists in “‘completing”
the function with alternate results,
such as error messages, for those
arguments. This completion should
not be confused with the definition of
the function in its normal cases. Here,
as we'll see later in a formal specifica-
tion, failure to accommodate words
larger than MAXPOS is a conse-
quence of the requirements for normal
processing, which can be proved, as a
theorem, from the definition of the
function.

Ambiguities, Error processing raises
an ambiguity in the example text (Fig-
ure 3). The requirement that the out-
put text satisfy properties 1 to4 “upto
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the point of an error”’ is susceptible to
at least two interpretations.

The text says that up to (and pre-
sumably including) the point of the er-
ror, the program’s output should cor-
respond to the input. But where is the
“point of the error”” in Figure 32 Is it
{line 4, column 10}, last acceptable let-
ter, or [3, 7], end of the last acceptable
word? Nothing in the text allows the
reader to decide between these two in-
terpretations.

Another interesting ambiguity is
connected with the basic constraint on
acceptable solutions (23): *‘As many
words as possible should be placed on
each line.” If we have, say, MAXPOS
= 10 and the input text

WHO WHAT WHEN

there are two equally correct two-line
solutions (WHAT may be on either the
first or second line}. This ambiguity
may be acceptable since neither solu-
tion appears superior to the other; the
specification as such is nondeter-
ministic. We suspect (perhaps wrong-
ly) that this nondeterminism was not
intentional and that there was an im-
plicit overspecification in the authors’
minds: they considered it obvious that
the input would be processed sequen-
tially, so any ambiguity, as in the ex-
ample above, would be solved by plac-
ing as many words as possible on the
earlier line (giving line WHO WHAT
followed by line WHEN). In this inter-
pretation, property 3 (23-24) actually
means, “‘As many words as possible
should be placed on each line as it is
encountered in the sequential con-
struction of the output.” If this is the
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case, the specification should state it
precisely.

Another potential source of am-
biguity is the use of imprecise or poorly
defined terms—for example, the use
of “‘stream’’ (I) rather than the more
standard “sequence.” The expression
“error exit” (15), stemming from the
overspecification seen above, is am-
biguous, and the reader is not com-
forted by the explanation that follows
it (“i.e., a variable, Alarm, should
have the value TRUE"); the notion of
assigning a value to a variable does not
by itself imply the idea of an *exit,”
which also means that the program
stops in some fashion. We have seen
that the concept of “line’” is not well
defined (24). Also note that the expres-
sion ‘‘new line” is to be parsed as a
single entity (the new fine character) in
its first appearance (5) and as separate
words (*‘a new fine should start. . ")
in its second (19).

Forward references. In a require-
ments document, not all forward
references are bad. Some, corre-
sponding to'a top-down presentation
of the concepts (“‘the notion of . . .
will be studied in detail in sec-
tion . . .""), might even be considered
good practice, provided there are not
too many. But implicit forward refer-
ences (that is, uses of a concept that
come before the proper definition of
the concept, without particular warn-
ing to the reader) can present much
more of a problem. They make adocu-
ment extremely hard to read, especial-
ly in the absence of the technical ap-
paratus (index, glossary, etc.) that

should be a part of all requirements
specifications and other software
documents.

Here, of course, the text is very
short, so the annoyance caused by
forward references is nowhere near
what it can be with full-size docu-
ments. Note, however, that ET is used
three times (2, 3, 6) before it is defined
(7), that the notion of line, defined not
quite satisfactorily (24), has been used
earlier (19-20), and that MAXPOS is
used just before its definition (14).

So what? In dissecting Goodenough
and Gerhart’s specification, we iden-
tified a significant number of prob-
lems in a text that may seem innocuous
to a superficial observer. Not all the
problems were equally serious, and the
reader may have felt that we were a bit
pedantic at times. We submit, how-
ever, that one must be pedantic in deal-
ing with such matters. Inconsistencies,
ambiguities, and the like may not war-
rant the gallows when the problem is to
split up a sequence of characters into
lines. But keep in mind how the above
defects transpose to more serious mat-
ters—a nuclear reactor control system,
amissile guidance system, or even just
a payroll program. The computer that
executes the code resultiug fiowt a faui-
ty specification is moere pedantic than
any human referee could ever be.

Thus, we should consider Good-
enough and Gerhart’s specification
not only as an object of study in itself
but also, and more importantly, as 4
microcosm for conveniently observing
deficiencies typical of more mean-
ingful requirements documents. Al-
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though the text was written with great
care, we have witnessed how the au-
thors, who started out to improve
upon Naur's terse but simple text,
sentence after sentence became a little
more entangled in their own rosary of
caveats. This says a lot about why in-
terminable manuals occupy so much
shelf space in programmers’ offices
and computer rooms.

In our opinion, the situation can be
significantly improved by a reasoned
use of more formal specifications. But
again, let’s emphasize that such speci-
fications are a complement to natural
language documents, not a replace-
ment. In fact, we’ll show how a detour
through formal specification may
eventually lead to a better English de-
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scription. This and other benefits of
formal approaches more than com-
pensate for the effort needed to write
and understand methematical nota-
tions.

We will now introduce such nota-
tions, which will allow us to give a for-
mal specification of the Naur-Good-
enough/Gerhart problem.

Elements for a
formal specification

Many formal specification lan-
guages have been designed in recent
years (see box). Choosing one of these
languages would force the reader to
learn its particular notation and would
obscure the essential fact—namely,
that their underlying concepts are, for
the most part, well-known mathemat-
ical notions like sets, functions, rela-
tions, and sequences. We thus prefer
to use a more-or-less standard mathe-
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matical notation. The style of exposi-
tion will be similar to that found in
mathematical texts; translation to a
specific formal specification language
should not be hard, provided the lan-
guage supports the relevant concepts.

Overview. Perhaps the only difficult
part of the Naur-Goodenough/Ger-
hart problem is that the processing to
be performed on the text involves three
aspects: reducing breaks to a single
break character, making sure no line
has more than MAXPOS characters,
and filling lines as much as possible. If
these three requirements are sepa-
rated, things become much simpler.
Consequently, we will define the prob-
lem formally by considering two sim-
ple binary relations, called short_

breaks and limited_length, and a
function called FEWEST_LINES.
(Throughout the discussion of the for-
mal specification, the reader may wish
to refer to Figure 4 for a picture of the
overall structure of the relations and
functions involved.}

Relation short_breaks holds be-
tween two sequences of characters a
and b if and only if b is identical to q,
except that breaks in a (i.e., successive
break characters) have been reduced to
single break characters in b.

Relation limited_length holds be-
tween two sequences of characters b
and ¢ if and only if ¢ is a “limited
length version” of b: that is, no line in
¢ has length greater than MAXPOS,
and c is identical to b except that some
blanks may have been replaced with
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new lines and/or some new lines with
blanks.

By applying these two relations suc-
cessively, we associate with any se-
quence of characters g all sequences of
characters that are “made of the same
words,” separated only by single
breaks, and fit on lines no longer than
MAXPOS. Given such a set of se-
quences, say, SSC, then FEWEST._
LINES (SSC) is the subset of SSC
containing those sequences that con-
sist of a minimum number of lines and
thus are acceptable outputs for the
program.

We'll now define these notions for-
mally, but a few simple conventions
are needed first.

Basic form of the specification. Asa
general convention, we use uppercase
for sets and for functions whose results
are sets and lowercase for other func-
tions, elements of sets (except for
MAXPOS, which we write in upper-
case as in the original specifi Tcation),
sequences, and relations.

The program to be written is the im-
plementation of a function

=% Consider two sets—for example,
INPUT and OUTPUT. A binary
mlatlon bctwecn thesc two sets lS a

4 ,(<l, o,> <lz o;>
where each i, belongs to set [NPUT
and each o, belongs to set OUT-
“PUT. Such a relation is represented
pictorially at right. If goalis a rela-
tion, then we write goal (i, 0) toex-
press that the pair <i, 0> belongs
to the relation, . jxts S

A remmder on Functions and relatxons A7

. ¢«The domlnnfsuch a relatlou. written don- (grmu’l. LN. 1 subsez of[N—‘ y
PUTcontaunmg only those elements i such that goal (1, @) halds for at least
one element 0 in OUTPUT. Thus, in the sxample pictured, 7, i,, and |
but not iy, belong to the domain of the relation. v 3

A function is a relation f such that for any i there is al most one ¢ for
which £ (i, 0) holds; if o exists, then orie may write 0=£{i), The relation

pictured above is not a function, since i1, for instance, has twa buddies o
and o,. Note that the domain of a function is made of thase elements o]f
INPUT for which there is exactlyone cormesponding element in OUTPUTJ

sol: INPUT — QUTPUT

where INPUT and OUTPUT are the
sets of possible inputs and outputs,
which we will describe below as sets of
sequences. Function sof must satisfy
certain constraints, which it is the role
of the specification to express.

As noted above, there may be more
than one carrect output for a given in-
put; in other words, a truly general
specification of the problem should be
nondeterministic. We will represent
this fact by defining a binary relation
between sets INPUT and QUTPUT.
We call goalthis binary relation; then a
function so/ will be a correct solution if
and only if the following two condi-
tions are satisfied (readers who are not
50 sure about functions and relations
are referred to the refresher in the ad-

jacent box):

* function sof is defined wherever
relation goal is defined—that is,
sol (i) exists for any 7 in the do-
main of goal;

¢ forany i for which goat is defined,
then sof (i) yields a “‘solution’ to
goal—that is, goal (i, sol ())
holds.

This definition is expressed in math-
ematical notation by writing that sof is
an acceptable function if and only if
vi € dom (goal),

i € dom(sol) and goal (i, sol (i))
where dom (sof} is the domain of
function sol. Note that there may be
some inputs for which there is no ac-
ceptable solution (those not in the do-
main of goal), so sol may be a partial
function. Also, in more concise nota-
tion, the above property can sim ply be
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expressed by writing that the domain
of sol is at least as large as the domain
of goal, and that sol is included in goaf
(both being defined as sets of pairs):

dom (goal) C dom (sof)
and sol C goal

This way of presenting a specifica-
tion is of very general applicability for
programs performing input-to-output
transformations. Such a program may
be viewed as the implementation of a
certain function (sof) which must en-

... short_breaks (1) “,j.vn limited_Jength (ty
- COMPACTED () o TRIMMED (F),—

e

puLvite e

;. (acceptable

N @ PP 1 outputs)

e o . tr(n) v " adlhe Vi gt She
e ——— TRANSF(F)— B e

sure that a certain relation (goal) is

satisfied between its argument and its
result; in mathematical terms, the
function is included in (is a subset of)
the relation. To specify the problem is
to define the relation; to construct the

Figure 4. Overail structure of the specification: (r) indicates a relation, (F) a
function.

program is to find an implementable
function sof satisfying the above con-
ditions.?

Characters and sequences. The
principal set of interest in our problem
is the set of characters, which we de-
note by CHAR. The only property of
CHAR that matters here is that
CHAR contains two elements of par-
ticular nterest, blank and new.line.
We call BREAK_CHAR the subset of
CHAR consisting of these two ele-
ments:

BREAK_CHAR = |blank, new_line}

The basic concept in this problem is
that of sequence. If X is a set, we
denote by seq [X] the set whose ele-
ments are finite sequences of elements
of X. Such a sequence is written, for

example, as

"Basic set ana logic notatlons I

whlch may have value “‘true” or “false’?,, ST SV
[a, b, ¢, ] the set made up of elements a, b, c. s
X€A: x is an element of A(*).

XgA: xis not an element of A (*).

A C B: Ais asubset of B (all elements of A are elemems of B) (*}

[xeA | P(x)): The (possibly empty) subset nf A made up of those
elements x which satisfy property P. 3

ment of A violates P); holds in particular whenever A is empty (#).

axeA, P(x): Thereisat leasr. one element.x in A which sat:sf 3 pmp:rty B,
may only hold if 4 is nonempty (*).

a=b: a implies b. ; = P
a..b: the integer Interval contammg all the integers lSUChthalaSle
empty 1f a>b. This notation is borrowed from Pascal

The symbol = means '‘is defined as.’

<a b,a,¢cd>
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and has a length that is a nonnegative
integer; thus, length is a function from
seq [X] to the set of natural numbers,

Elements are numbered starting at 1;

the i-th element of a sequence s (for
l=<i<length(s)) is written s(i). A
subsequence of sis a sequence made of
2ero or more of the elements of s, in
the same order as in s; for example, if s
is the above sequence, then some of its
subsequences are

<a, b, ¢, d>
<b, ¢, e>

On the other hand, <, d, ¢> isnot a
subsequence of s because the original
order of its elements in s is not pre-
served.

The set of subsequences of s will be
written SUBSEQUENCES (s).

The concept of sequences is well
known, and we rely on the reader’s
understanding here. A formal defini-
tion of sequences and of the above no-
tions is given in the box on the adjacent
page.

Minima and maxima. If X is a set,
and fis a function from X to the set of
natural numbers,

MIN_SET (X, f)

denotes the subset of X consisting of
the elements for which the value of f
is minimum. For example, if X is the
following set, containing four se-
quences
X = (<a0cba>,<ab>,
<b, a, b>, <c, >}

and fis the length function on se-
quences, then MIN_SET (X, f) will
be the set consisting of the shortest of
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these sequences, namely, the second
and last.

In the same fashion, we denote by
MAX_SET (X, f)

the subset of X consisting of the ele-
ments for which the value of fis max-
imum; thus, in.the above case, MAX_
SET (X, f)istheset [ <a, c, b,a>),
containing just one sequence.

MAX_SET, however, is not always
defined; we have to be careful to apply
it only to sets X which are fi inite; other-
wise, there might be no maximum
value for f. Note that the results of
MIN_SET and MAX_SET are a
subset of X rather than a single ele-
ment, since there may be more than
one element with minimum or max-
imum f value. These subsets are non-
empty if and only if X is nonempty.

We will also need a way to denote
the minimum and maximum elements
of a set of natural numbers SN, They
will be written, in the usual fashion,
min (SN} and max (SN). Thus, if SN
is the set

SN = (341,7, 3, 654}

then min (SN) is 3 and max (SN) is
654. Note that min and max, contrary
to MIN_SET and MAX_SET, yield a
natural number, not a set. Also in con-
strast to MIN_SET and MAX_SET,
which are defined for empty sets (they
yield an empty result), both min and
max are defined only if the set SNV is
not empty; max further requires that
SN be finite. It is essential to check for
these conditions whenever using these
functions,

Input and output sets. In the prob-
lem at hand, the input is a sequence of
characters; we choose to describe the
output as a sequence of characters as
well. Thus, we define the two sets:

INPUT = seq [CHAR]
OUTPUT = seq [CHAR]

Note that, as mentioned above,
another interpretation could have
defined the set of possible outputs as
seq [LINE], with LINE itself being
defined as seq {CHAR] (or possibly
seq [WORD] with WORD = seq
[CHARY, plus information on leading
and trailing breaks).

We will now define the relations
short_breaks and limited_length and
the function FEWEST_LINES.

The formal specification

Short breaks, Let @ be a sequence
of characters. We define SINGLE_
BREAKS (a) as.the set of subse-
quences of & such that no two con-
secutive characters are break charac-
ters:

SINGLE_BREAKS (a) =
(s € SUBSEQUENCE (a) |
Vi€2. . length (s),
s(i~1) € BREAK_CHAR
= 5(i) ¢ BREAK CHAR)|

Note that we use the Pascal notation,
a..b, to denote the (possibly empty)
set of integers i such that e <i<p.

Next, we define COMPACTED (@)
as the subset of SINGLE_BREAKS (a)
containing those sequences of maxi- +
mum length:

COMPACTED (a) = MAX _SET
(SINGLE_BREAKS (a), length)
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Asstated above, MAX_SET (X, [}
may be be undefined if X is an infinite
set. This cannot occur here, however,
since SINGLE_BREAKS (a) is a
subset of SUBSEQUENCES (a)
which, for any sequence of characters
@, is finite.

Note that any sequence b in COM-
PACTED (a) must have retained
from aall nonbreak characters (if such
a character had been omitted, it could
be inserted into b and yield a longer
element of SINGLE_BREAKS (a)),
and has a single break character where
a had one or more consecutive break
characters.

Thus, the relation short_breaks (a,
b), which holds between aand bif and
only if and b are made of the same se-
quences of words and breaks but the
breaks in b consist of a single break
character, can be expressed simply by

short_breaks (a, b) =
b ¢ COMPACTED (a)

Limited length. The relation fim-
ited_length (b, ¢) holds between se-
quences & and ¢ if and only if

s cis the same sequence as b, except

that it may have a new_line wher-
ever b has a blank, or conversely;
and

e the maximum line length of ¢,

defined as the maximum number
of consecutive characters none of
which is a new_line, is less than or
equal to MAXPOS.

This is expressed more precisely as

follows:

A definition of sequences it
The following presentation is based on the formal specification o
sequences given in the Z reference manual.!!

N will denote the set of natural numbers.

Definition: r al
the set of finite sequences of elements of X, is defined as the set of parti
mﬁﬂm from N to X whose domains are intervals of the form 1..7 for some

natural number n.

So a sequence is defined as a partial function; for example lhc se-
quence s= <4, b, a, ¢> is the function defined for arguments 1, 2, 3,
and 4 only, and whose value is a for 1 and 3, b for 2, and ¢ for 4. The -
following is a pictorial representation of s _ iy

1 2 3 4 567 ... N
.3 ! ! | | : 4
a b a $ X

Note that the above definition allows n=0 (erpgty i'nterval, thus
empty function — that is, empty sequence) and that it justifies the nota-
tion s(i) for the ith element of sequence s (which is the result of apply-
ing function s to element i).

grhc length of a sequence is defined as the largest integer for which
the associated partial function is defmed (i.e., nin the above def ini-
tion). i
Now letsbea sequence of elements of Xand gbea (total) funcnon
from X to some set Y. The composition

: geS
is a partial function from the set of natural numbers to ¥, Whlf:h has
the same domain as s; thus, it is a sequence of elements of ?’. with the
same length as 5. This sequence is obtained from s by applym[g gtoall
the elements of s. Again, a picture may help (we set g(a)=a’, etc.):

1 2 3 4 567 ... N
s | | | |

e b a ¢ Pl ot
g b1 ="

P - y

“Now take for X the set N of natural aumbers. A sorted sequence of
natural numbers is an element s of seq [V] such that
vi€2. . length (s}, s(i—1) =s(i)
With this definition, it becomes easy to formally define the notion of
subsequence used in the text.
Definition:

Let s be an element of seq [X] for some set X. A subsequence of s is a se-
quence of the form seu where u is a sorted sequence of natural numbers.

The fotlowing picture shows how <aa b ¢> is obxalined as a subse-
quence of <a b a 2 b d ¢ d> using the above definition. The sorted
sequence u of natural aumbers used hereis <34 S 7>; <1357>or
<14 57> would also work.

1 2 3 4 S oy
u ) /

1>3 4 5{7 8910 ...
s [ i

abaabdcd

limited_length (b, ¢) =
¢ € TRIMMED (b)
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where

TRIMMED (b) =
{s € EQUIVALENT (b) '
max_line_length (s) < MAXPOS}

EQUIVALENT (b) =
{s € seq[CHAR] |
length (s) = length (b) and
(V i€l length (b),
S(i) # b(i) =
s(i) € BREAK_CHAR and
b(i) € BREAK_CHAR) |

max_line_length (s) =
max ({j~i|
O<isj<length (s) and
(Ykei+l. j,
s(k) # new_line) })

A few explanations may help in
understanding these definitions. If sis
a sequence of characters, max_line_
length (s} is the maximum length of a
line in s, expressed as the maximum
number of consecutive characters,
none of which is a new line. In other
words, it is the maximum value of j—
such that s(k) is not a new line for any
kintheinterval i+1.. /. (We will have
more to say about this definition
below.) EQUIVALENT (b) is the set
of sequences that are “‘equivalent”’ to
sequence & in the sense of being iden-
tical to b, except that new_line charac-
ters may be substituted for blank
characters or vice versa. Finally,
TRIMMED (b) is the set of sequences
which are “‘equivalent” to b and have
a maximum line length less than or
equal to MAXPOS.

Fewest lines., Let SSC be a set of se-
quences of characters. These se-

20

quences can be interpreted as con-
sisting of lines separated by new_line
characters. We define the set FEW.
EST_LINES (SSC) as the subset of
SSC consisting of those sequences that
have as few lines as possible:

FEWEST_LINES (S5C) =
MIN_SET (SSC,
number_of_new_lines)

where the function number_of_new_
lines is defined by:

number_of_new_lines (s) =
card ((i € 1. length (s5) |
s(iy = new_line})

and card (X), defined for any finite
set X, is the number of elements {car-
dinal) of X.

. The basic relation. The above defi-
nitions allow us to define the basic re-
lation of the problem, refation goal,
precisely. Relation goal (/,0) holds be-
tween input / and output o, both of
which are sequences of characters, if
and only if

0 € FEWEST._LINES (TRANSF (1))
TRANSF (i) is the set of sequences
refated to / by the composition of the
two refations short_breaks and lim-
ited_length:

TRANSF (i) = |s € seq [CHAR] |

ris))

with

tr = limited_length e short_breaks

The dot operator denotes the composi-
tion of relations (see box). A look at

Figure 4 may help explan the role of
the various functions and relations in
the above specification.

Existence of solutions. Once we
have a formal specification, what can
we do with it? Relying on the specifica-
tion as a basis for the next stages of the
software life cycle—program design
and implementation (e.g., translating
¥s into loops) is the most obvious use.
However, we'd like to emphasize two
others. One use, studied in the next
section, is as a starting point for better
natural-language requirements. The
other, to which we now turn, is query-
ing the specification to learn as much
as possible about properties of the
prablem and valid solutions.

What can the given specification
teach us about the Naur-Goodenough
/Gerhart problem and its solution?
First, let’s determine when solutions
doexist. Itistrivial to prove that, given
a sequence of characters @, there is
always at least one sequence & such
that relation short_breaks (a, b)
holds. Given b, however, the necessary
and sufficient condition for the ex-
istence of at least one sequence ¢ such
that limited_lengih (b, ¢) holds is that
b contains no word (i.e., contiguous
subsequence ot non-break characters)
of length greater than MAXPOS. This
follows from the definitions of
TRIMMED and max_line_length vsed
in the definition of limited_length.

Thus, the domain of definition of the,
relation tr, which is also the domain of
the function TRANSF and thus of the
relation goal, is the set of input texts
containing no word longer than MAX-
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POS. This can be formulated as a
theorem:

dom (goal) =
{s € seq [CHAR] |
vie |, length(sy —MAXPOS,
3j€i i+MAXPOS,
$(j) € BREAK_CHAR}

The property expressed by this
theorem is that the domain of relation
goal consists of sequences such that, if
a character ¢is followed by MAXPOS
other characters, at least one character
among ¢ and the other characters must
be a break.

An important problem, not ad-
dressed here, is how the specification
deals with erroneous cases—that is,
with inputs not in the domain of the
goal relation—like sequences with
oversize words. Clearly, a robust and
complete specification should include
(along with goal) another relation, say,
exceptional_goal, whose domain is /N-
PUT—dom (goal) (set difference);
this relation would complement goal
by defining alternative results (usually
some kind of error message) forer-
roneous inputs. Formal specification
of erroneous cases falls beyond the
scope of this article, but a discussion of
the problem and precise definitions of

terms such as “‘error,”” **failure,’” and
‘‘exception’’ can be found in a paper
by Cristian.*

Discussion. What we have obtained
is an abstract specification—thisis, a
mathematical description of the prob-
lem. It would be difficult to criticize
this specification as being oriented
toward a particular implementation: if
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Composition of relations

Let r and ¢ be two relations; ris
from X to Yand ¢is from Yto Z
(see figure). * =0y ol e

The composition of these tw
relations, written fer (note the
order), is the relation w between
sets X and Z such that w (¥, z)
holds if and ohly if there is (at
least) one element y in Y such that
both r (x, y) and ¢ (x, y) hold.

Thus, in the example illus-
trated, w holds for the pairs <x,
71>, <X, 23>, and <x5, 23>
(and for these pa_irs only).
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Formalism

followed to the letter, the specification
would lead to a program that (as illus-
trated in Figure 4) would first generate
all possible distributions of the input
over lines of length less than or equal
to MAXPOS and then search the re-
sulting list for solutions with minimum
number of rew_line characters—not a
very efficient implementation!

An element that does seem to point
toward a particular implementation
technique is the composition of rela-
tions short_breaks and limited_length,
which seems to imply a two-step pro-
cess (first remove break characters,
then cut into lines). A first design
could indeed use a two-step solution.
The steps could then be merged using
coroutine-like concepts, such as the
Unix notion of pipe or the “prograj
inversion”" idea of Jackson's program
design method. 5

We chose to model the problem’s
object and operations with very simpie
mathematical notions (sets, relations,
functions, sequences). Because of the
specific nature of this problem, an-
other approach would have been to re-
ly on a more advanced theory, such as
the theory of reguiar languages. As
emphasized below, a realistic specifi-
cation system should permit reuse of
existing theories. ¢

Starting from the above definition,
the specification should of course be
refined, taking into account the physi-
cal form of the data structure (in-
cluding, for example, the end-of-file
marker) and the particular response
that should be given by the program in
case of erroneous input.
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Conclusion

Although natural language is the
ideal notation for most aspects of
human communication, from love let-
ters to introductory programming lan-
guage manuals, there are cases? where
it is not appropriate. Software specifi-
cations, for example, require more rg-
orous formalism.

The use of formal notation does
not, however, preclude that of natural
language. In fact, mathematical speci-
fication of a problem usually leads to a
better natural-language description.
This is because formal notations
naturally lead the specifier to raise
some questions that might have re-
mained unasked, and thus unan-
swered, in an informal approach.

Mathematical definition, Formal
specifications help expose ambiguities
and contradictions because they force
the specifier to describe features of the
problem precisely and rigorously. The
problem studied in this article contains
many examples of this. For example,
let us try to redefine the function
max_line_length using the definition
of “line” taken from Goodenough
and Gerhart’s specification (line 24:
“between successive NL characters™).
Writing this definition mathematical-
ly, we obtain someihing like

max_line_length (s) =
max ( line_length (s, i} |
L i=length (s) and
$(i) = new_line})
where line_length (s, i), the length of
the line beginning after the new_line at

position 7 in sequence s, may be de-
fined as a minimum:
line_length (s, i) =
min{{k|
O0<k<length (s—i) and
s(i+k+1) = new_line})

However, as mentioned above, the
maximum or minimum of a set of
natural numbers is defined if and only
if this set is nonempty and, in the maxi-
mum case, finite; so using mathemati-
cal notation prompts us to check for
these conditions. Finiteness presents
no problem, but we see immediately
that the set whose maximum is sought
in the definition of max_fine_length
will be empty if the sequence s does not
contain any new_line character. Even
if it contains one, fine_length (s, i),
itself a minimum, will not be defined if
there is no other new_line further in
the sequence. This prompts us to look
for a better definitien.

A fairly natural reaction at this
point is to see that we really don't need
to define the concept of “line,” only
that of maximum line length. Once we
have noticed this, it’s easy to come up
with a correct definition: rhe max-
imum number of conseciitive char-
acters, none of which is a new line.
This is the definition that was given
above:

max_line_length (s) =

max ([j-i]
0<i<j< length(s) and
(Vkei+l. j
s(k) # new_line) })

Note that we have been careful to
apply maxto a set that always contains
at least one value (zero, obtained for
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i = j = 0), even if s is an empty se-
quence (see box).

Natural language definition. Once
such a mathematical definition has
been produced, it may in return in-
fluence the natural language defini-
tion. In this example, the formal
definition suggests that we should
refrain from trying to define the con-
cept of ‘‘a line in the text” which,
although intuitively clear, is slightly
tricky when one attempts to specify it
precisely, as Goodenough and Ger-
hart’s text shows. Instead, we should
focus on the notion of ““maximum line
length,”” which is always defined, even
for a text consisting of new_line
characters only. Once we have ob-
tained the specification of max_line_
length, we can build onit and include it
in the English problem definition a
sentence such as

The maximum number of consecutive
characters, none of which is a new_line,
should not exceed MAXPOS.

This sentence, a direct translation
from the formal definition, is not, ad-
mittedly, of the mast gracious sytle;
but it is easy to remove the double
negation, yielding

Any consecutive MAXPOS + | charac-
ters should include a new_iine.

The main advantage of natural
language texts is their understandabili-
ty. One should concentrate on this
asset rather than trying to use natural
language for precision and rigor,
qualities for which it is hopelessly in-
adequate. Understandability is seri-
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The reasoning behind formal specifications:
the example of max__line__length

How does one obtain a formal expression such as the one deﬁmng
max_line_length? Let’s analyze the different steps involved.

We want to express the fact that max_line_length (s) is the maximum
{ength of alineins. A definition that avoids the pitfalls mentioned in the

analysis of Goodenough and Gerhart’s text is, informally, *‘the max- .
imum number of consecutive characters, none of which is a new line.”’ .

To translate this definition into a formal description, we have to ex- ~
press the notion of a contiguous subsequence of s that does not contain

a new._line. A contiguous subsequence can be given by its end indices,
say, fand j. The sequence compnsmg the elements between indices i and
Jwill have length j—i+1; if itis to yield a line length, then s(k) should .
be a character other than new_tine for any k between { and J j, mcluswe
Thus a first try might yneld e 2, 4

max Ime lengrlx (s) s max (LINE LENGTHS)
where the set LINE LENGTHS is deﬁ ed as

t LINE_ LENGTHS = !j i+l | 1 <l$jslength (s) and
3 o (vke: J.s(k) # new Ime)l

But beware! One should only apply max to nonempty sets. With the ™|
abové convention, we can end up with LINE_ LENGTHS being empty

if sis an empty sequence or all its characters are new_line; in either case,
no i, j pair satisfies the condition. Now, if we write a program for the

Naur-Goodenough/Gerhart problem and put'in mto a hbrary, sooner
or later someone will apply it to a sequence that is empty or entirely -
made of new_line characters, so we had better deal wuh these cases ina -

clean fashion. ., ioio.wesiien (i

The culpnt is the condmon i<j, which prevcnts us from finding a ]

satisfactory # and j in the borderline cases mentioned. The problem
disappears, however, if we replace this condition by i—1 <. Then, for
a sequence having only new_fine characters or no character at all, the
set LINE_LENGTHS will contain one element, 0, obtained for i=1
and j=0. For these values, the interval i..; is empty; thus, the V.

clause is true. (Remember that a property of the form vx ¢ E, P (x) is’
always true when the set E is empty, regardless of whal propenA PlS ) d

Thus we obtam the followmg replacement:

 LINE_LENGTHS = U—l+l [05,—1515"1eng:h (s) and
“ (vk €i..j, s(k) # new_ Ime) ]

(The frst condmon has been written 071 instead of 1 <F 3T

We have chosen to simplify slightly the writing of this condition by a
change of variable (use i for i — 1, thus eliminating +1 and -1 terms):

LINE_ LENGTHS El [J—; \0<15/51ength (s) and Seake e
et Avkeitl., S(k) o new_. Ime)]
. This new version is defined i m all cases IR e

* It should be noted that this kind of analysls whnch at ﬁrst snght mlght h
seemn quite remote from programmers’ concerns, is in fact closely con-

nected to typical patterns of reasoning about programs. Anyone who
has tried to debug a loop that sometimes goes one iteration too few or
too many, or works improperly for empty inputs or other borderline
cases, will recognize the line followed in the above discussion. It is our
contention, however, that such analysis is better performed at the
specification level, dealing with simple and well-defined mathematical

concepts, than at program debugging time, when the issues are ob-
scured by many irrelevant details, implementation-dependent features,

and idiosyncrasies of programming languages
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POS. This can be formulated as a
theorem:

dom (goal) =
{s € seq [CHAR] |
viel..length(s) —MAXPOS,
aj € i i+MAXPOS,
s(j) € BREAK_CHAR}

The property expressed by this
theorem is that the domain of relation
goal consists of sequences such that, if
a character cis followed by MAXPOS
other characters, at least one character
among ¢ and the other characters must
be a break.

An important problem, not ad-
dressed here, is how the specification
deals with erroneous cases—that is,
with inputs not in the domain of the
goal relation—like sequences with
oversize words. Clearly, a robust and
complete specification should include
(along with goal) anotherrelation, say,
exceptional_goal, whose domain is IN-
PUT~dom (goal) (set difference);
this relation would complement goal
by defining aiternative results (usually
some kind of error message) forer-
roneous inputs. Formal specification
of erroneous cases falls beyond the
scope of this article, but adiscussion of
the problern and precise definitions of
terms such as “error,”” “‘failure,”” and
‘‘exception’’ can be found in a paper
by Cristian.*

Discussion. What we have obtained
is an abstract specification—this 1s, a
mathematical description of the prob-
lem. It would be difficult to criticize
this specification as being oriented
toward a particular implementation: if
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corﬁboéition bf reléftons

Let 7 and # be two relations; ris

from X'to ¥ and ¢is from Y to Z
(see figure), ' ~ R

The composition of these two
relations, written fer (note the
order), is the relation w between
sets X and Z such that w (x, 2)
holds if and obly if there is (at
least) one element yin Y such that
both r (x, ¥) and t (x, y) hold.

Thus, in the example illus-
trated, w holds for the pairs <x,,

2>, <xq, 23>, and <xs5,23> -

(and for these pairs only).
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Formdailism

followed to the letter, the specification
would lead to a program that (as illus-
trated in Figure 4) would first generate
all possible distributions of the input
over lines of length less than or equal
to MAXPOS and then search the re-
sulting list for solutions with minimum
number of new_line characters—not a
very efficient implementation!

An element that does seem to point
toward a particular implementation
technique is the composition of rela-
tions short_breaks and limited_length,
which seems to imply a two-step pro-
cess (first remove break characters,
then cut into lines). A first design
could indeed use a two-step solution.
The steps could then be merged using
coroutine-like concepts, such as the
Unix notion of pipe or the “‘program
inversion”” idea of Jackson’s program
design method. ¢

We chose to model the problem’s
object and operations with very simple.
mathematical notions (sets, relations,
functions, sequences). Because of the
specific nature of this problem, an-
other approach would have been to re-
ly on a more advanced theory, such as
the theory of regular languages. As
emphasized below, a realistic specifi-
cation system should permit reuse of
existing theories.6

Starting from the above definition,
the specification should of course be
refined, taking into account the physi-
cal form of the data structure (in-
cluding, for example, the end-of-file
marker} and the particular response
that should be given by the program in
case of erreneous input,
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conclusion

Although natural language is the
ideal notation for most aspects of
human communication, from love fet-
ters to introductory programming lan-
guage manuals, there are cases” where
it is not appropriate. Software specifi-
cations, for example, require more rig-
orous formalism.

The use of formal notation does
not, however, preclude that of natural
language. In fact, mathematical speci-
fication of a problem usually leads to a
better natural-language description.
This is because formal notations
naturally lead the specifier to raise
some questions that might have re-
mained unasked, and thus unan-
swered, in an informal approach.

Mathematical definition. Formal
specifications help expose ambiguities
and contradictions because they force
the specifier to describe features of the
problem precisely and rigorously. The
problem studied in this article contains
many examples of this. For example,
let us try to redefine the function
max_line_length using the definition
of “line” taken from Goodenough
and Gerhart’s specification (line 24:
“between successive NL characters’).
Writing this definition mathematical-
ly, we obtain someshing like

max_fine_length (s) =
max ((line_length (s, iy |
l<i<length (s) and
s(} = new_line|)
where line_length (s, 1), the length of
the line beginning after the new_fine at

position / in sequence 5, may be de-
fined as a minimum:

line_length (s, iy =
min({k|
O0sk<length (s—i) and
s{i+k+1) = new_line))

However, as mentioned above, the
maximum or minimum of a set of
natural numbers is defined if and only
if this set is nonempty and, in the maxi-
mum case, finite; so using mathemati-
cal notation prompts us to check for
these conditions. Finiteness presents
no problem, but we see immediately
that the set whose maximum is sought
in the definition of max_line_length
will be empty if the sequence s does not
contain any new_line character. Even
if it contains one, line_length (s, i)y
itself a minimum, will not be defined if
there is no other new_line further in
the sequence. This prompts us to look
for a better definition.

A fairly natural reaction at this
point is to see that we really don’t need
to define the concept of “line,” only
that of maximum line length. Once we
have noticed this, it’s easy to come up
with a correct definition: rhe max-
imum number of consecutive char-

acters, none of which is a new fine.

This is the definition that was given
above:
max_line_length (s) =
max (|j—i]
O<i<j< length(s) and
(Vkei+l j,
s{k) # new_line)})
Note that we have been careful to
apply maxto a set that always contains
at least one value (zero, obtained for
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i =j = 0),evenif 5is an empty se-
quence (see box).

Natural language definition. Once
such a mathematical definition has
been produced, it may in return in-
fluence the natural language defini-
tion. In this example, the formal
definition suggests that we should
refrain from trying to define the con-
cept of ‘“‘a line in the text” which,
although intuitively clear, is slightly
tricky when one attempts to specify it
precisely, as Goodenough and Ger-
hart’s text shows. Instead, we should
focus on the notion of ‘‘maximum line
length,” which is always defined, even
for a text consisting of new_line
characters only. Once we have ob-
tained the specification of max_line_
length, we can build onit and include it
in the English problem definition a
sentence such as

The maximum number of consecutive
characters, none of which is a new_fine,
should not exceed MAXPOS.

This sentence, a direct translation
from the formal definition, is not, ad-
mittedly, of the most gracious sytle;
but it is easy to remove the double
negation, yielding

Any consecutive MAXPOS + 1 charac-
ters stiould include a new_line.

The main advantage of natural
language texts is their understandabili-
ty. One should concentrate on this
asset rather than trying to use natural
language for precision and rigor,
qualities for which it is hopelessly in-
adequate. Understandability is seri-
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The reasoning behind formal specifications:
the example of max__line Iength

How does one obtain a formal expression such as the one defir mng
max_line_length? Let’s analyze the different steps involved.

‘We want to express the fact that max_line_length (s} is the maximum
length of alineins. A definition that avoids the pitfalls mentioned in the
analysis of Goodenough and Gerhart’s text is, informally, *‘the max-
1mum number of consecutive characters, none of which is a new line. ’1

:To translate this definition into a formal descnpnon we have to i
press the notion of a contiguous subsequence of s that does not contain
a new_line. A contiguous subsequence can be given by its end indices,
say, iand j. The sequence compnsmg the elements between indices fand
Jjwill have length j—i+1; if it is to yield a line length then s(k) should
be a character other than new._line for any k between i and /, inciuswe
T'hus, a first iry might yield b -‘
nax_ Ime Ienglh (s) mnx (LINE_ LENG THS)

where the set LINE LENGTHS is defmed as o

(vkei g s(k)y # new.. line) )

But beware' One should only apply max to nonempty sefs. With the
above convention, we can end up with LINE_LENGTHS being empty
ifsisan empty sequence or all its characters are new_line; in either case, -
no l, J pair satisfies the condition. Now, if we write a program | for ihe
Naur Goodenough/ Gerhart problem and put'in mto a hbrary, sooner

or later someone will apply it to a sequence that is empty or entirely
made of new_line characters, so we had.l better deal with these cases ina
clean fashion. .., ..fnwitsstres woieinds i

;. The culprit i is the condition i< Js which prevems us from finding a .
sausfactory i and j in the borderline cases mentioned. The problem
disappears, however, if we replace this condition by i — 1 <. Then, for
a sequence having only new_line characters or no character at all, the
set LINE_LENGTHS will contain one element, 0; obtained for /
and j=0. For these values, the interval i..j is empty; thus, the Y.
clause is true. (Remember that a property of the form vx € E, P (x) is
always true when ‘the set E is empty, regardless of what property Pis, )
Thus, we obtain the followmg replacement
LINE LENGTHS [/—1+1 \0<:—1<J<leng1h (s) and _

! T (VkEI..j.S(k) # new_ Ime)]
(The ﬁrst condmon has been wmten 0<i—1linsteadof 1<i) |
* We have chosen to simplify slightly the writing of this condition by a

change of variable (use i for i -1, thus eliminating +1and -1 terms):
I.INE_LENGTHS [j—l |0<i<j=length (s) and it
; b (vkEH—I _/,s(k);énew Ime)]

Wl R e

This ncw version is defmed in all cases.

" It should be noted that this kind of analys:s which at first sxght might
seem quite remote from programmers’ concerns, is in fact closely con-
nected to typical patterns of reasoning about programs. Anyone who
has tried to debug a loop that sometimes goes one iteration too few or
too many, or works improperly for empty inputs or other borderline
cases, will recognize the line followed in the above discussion. It is our
contention, however, that such analysis is better performed at the
specification level, dealing with simple and well-defined mathematical
concepts, than at program debugging time, when the issues are ob-
scured by many irrelevant details, implementaiion-dependeni fealures,
and idiosyncrasies of programmmg languages. Al
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ABSTRACT

We present a strategy and algorithms for displaying a meaningful view of structured objects
such as programs on a screen of limited size. The methods introduced here are language-
independent; they were developed for the implementation of Cépage, a structural editor making
full use of modern display technology. The algorithms are linear with respect to the number of
nodes in the syntax tree.

We use a formal model of the screen allocation, the “calculus of windows”, which makes it
possible to reason about the display process at a proper level of abstraction. A systematic
approach was followed, in which a number of “invariants” and “attributes” were defined before
the actual construction of the algorithms and data structures, and served as a basis for their
development; the paper describes the methodology used and includes a semi-formal correctness
proof of the main algorithm, which involves mutually recursive procedures.

‘Thig paper appears in Sctence of Computer Programming, Vol. 5, no. 2, pages 111-142, 1985.
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