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ABSTRACT

The use of medern video display terminals for communication with a
computer has a profound effect on the nature of the resulting dialogs

Screen-oriented interactive programs require a new set of tools, techniques
and methods. We report on studies on these topics performed in a computing
environment based on atandard commercial hardware. The paper describes some of
the tools which we have used and the ones we have designed ; it then discusses
the wethodological issues involved in designing two-dimensional dialogs, and
shows the kind of program uodularity which is required in thie framework.
Object-oriented programming appears to provide the right basis; we have
applied this methodology using the class concept of the Simula 67 language and
the associated prefixing mechanism.

L_~ INTRODUCTION

Interactive facilities play an ever” increasing part in all the

application areas of computers. Today, this evolution does not only imply that
the traditional “batch mode of submitting programs to computers yields more
and more to conversational execution ; it also impacts the very form of such
executions : whereas dialogs on typewriter-like terminals and the firat CRT
devices would proceed in a "line by line" fashion, current terminal technology
sakes it possible to use the full contents of a screen as the basic unit of
communication with the computer, giving rise to the so-called “full-screen” or
"full-page" mode of interaction.

One of the best-known applications of this technique is the preparation
of documents on a computer using one of the "full-screen editors" now
available on many computer systems, most notably mainframes and
word-processing systems. Users -of such tools unanimously appreciate their
power and ease of use, to the extent that going back to a line-oriented editor
is resented as a painful experience. Full-screen facilities also find
applications in many other domains ; examples are software development and
maintenance aids, application programs designed to be used by non-specialist
users under the guidance of successive "menus", business data processing
(where many “transactional systems" are being developed) and Computer-Aided
Instruction. In these and many other areas, programmers in ever growing
numbers would like to be able to provide full-screen dialogs for the execution

of their own programs.
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‘The construction of such dialogs implies that the texts to be exchanged
Between the programe and their users are two-dimensional ; thie requirement
adds a new tet of difficulties to the general problene of conversational
programing, which are themselves far from being fully wastered (in particular
aa regards the hunan engineering, or ergononic, aspect of disloge). This paper
studies some of these problena, and describes sone of the solutions which have
been implemented at the Direction des Etudes et Recherches of Electricité
France (EDF), laying the basis for what may be called # tuo-di
programing environsent. The discussion focuses on three of the basic
of software engineering, 43 applied to two-dimensional intel

Programing : tools, sethods and languages. The exgononics of dialog systens,

Which is another iaportant topic, is touched upon only briefly.

In some respects, it may be felt that the discussion below lags behind

current "frontier" technology in hardware and softuare. In particular, we
Limit ourselves to the manipulation of text objects, even though considerable
experience has been gained in recent years in two neighbouring domains, namely
graphics systens and Computer-Aided Design, where aoce complicated visual
objects are processed. It is clear, on the other hand, that some research
Laboratories have developed two-dimensional environments which ave more
sophisticated than the one described here ; two examples vorth noting are the
set of tools built around LISP /14, 15/ and the Xerox PARC SMALLTALK syaten

/3/, which utilizes special-purpose terninals and « dedicated operating system.

On the other hand, the tools which are described in this paper do not
appear to be so commonly available in the most widely used environments,
whether in industry or universities ; neither do the underlying ideas. 1 is
quite interesting in this respect’ to study two recent’ papers in the
Gormunications of the AC on the subject of interactive programing /4, 10/ ;
although quite different frox one another, they both discuss hov successive

questions should be asked from usecs, how mnesonics and keywords should be
designed, how errors should be dealt with, etc. ; both implicitly asaune that
the dialog considered proceeds in a completely sequential, line-by-line
fashion, without even considering that there may exist other cases. Wich of
the discussion in these papecs becozes pointless when one goes to a
tvo-dinensional environment.

Furthermore, an important characteristics of the tools described below
should be enphasized, nanely the fact that they were developed and are being
used in « standard “production” environment rather than ia a computer science
laboratory. The computing center at the Direction des Etudes et Recherches of
EDF is based on IBM hardvare (3081, 3033, 370-168, 4341, ete.) under the
HVS~SP_ operating system. The time-sharing system is TSO; full-screen
Ceeminals are of the I6K 3270 or compatible series ; cost of then ave 3278,

and 3279-38 models (the latter having seven colors, seai-graphic

sibilities and various other options). Most application’ programs are
written in Fortran. This environment (ubich also includes « Cray-l and many
other computers) is quite representative of many large classical computing
centers
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THE CHARACTERISTIOS OF TWO-DIMENSIONAL DIALOGS

‘The usefulness of two-dimensional dialogs steas from the coabination of
three properties

= The second dimension as such, vhich provides the program user with
an overview of @ full page of text, rather than just a single line 3

~ The use of a page a# unit of communication with the computer, which
allows the user to design first an overall sketch and then look
back on his decisions, correct errors, reverse sone choices, before
he sends 4 page of information to the aysten ;

~ The default facility, which makes it possible for the progran to
fill some zones where user response is expected by predetermined
values, so that the user will only have to urite the ansvers if
they are different from these values, but not if the questions are
voneeded in his particular case, or call for the sane ansver a3 in
the previous use of the system (one of the criticii
frequently from users of non-page-oriented interact

It should be noted here that a good page-node interactive program should
keep a profile of every user, so that the default ansver suggested for each
question will be the one chosen by the user during the last execution of the
Program, rather than a fixed value assuned to suit all users.

Below is an example of a full-page dialog. It is extracted fron the
FORTRAN command procedure in our AL library (eee secticn 3) and shows the
First three screens to be filled when cunning a Fortran program : the user
types in the names of the files containing source and object code, the
destination of printouts, the compiling options, the libraries used, ete. It
is easy to imagine how many successive questions would have to be answered in
an equivalent line~by-line dialog ; most ansvers would be indentical from one
vse of the procedure to the next. If full-screen is not available, the
designer of such a dialog constantly faces the contradictory demands of two
categories of users : the sophisticated ones, vho would like to use many
advanced features and thus request many options, i.e. many questions ; and the
nore numerous "vulgar" sera, who use standard options and want short dialog

Worth noting is the presence of an option called "sane as last time”
Mick allows che user, from then on, to remain entirely silent, and directs
the systea not to ask any more questions. This option is particularly useful
in a repetitive task such as the test of a given module.
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HELLO BERTRAND

WELOOME TO THE AL FORTRAN EXECUTION SYSTEM

PLEASE CHECK THE APPROPRIATE BOX :

SAME AS LAST TIME

COMPILATION, LINK-EDIT, EXECUTION

LINK-EDIT, EXECUTION

EXECUTION

=) //

ses) f /

s=) 1

son) f i}

COMPILATION, FORTRAN IV EXTENDED

NAME OF THE FILE CONTAINING SOURCE CODE

COMPILATION LISTING DESTINATION

(TER, PRT, LOC, DMY, SYS=x or File name )

CLASS (only if SYS=C, R, S$ or U)

NAME OF THE FILE FOR OBJECT CODE

COMPILER OPTIONS ;

OPTIMIZATION LEVEL

GENERATED CODE LIST

ees) tryit.fore(first)

===) prt

===)

sas) tryit.obj(first)

aaa (2)

==s) no
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~-- COMPILATION WAS OK ~~~

LINK-EDIT

NAME OF THE FILE CONTAINING OBJECT CODE ==~) tryit.obj(£irse)

LIBRARIES TO BE INCLUDED

You may request a library by giving either :

~ keyword (FORTLIB, GENERALE, IMSL, LINPACK, BENSON, ATELBIB...)
—the actual name of a File containing the library in load module

form.

ves) fortlib

was) 'edf.myownlib.toad'

waz) ‘edf.peterslib.load’

xen)

===)

s==) generale

It may be said without overstating the argument that, for the programmer

wha writes systems having this kind of interaction with their users, the leap

from traditional, line-by-line conversational programs to page-oriented ones

is as big as the leap from non-interactive "patch" programming te

line-oriented interactive programming. ‘The- new discipline may (perhaps
emphatically) be called “two-dimensional programming” ; the second, vertical

dimension introduced by screen dialogs raises many important issues with

respect to the methods, techniques and tools of interactivity.

4 = COMMAND PROCEDURES : THE DIALOG HANAGER AND THE AL LIBRARY

The first tool which is available to our users is one which is

diactributed by the manufacturer. IBM has recently released /8/ a new version

of SPF (System Productivity Facility, previously known as Structured

Programming Facility), a subsystem of TSO, the basic interactive system under

HVS. The main characteristics of SPF, which make it rather nice to use for

such functions as text editing or file management, are the following :

= the use of two-dimensional dialogs ;

= the presence of "user profiles" which keep useful information from one

interactive session to the next ;

- a particular technique for error processing.
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The main improvement brought about by the new version of SPF is

the set of functions called the "Dialog Manager" /9/. Thanks to this facility,

atly programmer writing command procedures in the command language of TSO may

use some of the internal tools and techniques of SPF, thus being able to take

full advantage of the three properties mentioned above.

The dialog manager may be called through special functions which

have been added to the TSO command language. It is not, however, easy to use

for novice or occasional users ; neither is it readily interfaced with

application programe (in particular those written in Fortran). [ts mein use in

our environment so far hag been the implementation of a general-purpose

“command procedure library, called AL (Atelier Logiciel).

The AL library currently contains some forty procedures which

encompass a wide spectrum of tools : access to compilers of the various

available languages (Fortran, Cobol, assembly, Algol W, Pascal, Simula 67,

Reduce), file manipulation and management, use of specialized programs, access

to on-line documentation, etc. Until recently, all were tine-oriented

conversational procedures, suffering from the drawbacks mentioned above, It is

interesting to note that our desire to keep the dialogs simple, and thence ta

limit the number of available options, had resulted in the proliferation of

“customized” versions of the more popular procedures : programmers would copy

and modify them, thus hampering our efforts to maintain and improve them.

With the development of two-dimensional versions, these problems

have disappeared : we may now afford to include many options, since the user's.

choices are remembered from one session to the next and he will usually change

few of them each time ; no more tedious recoding of the same values is

required. During the first use of a procedure, default standard values are

pre-filled by the system.

Currently available two-dimensional procedures in AL include

Fortran IV (of which the dialog in section 2 was an example), Fortran VS

(offering access to the IBM version of Fortran 77), Simula 67, Pascal,

Algol W, Cobol, Apothaéce (a system for the management of program libraries).

The entire library will be progressively adapted.

4 - TOOLS FOR TWO-DIMENSIONAL APPLICATION PROGRAMMING : GESCRAN

Once one has discovered the delights of two-dimensional

interactivity, perhaps through the use of SPF and AL, one is often tempted to

apply the same techniques to one's own application programs. One available [8M

product makes this possible : GDDM (Graphical Data Display Manager /7/), a

very powerful tool which alse includes semi-graphic facilities. GDDH is also,

however, rather complex and heavy, and closely tied to IBM hardware and

systems. We thug felt it necessary to design a product which, albeit much less

ambitious, would cater for simple uses while remaining rigorous in its

definition and more portable.
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The regult of this effort is a ‘package called Gescran (for "Gestion
d'écrans", screen management) /1/. Gescran is a set of Fortran subroutines,

designed according to the methodological principles expounded in /13/ ; it

allows the programmer to describe and manipulate objects called "screens", to

create cectangular “windows in these acreens, to define and change the

attributes of these windows (such as associated text, color, brilliance,

protection, etc.), and to visualize all or part of a acreen on the available

terminal. Zt ie important to note that screens and windows are in no way bound

ta the display hardware : they are purely abstract objects, known to the
program solely through a name, which in Fortran is implemented a9 an integer

variable, used internally to contain an address and control flags ; the only

operation which may be applied to such a variable is ita use as an actual
argument in a call to one of the Gescran subroutines, Association with a
physical screen occurs only when a visualisation subroutine is called.

4

Gescran works on the IBM 3270 seriea of screen terminals, but was

designed so as to be adaptable to any terminals offering similar capabilities.
The construction and manipulation of the data structures representing screens
and their windows are entirely independent from the physical 1/0 operations.

Among the current developments, we shall mention a study aimed at

interfacing Gescran with a graphics package, so that the programmer will have
the possibility of describing a Gescran window as graphical and use the
graphics package rather than Gescran to manipulate this particular window,
provided of course the terminal used provides the corresponding facilities.

5 - COMPUTER-AIDED SCREEN DESIGN : CONSCRAN

An important tool for the efficient use of Geseran, called Conseran,
provides a higher-level interface for the design of screens aa defined above.

The requirement for Conscran stemmed from a problem which had been met

by all Gescran users ; before being able to write the sequence of subprogram
calle which describes a set of screens and windows, one must design each
screen by defining the position of its various windows, the parts they play in

the interaction, their contents, color, protection, special features (e.g.

blinking, reverse video), etc. Until Conscran became available, the best

available technique for this phase was to use a sheet of paper and draw a
picture of the screen. Such a medium and method appear rather primitive when
compared with the aim pursued.

Conscran relies explicitly on concepts taken from Computer-Aided Design
to improve the screen design process. It allows the programmer to perform euch
design in a two-dimensional interactive fashion : the screens will be "drawn"
at the terminal, with all the resulting flexibility ; various designs may be
tried, observed, modified. Conscran automatically generates the fortran

subroutine containing the calls to Gescran subroutines which are necessary for
the construction of the corresponding screens, thus freeing the progranmer

from a vather tedious task. Conscran stores the resulting screen designs. in a
data base, thus allowing for later retrieval and modification. It alse

generates a paper "map" of the screen, ahowing the position af the various
windows, and a "Legend" giving their attributes.

Our current efforts go towards extending Conscran to a system allowing

for the design not only of individual screens, but of entire applications as
well, using the same underlying principles.

Conscran itself is a two-dimensional interactive program, written in

Gescran. Its aim 1s what may be called "Computer-Aided Screen Design".
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6 ~ THE STRUCTURE OF DIALOG PROGRAMS

Even with the world's best tools, two-dimensional programming raises
several difficult issues. One of the most delicate ones is the structure of
dialog programs. The behaviour of such programs may usually be quite
faithfully modeled by a state transition diagram: one execution of the
program will correspond ta a path in the associated graph.;

Below is an example of such @ graph ; this is one of the applications
which we have written with Gescran, the SVP system /5/, which allows users to
ask (non-urgent) questions and get answers from the programming assistance
service on their terminal. Only the “user” part is shown.

read answers

gestions

jell but J and 3

Except for its small size, this example is quite representative of the
structure of page-oriented, wenu-driven interactive programs. At every step
in the execution, associated with one of the states in the diagram, the
Program outputs a screen ; certain zones are then filled by the user ; after

having checked the validity of the answers, the program will perform some
action (usually reading or updating a data base). The next step depends on the
user's choice, often expressed by his pressing some function key on the
terminal, The labels of the edges in the graph correspond to these possible
choices.

Iq a atraightforward realization of this scheme, the program for an
interactive, menu-driven application 4 ill consist of a number of "paragraphs",
one per state, each looking somewhat like the following :

state x:

output screen for state x 3

repeat

tead user's answera and his choice c for the next step ;

if error in answer then

output message

until no error in answer ;

record answer ;

case c in

¢1 : proceed to state x1,

2 : proceed to state x2,

Cn : proceed to state xq
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Using such a scheme for the actual programming will result in programs
with an intricate branching structure, belonging to the well-known "bowl of
Spaghettis" type. It has been argued /2/ that such a structure should be
avoided in the first place, by applying to the state graphs of menu-driven
systems such restricting rules as are imposed by modern programming
methodology upon the control structures of programs. We think that the analogy
is wrong : designing the internal structure of an engineering product such as
@ progcam is really not at all the same as designing the external structure of
a process invoWing humans, such ag the dialog with a machine. In our opinion,
the structural intricacy of the state graph of many interactive systems is an
inherent property of these systems, and artificial “structuring” rules are
pointless in this domain. The complexity of the graph may stem from various
reasons : there may be temporary detours (corresponding e.g. to “help” keys),

shortcuts (which were introduced at some point because a user requested, quite
legitimately, the possibility to go directly from a certain state to another
one, whereas he previously had to backtrack first to the initial menu), and
multi-level exits (corresponding to “escape” keys or "quit" commands), Note
that these requirements will defeat eny effort to implement menu-driven
systems by straightforward application of "structured programming" in its
naive form.

Some authors have introduced special-purpose control structures te solve
this problem ; one example is the language PLAIN /16/, which uses "exceptions"
as in Ada, CLU or PL/I. The use of such constructs seems ouly marginally
preferable to that of ordinary jumps.

A much better solution, as it seems to us, is to completely disconnect
the description of the overall structure of the dialog, i.e. the traversal of
the graph, from the description of what happens at every step, i.e. the
Operations performed while in a given state. The latter may be treated with
ordinary programming constructs ; for the former, the finite automaton, as
used in compilation or real~time applications, is a helpful model. Ie will be
quite useful (although not compulsory) to implement the systems in a
table-driven fashion, i.e. represent the state transition diagram by a data
structure (usually an array) rather than a function subprogram ; using this
technique, the changes in the scheduling of states, which are quite common ag
projects evolve and users request new facilities, will be easy ta accomodate.

More peecisely, we shall make use of ten Program units on three
hierarchical levels :

| scxepuz |

INITIAL TRANS IT 108

question
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SCHEDULE only defines the traversal of the transition graph ; it knows
sething about the particular screens of a given application, and should be
identical for all applications :

SCHEDULE :

var current : STATE, Label : CHOICE

‘current :* INITIAL ;
repeat

EXECUTE (current, label) ;
current != TRANSITION (current, label)

until PINAL (current)

TRANSITION is the function vhich describes the state diagram:
TRANSITION (s, 1) is the new atate reached vhen leaving state # by the branch
labeled 1. As wentioned above, TRANSITION aay be represented either by a
function subprogcam or by a two-dimensional array, the latter leading to a
more easily adaptable program,

EXEGTE does what is required in a given state : ask the right question,
check the ansver, perform the necessary action and return the choice ¢ for the
next step :

ERECUE (ine : STATE ; out ¢ : cHOlCE) :
vac ©: CHOICE, a ARSVER ; :

repeat

2 '= QUESTION (s) ;

correct :* CHECK (a, 5);

Lf not correct then
“THeSsaGE (a, 8)

watil correct;
RECORD (a,

QUESTION, CHECK, MESSAGE, RECORD and NEXT, on the other hand, are

agplication-specific. The call QUESTION (x) will output the screen associated
with atate s and read the user's answers :

QUESTION (in s : STATE) :

J cutpsr the screen for etate #5
| resd and return the answer

GEGK (a, #) will return true or false depending on whether anaver a is
acceptable or not in state 8; MESSAGE (a, s) outputs the error message
corresponding to answer a in state s, vhere CHECK (2, s) is false ; RECORD
(a, 8) records answer a in state s, vhere CHECK (a, #) is true; NEXT (a, 8)
determines from the user's ansver a the exit label which was chosen for
leaving state #.

Te is naturel to Look for tools which my help in the construction of

intesactive systems described in the above framevork. Sone of the “author
Languages" in Computer-Aided Instruction (CDC's Plato or IBM's IMG for
example) pursue siniler goals. Can one use the above schene to build
general-purpose tools for helping in the design of interactive, full
applications ? As mentioned before, this is our aim in the current exten
to Conscran.
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It is soon realized that this schene cannot reasonably be implemented as

presented above if what is sought is a sodular, easily extendible system. A

simple rerark should convince the reader of this impossibility : if procedures
Such as RECORD, CHECK, MESSAGE, QUESTION or NEXT were to be put in a Library,
so ss to be reusdble for various applications, then a closer look at the
above design shows that these procedures aust include anong their paraueters
the sta€e (s), but also the precise interactive application to which this
state belongs. In cther vords, any such general-purpose should know about and
discriminate amongst all states of all available applications using then
This is clearly incompatible with any attempt at modularity.

As it is often the case which such problems, ¢ proper solution may be
found by going from procedure-oriented to object-oriented programming, i.e. by
basing the structure of the program on the main data structures rather than on
the functions to be performed. This is the direction that we have taken j we
have been greatly helped in this effort by the availability in our computing
center of one of the fev generally available modular, object-oriented

Languages : Simla 67.

USING A MODULAR , OBJECT-ORIENTED LANGUAGE : STKULA

Simla 67 /6/ “appears particularly well-suited for the practical
application of the sethodotogical principles intceduced above. The cain
concepts are those which have been enphasized in /12/: abstract data tyres,
top-down program and data structure design, genericity. Similar techniques
could be applied to a descendant of Simula, Smalltalk /3/-

We will only outline part of the system design. In order to implement

the above scheme, it is particularly useful to be able to use a structure

corresponding to the abstract notion of a The folloving

characteristics are associated with every stace s :

Si state munber, screen to be output when 5

~ gparations which may be requested ‘when the system is in state s+

QUESTION, CHECK, HESSACE, RECORD

- actions to be performed when s is reached + EXECUTE.

Buch characteristics correspond closely to vuat cay be included in the

basic progean stiucture of Simul 32, which is the implesentacion of
im batrast date type 1 vatlables represtatiog the, Aceributes of coat eats,
procedures (subprograms) representing the admiacihte npers cad

Statements representing the initial actions. One is thus quite maturally led

to the design of a clase STATE.

A fundaencal property of Simla which vill be used here is knova as

class prefixing : a class say be used es "parent" of other classes, which will
Inherit ics characteristics, to which chey will add their ova refinements.

Procedures may be specified at the level of the parent class, cheit

realizations being given in the descendants ; usually these will not be the
same in every descendant. Such procedures are declared as virtual in the

parent class. Class prefixing and virtual procedures together fora one of the

best-known systems for the authentic top-down design of bath program and date
structures, Here they vill allow us to define the class STATE with the

folloving structure
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glass STATE 5
comment operations : 8

virtual ¢

cef (answer) procedure QUESTION ;

boolean procedure CHECK ;

procedure MESSAGE ;

procedure RECORD ;

ref (choice) procedure NEXT ;

begin

procedure EXECUTE (c) ; ref (choice) ¢ ;

begin boolean correct ;
correct :* false ;

while not correct do

begin ref (answer) ay
a :3 QUESTION ;

correct := CHECK (a) ;

if not correct then

MESSAGE (a

and validation ;
RECORD (a) ;

© :@ NEXT (a)

end EXECUTE ;

comment attributes : 8

integer screen ; comment Recall that Gescran uses
integers to denote screens ;

end STATE

Class STATE defines the general properties of a screen. Procedure

EXECUTE has now become part of this class ; the same is true for procedures
QUESTION, MESSAGE, CHECK, REOORD and NEXT. Note that all these procedures have

lost their "STATE parameter (s in the procedure-oriented version). There is

an important difference between EXECUTE and the other five : at the level of

class STATE, the latter, while needed, cannot be refined, since their precise
implementation may only be known for a given STATE. They are thus defined at

the STATE level as “virtual", i.e. only the procedure headings (pertial
specification) is given. In contrast, procedure EXECUTE is the same for all

STATEs ; thus both its heading and body (which uses calls to the five

virtuals) may be given at the level of class STATE.

For any given application, there will be a certain number of inatances

ef class STATE, corresponding to the various’ states of the application. This

instantiation concept is readily implemented by the prefixing mechanism :

STATE class INITIAL MENU ; begin ... end ;

STATE class COMPILATION OPTIONS ; begin ... end j

etc.

The body of each of these subclasses will include the corresponding body

for the procedures QUESTION, CHECK, MESSAGE, RECORD and NEXT.

Qne of the main benefits of this mathod is that it allows a truly

modular construction of interactive applications, the general-purpose and

application-dependent parts being programmed separately. All problems

pertaining to a certain state (formulation of the question, treatment of

errors, recording of answers, etc.) are dealt with in the module (class) for
that state, and there only ; on the other hand, the wodule for a state does

not know anything about its connections with the rest of the application’s

graph. Thus it becomes possible to add or change states, transitions between
states etc. without disturbing anything in any module other than the ones

associated with the states directly involved in the modification, Apart from
its elegance, such a modular, object-oriented programming yielda software

products on which modifications and extensions are mich easier ta perform than

with programs structured in a mre conventional, procedure-oriented fashion.
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& ~ CONCLUSION =

We hope to have shown that the two-dimensional aspect of screen dialogs

has important effects on the structure and use of interactive systems. We hope

that the ambitious ongoing developments in the area of integrated software

environments will take into consideration the key issues which arise in the

design of systems for successful communication between man and machine.
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COMPUTING [82b]

PRACTICES

Principles of Package Design

1. Introduction

For several years some of us at

EDF have been writing software

tools of general applicability. The

term Atelier logiciel (software work-

shop) has been used to describe our

team’s activity. The tools which have

been constructed and distributed dif-

fer widely in their nature and mode

of utilization, An important category

is that of subprogram packages. A

subprogram package is a group of

routines which may be called by any

program; its purpose is to provide a

means of performing tasks in some

domain of application which the

available programming language.

does not directly address.

Examples of subroutine packages

which we have developed during the

past three years include those listed

in Figure 1. Working on these pack-

ages, we have gained various in-

sights. Our aim here is to convey
——

CR Categories and Subject Descriptors: D.2.0
(Software Engineering): General-standards,
D.22 (Software Engineering]: Tools and
Techniques-modules and interfaces, software
libraries, user inte-faces, D.2.7 [Software En-
gineering}: Distribution and Maintenance-
documentation, extensibility, D.3.3 {Program-
ming Languages|: Language Constructs-ab-
siract data types, modules, packages.

General Terms. Design, Documentation, Lan-
guages, Reliability.

Additional Key Words and Phrases: Reusable
Software, software tool, Fortran.
Author's present address: B. Meyer, Electricité
de France (EDF)—Direction des Etudes et
Recherches, 1, avenue du Général de Gaulle,
92141 Clamart, France.

Permission to copy without fee all or part of
this material is granted provided that the cop-
les are not made or distributed for direct

commercial advantage, the ACM copyright
notice and the title of the publication and its

date appear, and notice is given that copying.
ts by permussion of the Association for Com-
Puting Machinery. To copy otherwise, or to
Tepublish, requires a fec and/or specific per-
mission.

©1982 ACM 0001-0182/82/0700-0419 752,
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Bertrand Meyer
Electricité de France (EDF)

SUMMARY: Subprogram Packages are groups of related
subroutines used to extend the available facilities in a pro-
gramming system. The results of developing several such
packages for various applications are presented, with a dis-
tinction made between external and internal design criteria—
what properties packages should offer to their users and the
guidelines designers should follow in order to provide them.
An important issue, the design of reusable software, is thus
addressed, and the concept of abstract data types proposed
as a desirable solution.

some of these to other practitioners
who may be confronted with similar
problems. No breakthrough is

claimed; our techniques are mostly
standard. We feel, however, that
their presentation and a discussion
of the software engineering methods

used in the design of our packages

may be helpful to practicing pro-
gtammers working in an “industrial”

environment.

In Section 2, we describe our en-
vironment, a large scientific comput-

ing center, and underscore the need
for subprogram packages in relation

to other kinds of software tools. Sec-

tion 3 is a detailed discussion of ex-
ternal design criteria, ie, how pack-

ages should appear to the outside

world. Section 4 presents our

methods for internal design, i.e., im-

plementation to fulfill the require-

ments of the preceding section; the

gist of our approach is that it consid-

ers a package the implementation of

one or more abstract data types. Sec-

tion 5 concludes with some reflec-

tions on the scope of our experience.

Since naming conventions form
an important part of our discussion,

Communications

of

the ACM

we have, throughout the text, trans-

lated the French words and abbre-
viations appearing in subprogram
names. The package names them-

selves have been preserved,

2. Why Subprogram Packages

The ideas presented here cer-
tainly reflect to some extent the fact
that our computing center is geared
toward scientific, mostly Fortran

programming; and, to a lesser one,

that it uses three IBM computers
(370-168, 3033, 3081) under MVS,

to which a Cray-I has recently been

added.

The first question the reader may
ask is why we concentrate on collec-
tions of subprograms. Our aim is to
extend the range of facilities offered

by the existing language. There are
at least four other solutions.

(1) convincing users to switch to a

better or more powerful lan-
guage;

(2) writing JCL procedures;

(3) writing conversational proce-

dures;

(4) designing special-purpose pre-

processors.

July 1982
Volume 25

Number 7



alone debugging aids. Since theyCOMPUTING Preprocessors present another . Additionally, it should be noted 3.1. Overall Simplicity ms
— well-known problem. Often simple- generate code in existing program- hit pregroctlsers.onl}, ada surfiee ee \ user
PRACTICES minded, they do not provide all the — ming languages, they rely on the as- improvements to Fortran. They usu- In the area of simplicity our cen-

Briefly, we shall discuss why these

choices are not always satisfactory.

Solution (1) is certainly the ideal

one. However, the sad fact is that

most programmers in industry use

first-generation languages and are

services expected from a well-engi-

neered compiler (cross-references,

symbol tables, data flow analysis,

useful error messages, source level

optimization). They usually have no

associated run-time systems, let

sociated facilities. This makes run-

time errors a source of distress: they

must be traced back through a pro-

gram-generated program, which is

hardly more readable than the object

code produced by a compiler.

ally do not provide remedies for this

language's intrinsic limitations with

regard to data structuring, dynamic

allocation, pointer variables, intra

and inter-routine type checking, re-

cursion, etc.

Subprogram packages do not suf-

tral thesis was that most program-

mers would not use a subprogram

package if it required constant reli-

ance on a reference manual. Al-

though we did insist that users read

part of the manual at least once, our

ideal was that they should then be

able to employ a package for stan-

APPLICATION

PROGRAM

PACKAGE

SYSTEM

(comptter,
run-time system,

operating

system,

etc.)

unlikely to try another one. If your Ensorcelé— {ree-form input and output fer from these defects, although, ad- dard. applications without further
aim is to produce tools that will be Ghrenos= 3 lime measurement, mittedly, they raise other problems reference to any written document.

4, had be: fe h Textes— fext/manipubiiion which we discuss in the next two Ip practice, we have not succeededused, you had best conform to the Axédir— direct-access file management fionise To the potential iser ithe: 5 in .
majority rule. (An even sadder fact, Gescran— full-screen programming REC HONS: po r Mey in reachin; this goal completely, but Fig. 3. Hierarchy of Programs and Pro-
as we shall see in Section 4, is that a Ss internal sorting offer a very neat way of enriching we have nevertheless succeeded in gram Users.
the tool writer is usually barred from

using modern languages because of

technical constraints.)

Solutions (2) and (3) (batch or

conversational procedures) are ade-

quate for tools intended for “end

users”, but not for tasks whose exe-

cution is initiated by programs.

Solution (4) (preprocessors) may

seem attractive but there are many

drawbacks involved. One is that it

may lead to the proliferation of pre-

Processors serving various purposes,

which will not be, as a rule, mutually

compatible. As an example, consider

the case of a Fortran programnier

who wishes to use the control struc-

tures of “structured programming.

His programs output results to var-

Fig. 1. Packages and Their Aims,

Initialization and Termination

u (answer)

CALL LEAGGE

Defining Screens and Creating Windows

ns)

CALL MXLSGE (n)

CALL CREWGE (nw, ns, il, ir, iu,

id)

CALL DELWGE (nw)

CALL BRIWGE (nw, b)

CALL PROWGE (nw)

‘CALL FREWGE (nw)

CALL CAPWGE (nw)

CALL ASIWGE (nw)

Changing or Examining the Internal Image

May (use full screen? (yes, if answer = 0)

Leave full-screen inode.

Define ns as the name of a screen.

Set to a the maximum number of window

lines. per screen.

Create window nw in screen ns with il, ir,

iu, id as coordinates

Delete window nw.

Assign brightness 6 ta window nw.

Make window nw protected.

Make window nw free (unprotected).

From now on, convert letters in window

nw to capitals.

From now on, leave any character in win-

dow nw as it stands.

the existing programming language

with new instructions, implemented

as subprogram calls.

3. External Design Criteria

A subprogram package is a col-

lection of mutually related subpro-

grams. Just how they should be

“related” to each other will be stud-

ied in more detail in Section 4. For

the moment, we tum to an important

question: How should these subpro- .

grams be presented to their potential

users? This problem is vital, espe-

cially in light of the fact that pro-

grammers are often reluctant to in-

vest the effort necessary to lear a

new methodology. They will not be

concentrating all the necessary infor-

mation for normal use of a package

on a single page. This we consider a

mandatory requirement. For an ex-

ample, see the reference sheet for the

package Gescran as outlined in Fig-

ure 2.

The most important aspect of our

approach is that we do not try to

write complex packages providing a

wide range of services and satisfying

all users’ fantasies. Instead, we con-

centrate on a careful study of user

needs and strive to offer simple and

efficient answers to the most impor-

tant of them. Of course, deciding

which issues are the most important

is a design decision since often user

needs are either unexpressed or, if

ity tasks. The application program/

subprogram package/system hierar-

chy is pictured in Figure 3; other

levels may, of course, exist. We shall

refer to the programs which call our

subprograms as application pro-

grams; on the other hand, users will

be those individuals (or programs)

who (which) run application pro-

grams. (These terms, especially the

latter, are two of the most misused in

data processing; we shall strive to use

them precisely.)

Self-restraint is necessary be-

cause there is at least one level, that

of an application program, between

users and our subprograms. The lat-

ious graphic devices, and they re- inet tabcha) Reg apelcorwantatodimineowrmi with ta lured into using our packages unless expressed, require much work to be ‘er must ee as invsyblelto sets

quire that some arrays have dynamic CALL BLAWGE (nw) Fill window aw with blanks, some very attractive arguments con- _ transformed into realistic specifica- i Lt ai 7 spreially aiees
bounds (i.e. the bounds are read on CALL ASSSGE (nst, nss) Assign value of screen nss to screen ast. vince them to do so. tions. fant in connection with errors (Sec-

CALL BLASGE (ns) Fil all unprotected windows of screen ns tion 3.5),a file before processing begins).

Many preprocessors, such as Ratfor

[5], are available for the first pur-

pose; others, such as Fortran 3D

[Hl], serve the second one (note,

however, that the current release of

the latter product uses the subpro-

gram package formula); still others

exist for the third requirement. The

input languages for these preproces-

sors will, in general, use wildly di

ferent conventions. Their treatment

of errors will not be the same. Some

of them, in generating Fortran code,
will delete comments, while others

will recognize comments under a cer-

tain predefined syntax as directives.

Their combined use will thus be very

difficult and, in many cases, impos-

sible.

CALL NBCWGE (nw, 0)

CALL EXAWGE (nw, tabcha)

LL WRISGE (ns)

CALL REASGE (ns)

CALL EXACGE (nw, aline, ncot)

CALL EXAKGE (ns, n)

rw)

CALL UNIIGE (nw)

Input and Output (Affecting the External Image)

Manipulating the Cursor and Function Keys

“CALL POSCGE (aw, niin, nel)

Typed Input-Cutput (interface with Rackage Ensorcala)

with blanks.

Assign ta nm the number of changes to
window nw since the last input opera-

tion.

Assign to tabcha the current contents of

wiridow nw.

isplay screen ns on the terminal.

Input screen ns from the terminal.

Position the cursor in window nw, at p0~

sition [nline col)

To what position (nine, neal} was the cur-

sor in window nw? {{0, 0] I not in win

dow)

Assign to the number of the function key

used to send the screen contents.

irect Subsequent output to window nw.

Obtain subsequent input from window nw.

Fig, 2. Reference Sheet for Gescran.

In the following subsections we

shall list those desirable qualities

which our packages should possess

and explain exactly how these design

criteria—namely, simplicity; self-re-

Straint; ease of use; homogeneity,

safety—were met.

3.2 Self-Restraint

Our subprograms are called by

other programs or subprograms: they

are not directly concerned with solv-

ing “interesting” problems, but

rather with performing general util-

Foreword (“How to Use This Manual’)

Section 1—Introduction

3—Restrictions and Caveat
4—Examples

Appendix A—Error Messages

B—List of External Names
C—Portability

O—Performance

2—Individual Suoprogram Description

5—Notions on the implementation

£—Controt and Data Flow Graph

F—Quick Reterence List (last page)

Fig. 4. Structure of the Manuals.

3.3 Ease of Use

Documentation

Documentation is organized in
terms of simplicity, ease of use, and

homogeneity, All packages are doc-

umented by manuals with the same

structure, as shown in Figure 4.

Order of Arguments

One key to ease of use is consis-

tency of design. This criterion be-

comes even more crucial as new

packages are employed and the num-

ber of available subprograms grows,

It requires that a set of regular, co-

herent conventions be strictly ob-

served for all distributed products,

420 Communications July 1982 any Communications July 1982of Volume 25 of Volume 25the ACM Number 7 the ACM Number?
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An important area requiring a

homogeneous policy is parameter or-

der. In a language environment not

providing for key word parameter

transmission, actual arguments to

any subprogram must be given in a

fixed order, which matches that of

formal parameters for the subpro-

gram. Package users must thus know

this order, such a constraint often

becomes a source of annoyance and

errors, It is therefore desirable that

the package designer adhere to some

convention.

For example, in the Textes pack-

age, which allows character string

manipulation using pseudo-string

variables that appear to the compiler

as integer variables (see Section 4.6),

the syntax of some typical calls

would be what is seen in the box

below. itext, jtext, and ktext are

pseudo-variables, i and / integers.

The order of arguments decided

on here was the following: in assign-

ments the destination should always

precede the source. This is consistent

with the syntax of most program-

ming languages:

A=f(BC...)

Moreover, since the package’s

aim is to provide the equivalent of a

“string” data type as it exists in, say,

PL/I, the chosen order aims to imi-

tate the syntax of languages which

do offer operations on this type; e.g.,

CALL CNCTIX (itext, jtext, ktext)

follgws the PL/I pattern itext = jtext

|| ktext.

The rule of consistency in the

order of arguments may conflict with

other, equally important criteria con-

cerning the homogeneity of design.

For example, in the Axédir package

for direct-access file management,

there is a read routine whose call has

the following form

CALL REAEDA (ile-id, target,

record-number, error-indicator)

This conforms to the “destination

first” rule, although the file identifier

422

comes before the target for reasons

of consistency with the rest of the

package. For the write routine, how-

ever, we chose the syntax

CALL WRIFDA ((file-id, source,

record-number, error-indicator)

since we thought it would be easy to

remember that corresponding argu-

ments occupy exactly the same po-

sition in both operations, “target”

for read and “source” for write being

symmetric. The destination first rule

is thus violated by WRIFDA.

3.4 Homogeneity

Number of Arguments (operands

and parameters)

The question of arguments in-

volves simplicity as well as homoge-

neity. Not only should arguments

appear in a carefully chosen order,

but the number of them should also

be small if programmers are to re-

member the calling sequence.

Of all the subprograms listed in

Figure 1, 71 percent have zero, one,

or two arguments, and less than 4

percent have more than four (a func-

tion result being counted as an ar-

gument). The maximum number of

arguments is six.

Requiring short argument lists

has an immediate consequence: since

any means of data transmission be-

tween an application program and a

package subprogram other than ar-

gument passing (such as explicit

COMMON block sharing) is

banned, every subprogram may per-

form only a well-defined single task.

In our case, this property became

another motivation for requiring

short argument lists, rather than a

consequence of this requirement. It

is indeed integral to our design phi-

losophy (see Section 4).

Such an approach has interesting

practical consequences which distin-

guish our packages from many com-

mercially available ones. Let a sub-

program, say f, be used to implement

an operation with a certain number,

say n, of operands. It is often the case

that several operating modes are

available, described by a certain

number, say m, of parameters or op-

tions, Quite commonly, n is small,

but m may be large and will grow as

users request new refinements.

At this point, the reader may ask

for a precise definition of the distinc-

tion between parameters and oper-

ands. Although the difference is in

Many cases intuitively obvious, an

absolute definition does not exist.

Rather, the distinction should be

thought of as design decision which

the designer bases on the following

guidelines:

—The number n of operands

should remain small.

—The system should be able to

set default values for parameters.

—During the package’s evolu-

tion, as parameters are added (or

removed), the specification of oper-

ands for any single subprogram must

not be changed.

Thus, the distinction between pa-

rameters and operands is partly a

pledge made by the designer with

respect to the future of the package.

There are three ways of specify-

ing .a subprogram f with both oper-

ands and parameters:

CALL CRETTX (itext)

CALL CNSTTX (itext, ‘xyz. ..')

CALL CNCTTX (itext, jtext, ktext)

(CREate a Text variable)

Create @ new string variable, of name itext

(pseudo-declaration).

(CoNStant Text)
Assign the character string ‘xyz. . .‘ to the string

variable itext.

(CoNCatenate Text)

(a) Include all necessary oper-

ands and parameters in every sub-

program call, as in

CALL flopndi, ...

(b) Include only operands, as in

CALL f(opnd:,..., opnd,)

and provide other subprograms, one

per parameter, to set the values of

parameters, in the form

CALL setval;( parm;)

with the understanding that the ith

parameter will remain set to the

value parm, until a new call to setval;.

(c) Use a mixed-mode ap-

proach, with some parameters in-

cluded in the calls to f and others

separately.

Throughout our packages, we ad-

hered to the second approach (b),

which we find preferable for two

basic reasons:

(1) It allows the package de-

Signer to set default values for all

parameters, thus freeing the user

from providing arguments corre-

sponding to options not of primary

concern.

(2) Including parameters in the

operation invocation inevitably leads

to problems as the package evolves:

although operands usually do not

change if the initial design is sound,

requests for new parameters will ap-

pear. We have experienced this phe-

nomenon over and over again. For

example, users of Ensorcelé (free-

form input and output) requested

new facilities for output formatting.

To meet their request, we added a

“color” parameter to the Gescran

subprograms when color displays be-

came available. Had we included pa-

rameters in the calls, all the calling

programs would have had to be

changed, making it very difficult to

entice anyone into using our pro-

grams afterwards. Thanks to our

seemingly drastic policy, we have so

far been able to avoid such a situa-

tion,

Note that the use of a language

allowing subprograms to have both

positional and key word arguments

(such as Ada) would solve the prob-

lems inherent in situation (1), but not

(2).

One may object that our tech-

nique increases the size and external

complexity of packages since there

will be one subprogram per param-

eter per operation. This does not

worry us too much because there is

not much difference in added com-

plexity between a new subprogram,

on the one hand, and a new argu-

ment to an existing subprogram, on

the other.

Another possible drawback is

that application programs will con-

tain many subprogram calls when

they require nondefault options. For

example, if a user wishes to output a

real number X in a particular format,

using Ensorcelé, the sequence of in-

structions could be as long as the one

listed’in the box on this page.

Although such code may seem

horrendous to experienced program-

mers, we find it quite acceptable (and

have even come to like it!). It is really

very readable since every call has a

clearly stated single purpose. Also,

remember that parameters remain

set until explicitly changed so after

initialization, there will usually be

fewer calls to the parameter-setting

routines (unless, of course, the user

program wishes to often change op-

tions).

All in all, we feel our strictly

functional approach, with a clear dis-

tinction between operands and pa-

CALL SAVPAR

CALL EXPON (5)

CALL BLANKS (3)

Save the current values of Ensorcelé parameters.

Real numbers will be output using the exponent (E) format if their

absolute values are notin J107%, 10°.

Output items will be separated by at least three blanks,
Assign to itext the value of jtext concatenated to CALL ZONE (9) Items will be justified to the right in zones of length 9 (or a multipie

that of ktext. thereot if they do not fit).

CALL NBRDIG (8) At least eight significant digits shauld be printed.
CALL SUBTTX (itext, jtext, i, 1) (SUBText) CALL PUTZER Trailing zeros should be written (default: blanks).

Assign to itext the value of the substring of jtext CALL WRIREA (Xx) Write X,
starting at position i, with ! characters. CALL RESPAR Restore previous parameter values.

Communications July 1982 43 Communications
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Tameters (and between operation

and parameter-settir’g subprograms),

is very helpful in the design of co-

herent, easy-to-use, and simply

maintained packages.

External Subprogram Names

An important component of ho-

mogeneity as well as the aforemen-

tioned criteria of ease of use is how

external subprogram names are cho-

sen. This issue is a delicate one

(which we had not well understood

when we started our work) because

of four conflicting requirements:

(1) the desire to provide mnemonic

names, as expressive as possi-

ble;

(2) the need to avoid possible con-

flicts with names of subpro-

grams or data segments in the

application programs;

(3) the need for a coherent set of

naming conventions, which

grows with the number of avail-

able packages and subprograms

(and the size of the program-

ming team);

(4) for subprograms callable from

IBM Fortran, the tight 6-char-

acter limit.

At the outset, we had, with clarity

our goal, concentrated on the first

tequirement. The reader may have

noted names such as BLANKS and

ZONE in the Ensorcelé example

cited in Section 3.3. Inevitably, this

led to conflicts with names chosen by

application programmers and we

had to adopt a more balanced strat-

egy. All of our current subprograms

have 6-character names with the fol-

lowing structure:

—Three letters which are an abbre-

viation for a “verb” denoting the

action to be performed, ¢.g., REA

for read, SET for set;

—One letter indicating the type of

object to which the action applies,

such as I for integer, C for cursor;

—Two letters which are a code as-

signed to the package, e.g., GE for

Gescran.

Thus, the subprogram positioning

the cursor somewhere in Gescran has

the name SETCGE.

July 1982
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Using this technique, we have

been able (with some care) to avoid

name clashes. Additionally, the

method is simple to explain in the

package manuals so the name may

be considered mnemonic for the ap-

plication programmers.

3.5 Safety

Treatment of Errors

An important but difficult issue

is that of errors: How should a gen-

eral-purpose routine react in an error

situation?

First, we shall define precisely

what an error is in the context of our

packages. A subprogram in such a

package is intended to complete

some actions and/or to compute

some values. An error arises when

the subprogram detects that an ac-

tion cannot be performed or that a

tequested value does not exist. In

either case, it means the subprogram

is able to determine the fact that a

certain element does not belong to

the domain of a certain function

(which is part of the subprogram’s

abstract specification).

The possibility of an error made

in writing the subprogram being

tuled out, the cause of the error may

be either of the following:

—The user has provided illegal ar-

guments to a subprogram.

—Some well-founded request can-

not be satisfied because of external

conditions (¢.g., dynamic memory

allocation fails since no more

space exists).

What policy should the package

writer adopt in regard to such errors?

There are two conflicting require-

ments: safety and self-restraint.

(1) Safety implies that no op-

eration not conforming to the appli-

cation programmer's intent and, in

particular, no modification of the ap-

plication program's state other than

those explicitly provided for in the

package’s manual should ever be
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performed. Additionally, the appli-

cation program must be able to find

out about the error and take any

corrective action it wishes.

(2) The need for self-restraint,

on the other hand, stems from the

fact that it is very difficult to decide

what action to take on the sole basis

of what is known to the subprogram

(the same situation is experienced by,

say, the writer of a lexical analyzer

in a compiler). It suggests that the

package should be able to make a

reasonable correction, without un-

necessarily bothering the calling pro-

gram, let alone causing a system in-

terrupt.

One way to ameliorate the prob-

lem of errors is to avoid illegal ar-

guments by enforcing as few restric-

tions on subprogram calls as possible

(which in effect means expanding the

specifications to include most

“error” cases as peculiar but legal

ones). Because of such a policy, we

experienced very few error cases in

our first packages and were able to

adopt a rather haphazard approach

to error treatment (see the “error-

indicators” in the calls to the Axedir

subprograms in Section 3.3).

Recently, we have arrived at the

following approach. A small pack-

age, called Errare, which is com-

prised of only three subprograms has

been designed:

(1) CALL RECEER (a,

‘message’ ), RECE standing for REC-

ord Error, sets a global error indica-

tor to n and outputs the message

along with other information, in par-

ticular the operating chain (in order

to avoid avalanche effects, a shorter

text is output whenever 7 is equal to

the previous error indicator)

@) INDEER (0), an integer

function with no arguments (a

dummy argument is required in For-

tran 66), returns the value of the

global error indicator (as set by the

last call to RECEER; zero if none).

(3) CALL SETUER (n), SET

Unit, directs subsequent message

output performed by RECEER to

output unit number a (recall that in

Fortran, I/0 devices are designated

‘Communications
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by integers between one and 99). If

SETUER is not called, error output

will be printed on the standard out-

put file.

With these subprograms, a pack-

age subprogram takes the following

course of action when it detects an

error.

—Record the error number and out-

put a message with RECEER.

—If an action was requested, do not

do anything,

—If a value should have been com-

puted, then two subcases arise:

when a sensible approximation ex-

ists, use it as a substitute; other-

wise, return a value chosen to be

as “out of bounds” as possible

(e.g., a negative integer if an ad-

dress was requested).

This technique seems both self-

restrained and safe. It is self-re-

strained because INDEER is a pub-

lic function. Thus, if the application

programmer wishes to correct errors

possibly occurring in a package sub-

program, he can do so by testing

INDEER after the call; the program-

mer will thereby remain in full con-

trol of all events since the package

itself does nothing abnormal except

outputting a message. The technique

is safe because it guarantees that no

illegal action will be performed by

the subprogram. On the other hand,

if no reasonable value can be com-

puted, the result will be so absurd

that it will inevitably lead to program

abort shortly after the call unless the

application program regains control

with INDEER. It is certainly much

better to provoke a “negative ad-

dress” error than to allow the pro-

gram to work on an erroneous but

physically meaningful address.

The use of “abnormal” values,

such as negative numbers when an

address or array index would have

been required, 1s only possible be-

cause of the lack of strong type

checking in Fortran. The transposi-

tion of this technique to languages

with stronger type requirements re-

quires the presence of an undefined

value in every type. This condition is

met by languages like Algol W and

Simula 67 in which all programmer-
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defined types are pointer ones with

a special empty value (called null or

none) as one of their elements. No

such possibility exists in Pascal or

Ada whose record types, for exam-

ple, do not possess a void value.

One advantage of our method is

that the treatment of errors does not

interfere with other criteria. In par-

ticular, in terms of argument lists,

the external specification of package

subprograms does not have to be

changed. Better general solutions are

hard to find, short of an exception

facility like those in PL/I or Ada.

3.6 Functions vs. Subroutines

Almost all of our subprograms

are subroutines (actions) rather than

functions, Using a function may

seem preferable in the case of a sub-

program returning a single value and

having no side-effect; the reader may

have wondered while reading about

the Textes package (Section 3.3) why

we used a subroutine to compute the

concatenation of two strings. Indeed,

if we want to output the concatena-

tion of jtext and ktext, we must write

what appears in the box above in-

stead of the much more natural

CALL PRNTTX (fentx (jtext,

ktext))

where fenttx would be a function

returning the concatenated string.

We found three objections to us-

ing functions.

(1) In many systems, including

ours, Fortran functions cannot be

called from Cobol programs

(whereas subroutines can). Since we

do have a few Cobol users, subrou-

tine interfaces must be written any-

way.

(2) A function type must be de-

clared in the calling program, except

when it is integer or single-precision

real and follows the Fortran default

rule (which eliminates logical, dou-

ble precision, and the Fortran 77

character type). This is a source of

errors in systems with no checking at

link or load time.

(3) Animportant issue in decid-

ing whether to express the same se-

mantics as x = f(a, b,...) or CALL

F(x, a, b,...) is that only the latter
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INTEGER itext }

TTX (itext, text, text)

CALL PANTTX (itext)

pseudo-declaration of string variable

assign to itext the concatenated string

output

construct gives the subprogram

writer access to all the operands in-

volved, including x, which may be

needed in order to make f safer and/

or more efficient. Both safety and

efficiency were at stake in the choice

made for the Textes package. On the

one hand, since string operands are

integers for the compiler, our subpro-

grams must be able to check whether

both sources and target have been

correctly pseudo-declared, thus

avoiding dangling run-time refer-

ences. On the other hand, the pack-

age uses quite an elaborate memory

management algorithm [7] and will

save a lot of space when itext is the

same string variable as jtext or when

the previous allocation for itext is

greater than or equal to length

(jtext) + length (ktext).

In view of these factors, we only

use Fortran functions for integer

functions giving the value of some

attribute of an object. This occurs in

the sense of Section 4.2 (that is, an

“accessor function” as defined in

connection with abstract data types).

For example, the length of string

itext is denoted by LNGTTX (itext).

4. Internal Design Techniques

4.1 Framework

In the previous section we de-

scribed our basic aim: to provide our

products’ potential users (the appli-

cation programmers) with packages

whose external appearance is sound

and coherent. The key to success is,

of course, that these properties be

matched by the stability and consis-

iency of internal design. As Jackson

[3] remarked about early attempts to

define modular programming, words

like “functional integrity” are not

very useful as practical design guide-

lines as long as they remain unsup-

ported by more technical definitions

of the methods used. The concept

which we have found most fruitful
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as a design base for sound subroutine

packages is abstract data types, a

notion now well-established in aca-

demic and research circles although

practically uhheard of by most prac-

ticing programmers.

4.2 Abstract Data Types

An abstract data type is the for-

mal definition of a data structure or

class of data structures, as character-

ized by purely functional properties.

The definition of an abstract data

type T comprises three parts:

— a list of domain names, one of

which is T;

— a list of function names with as-

sociated functionalities, i.e, do-

mains of the arguments and re-

sults (at least one of these do-

mains must be T for every func-

tion); these functions are the ab-

stract representation of the oper-

ations available on the type;

— a list of logical assertions on these

functions, which describe the op-

erations’ formal properties.

A definition comprised of these ele-

ments is a formal specification of the

data type.

An implementation of an abstract

data type is a set of data definitions

and subprograms operating on the

data defined, such that each datum’s

type (with the ordinary meaning of

the word “type” in programming

languages) is associated with one of

the domains in the abstract data

type’s definition. Each subprogram

corresponds to one of the functions

and satisfies its functionaiity require-

ment with respect to input and out-

put arguments. The values of these

arguments satisfy the assertions for

every call of the subprogram.

Some have argued that a good

way, perhaps the best, to construct

truly modular programming systems

is to organize them as sets of abstract
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data type implementations. This

claim is supported by practical evi-

dence [13].

It and other reasons explain why

we have used abstract data types as

the model for our packages. In fact,

every one of our packages is the con-

scious implementation of one or

more abstract data types. In partic-

ular:

— The Textes package imple-

ments the “text” or “string” type

with operations like the creation of

a constant text, the extraction or

modification of the ith character, or

concatenation.

— The Chronos package imple-

ments the “time counter” concept.

— The Axédir package imple-

ments the external array type with

“initialize,” “read,” and “write” as

operations.

— The Gescran package imple-

ments the “page” (or “screen”) and

“window” abstract data types with

operations like “define window in

screen,” “write into window,” or

“visualize screen.”

It is therefore not surprising that

the main design choices we encoun-

tered in implementing packages are

conveniently expressed in terms of

abstract data types, In the following

subsections, we study some of the

most important, namely: linguistic is-

sues; heirarchical design; static vs.

dynamic instanciation; information

hiding.

4.3 Linguistic Issues

The programming language for

writing a package should offer a

structure corresponding to the

schema just presented. This is indeed

the case in many recent languages.

Foremost among these, from the

practitioner's point of view, are the

pioneer, Simula 67 [l, 8], and the

youngest, Ada [2]—the former be-

cause of its availability on a variety

of machines, the latter on account of

its intended wide circulation.
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These languages, like their rela-

tives (Lis, Clu, Alphard, Euclid,

Mesa, Modula), include a program

structure (“class” in Simula and

“package” in Ada) with three cate-

gories of elements: data definitions,

subprogram declarations, and state-

ments. Such a structure may be used

to implement an abstract data type

(or an object of such a type, see

Section 4,5); its three components

correspond to data representation,

operations, and initialization, respec-

tively. Given an instance, A, of a

class/package and x as one of its

components (subprogram or data

element), an external module which

is entitled to “use” A may reference

x. This is done either with a “dot

notation”, A.x, or directly by its

name, x, provided that the external

module has “acquired” A in some

fashion (inspect A in Simula, use A

in Ada) and there is no name con-

flict.

This kind of solution is very con-

venient, both from the package

writer and application programmer's

point of view. The former designs

and implements the package as a

single module, separately compilable

and verifiable: ail the relevant infor-

mation is concentrated in a single,

coherent entity. The application pro-

grammer, when requesting a func-

tion performed by the module, sim-

ply supplies the names of the module

and the function.

Unfortunately, it is usually im-

possible to write subprogram pack-

ages in such a language, even if one

is available. Although “first-genera-

tion” languages like Fortran and

Cobol and the assembly languages

for most machines are geared toward

a very simple, static allocation policy,

newer languages (including not only

“modular languages” but also PL/I,

Algol W, and Pascal) require a much

more ambitious memory manage-

ment scheme, usually with a stack

and a heap, the latter being subject

to garbage collection. Therefore,

even with well-engineered language

systems permitting separate compi-

lation and linking with modules writ-

ten in other languages, the system

for the more elaborate language must

exercise control at run-time. For

Communications

of

the ACM,

most systems, this precludes the

use of such a language for writing

subprogram packages since the

latter must be accessible to any

program.

The tool writer is thus placed in

a very frustrating situation, He

knows the right language(s) in which

to write a subprogram, but he re-

mains unable to use it. We, for in-

stance, have a very gobd Simula sys-

tem [9] but must resort to Fortran for

subprogram packages, with all its

drawbacks: no data structure other

than the array, no control structure

other than the If and Goto, no

pointer variables, no dynamically

created elements, no parameterized-

dimension arrays, no recursion, and,

of course, no “class” or “package”

structure.

4.4 Hierarchical Design

In order for each element of a

package to remain simple and un-

derstandable, it is necessary that the

package's structure consist of several

layers in all but the most trivial cases.

For packages seen as implementa-

tions of abstract data types, this

means such an implementation will

use objects belonging to other types,

also defined abstractly, ie, used

through their properties rather than

Tepresentation. Thus, a package is

generally implemented as a hierar-

chy of types. Such a hierarchy is

illustrated in Figure 5. Ensorcelé |

(output) appears as a means for ma-

nipulating a stream of “printable”

objects, which is represented using

the concept of unbounded character

string, itself implemented as a se-

quence of lines.

Out of the many advantages of

this approach, two are worth noting.

First, it allows the designér to push

down all machine- and system-de-

pendent elements to the lowest levels

of the hierarchy, thus increasing

portability (for example, Gescran

was built for the IBM 3270 terminals,

but only a few subprograms must be

recoded for other similar devices).

Second, it lends itself to top-down

design, which, as Wirth pointed out

[12], should apply to data as well as

control.
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stream WRIIEN (write integer)
WRIREN — (write real)

WRITEN — (write string)

etc,

=e

character [ ES4INT (convert integer into string)

string ES4REA (convert real into string)
ete.

tine

Fig. 5. Hierarchy of Types for Writing (Ensorcelé 1),

4.5 Static vs. Dynamic

Allocation

A package implementing an ab-

stract data type may provide one of

the following:

(1) one object of the type;

(2) a fixed number of objects of the

type;

(3) anunlimited aumber of objects,

within the limits of the available

space at execution time.

Solution (1) provides for the im-

plementation of what may be called

an “abstract object” rather than a

type. It is used, for example, in En-

sorcelé which acts on a single stream

of objects.

Solution (2) is quite natural in

Fortran because of the arrays’ static

dimensions. For example, one pack-

age similar to our Textes in terms of

the services offered [10} provides a

fixed number of text variables, cor-

responding to the size of an array in

a COMMON block. Of course, this

often results in unpleasant repercus-

sions since the limit may appear too

large (entailing undue space use) or

too small (requiring recompilation-of

separate versions of the package).

We have seldom used this technique;

an example is Chronos, which sets

an absolute limit of 100 time

counters,

Solution (3) comes closest to what

is offered in languages providing

user-defined nonstatic types. Every

object of the type needed in the ap-

plication program must be explicitly

created by it (new statement in Sim-

ula or Pascal). This is the most pow-

erful solution; its main drawbacks
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within our framework is that a few

non-Fortran (or nonstandard) rou-

tines for dynamic memory allocation

must be used. Packages like Gescran,

Axédir, and Textes provide an un-

limited number of instances (char-

acter strings in the first, files in the

second, “screens” and “windows” in

the third).

4.6 information Hiding

One of the main goals of the

abstract data type approach is a clear

separation between what is visible to

application programmers and what

remains private to the package de-

signer. The latter category should in-

clude all elements dependent on non-

essential hardware, system, imple-

mentation, or design peculiarities.

We have found two techniques use-

ful in enhancing this property: the

careful choice of names and the use

of pseudo-variables.

Internal names are chosen so as

to seem mnemonic only to team

members. Like external names (see

section 3.4), they follow a regular

pattern and make collisions unlikely.

The notion of a pseudo-variable

is more important. In the case of

packages offering an unbounded

number of type instances, the indi-

vidual objects must be nameable by

the application programs, although

Fortran does not offer a declaration

other than for standard types. The

solution is to declare the objects us-

ing names which appear to the com-

piler as those of integer variables,

Actual “declaration” will then be ef-

fected by a call to an instantiating

subprogram. Such pseudo-variables

were used in the Textes example

cited in Section 3.3.

Internally, the integer variable

will usually contain a pointer to the

location assigned to the object and a

code allowing package subprograms

to check that the variable has not

been modified by an illegal opera-

tions. Indeed, the only legal kind of

operation in which such a pseudo-

variable may appear in an applica-

tion program is parameter transmis-

sion. Any other use (e.g., integer ad-

dition) is forbidden and will nor-

mally be detected in the next call to

a subprogram of the package.

This technique seems the best

way of adapting abstract data type

concept to Fortran: an object is only

available through its name and a set

of well-delimited operations. The re-

sulting programming style is not, of

course, typical of Fortran. In the box

below, an example of Gescran pro-

gramming appears.

5. Conciusion

We believe that the principles ex-

pounded upon in this paper may be

applied with equal success to widely

different kinds of software, and we

INTEGER SCREE, WINDO1, WINDO2

CALL DEFSGE (SCREE)

CALL GREWGE (WINDO1, SCREE, 2, 5, 7, 12) Pseudo-dectaration of WINDOT and
CALL CREWGE (WINDO2, SCREE, 6, 15, 1, 4)

Declare pseudo-variables.

Pseudo-declaration of SCREE as a

Streell pseudo-variable,

WINDO2 as windows in screen

SCREE.

Initialize contents of windows (RE-

Place contents of windows)

Define WINDO1 as bright (BRiliance

aan of Window).

CALL WRISGE (SCREE) Display SCREE.
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hope that our discussion has shed

some light on a key problem in soft-

ware engineering: how to write reus-

able software. It should be pointed

out, however, that all of our products

are conceptually small. This was a

deliberate decision on our part since

we.felt modest-sized team best suc-

ceeds with simple, efficient, and re-

liable programs, rather than large-

scale, ambitious ones, Although wé

feel many of our methods would ap-
ply successfully to larger projects, we

do recognize that their applicability

to, say, a vast numerical library re-

mains to be proved.

Acknowledgments

The work reported on here in-

volved, in particular, E. Audin, G.

Brisson, E. de Drouas, and B. Logez.
Many others provided advice—most

notably, A. Bossavit. At a meeting of

the groupe “Génie Logiciel” (Soft-
ware Enginnering) of AFCET-TTI

(French Computer Society), addi-
tional useful suggestions were made.
The author is also indebted to I.

Qualters for many improvements in

428

the style of this paper, and to the

reviewers for their comments.

References

1, Dahl, O.J., Myrhaug, B., and Nygaard,
K. Simula 67: Common Base Language. Rep.
S-10, Norsk Regnesentral, Oslo, Norway,
1970, The original description of the first of
the modern modular languages, Assumes the
Algol 60 report as a prerequisite: an inte-
grated report is currently in preparation.

2, Honeywell, Inc. The Ada Programming
Language—Proposed Standard Document.
US. Dept. of Defense, 1980, Washington,
D.C. The report on the new U.S. Depart.
ment of Defense tanguage, designed by a
team led by J. Ichbiah.

3. Jackson, M.A. Principles of Program De-
sign. Academic Press, London, (975.
Describes a popular program design method-
ology, based on the idea that a programs
structure should be modeled on the structure
of the data it manipulates. Prime target:
business data processing.

4. Kernighan, B.W., and Plauger, PI. Soft-
ware Tools. Addison-Wesley, Reading,
Mass., 1976. A methodology for constructing
composable programs, with a bottom-up
presentation of a number of examples, ~

5. Kernighan, B.W. Ratfor—A preproces-
sor for rational Fortran. Software—Prac-
tice and Expertence (Oct. 1975). One of the
most popular Fortran preprocessors.

6. Meyer, B,, and Baudoin, C. Methodes de
Programmation. Eyrolles, Paris, 1978. A
fairly comprehensive survey on program-
raing methodology, programming techniques,
basic algorithms, and data structures.

7. Meyer, B. Un Ramasse-Miettes par Tri.
Rep. Atelier Logiciel 8, EDF~-Direction des

Communications

of

the ACM

“we

Etudes et Recherches, Sept. 1978. Describes
a panicular garbage collection algorithm

used in a package for text manipulation,

8. Meyer, B. Sur quelques concepts mod-
eres des langages de programmation et leur

Representation en Simula 67. AFCET-GRO-
PLAN, Vol. 9, Cargése, 1979, pp. 331-395

How Simula supports modern programming
concepts, such as modularity, genericity, top-

down design of both algorithms and data
structures, ete.

9. Notsk Regnesentral. Simula 67 for [BM
System /360— User’s Guide; Simuta 67 for
IBM System 360-—Programmer’s Guide. Pub.
§-24-1 and $-23-1, Oslo, Norway, 1975.
Reference for the IBM Simula implementa-
tion, a programming environment with desir-
able features like separate compilation and
symbolic debugging.

10. Rose, L.R., and Hellerman, H. Portable
character processing in Fortran and fixed
character environments. [EEE Trans, Soft-
ware Eng. SE-2, 3 (Sept. 76), 176-185.

A package for text manipulation.

Il, Saltel, E. Manuel Fortran 30. IRIA, Roc-
quencourt, France, 1978 An extension of
Fortran which allows graphic processing.

12, Wirth, N. Program development by step-
wise cefinement. Comm. ACM 14, 4 (Apnil
1971), 221-227, A classic reference on the
top-down design of programs. Mentions that

the refinement process should apply to data
structures as well as the algorithmic part.

13. Woodfield, §.W., Dunmore, H.E., and
Shen, V.Y. The effect of modularization and
coments on program comprehension. Proc.

Sth Internat, Conf. Software Eng, San

Diego, Calif, March 1981, pp. 215-223.

An experimental study on what factors affect
the readability of programs. Some results
suppor the view that abstract data types are

a good basis on which to construct modules.

July 1982

Volume 25

Number 7



NOTE (aout 1985)

Au moment de préparer la version finale

de cette thése, il nous a semblé utile de

compléter cet article de 1984, qui décrit le

prototype de Cépage réalisé 4 EDF, par

un document plus récent (aoit 1985),

donnant l'état actuel du nouveau produit

en cours de développement, et qu’on

trouvera 4 la suite du premier. Le second

article (Cépage: Towards Computer-

Aided Design of Software} contient certain

nombre de redites mais aussi des

compléments importants.

Nous décrivons Cépage, un éditeur de documents structurés concu pour etre d'emploi

agréable sur les terminaux actuels. Cépage se trouve au confluent des travaux sur les

éditeurs syntaxiques, du développement des éditeurs pleine page, et des études sur les

environnements logiciels avancés. C'est un éditeur universel, dans lequel la description

du langage est un simple paramétre ; son interface externe est faite pour les enfants

de l'ere vidéo. Cépage constitue un prototype de ce que pourrait etre un éditeur

[84a]
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CEPAGE: UN EDITEUR STRUCTUREL PLEINE PACE

Bertrand Meyer

Jean-Marc Nerson

“* ( térons a celui deCépage est un éditeur structurel (terme que nous préféro! id

“ayntasique’), dans la conception duquel interface humaine « 446 étudiée avec un soln
tout particulier. I est entidrement paramétrabie et peut s‘appliquer A tout langage

dédnd per une grammuire: langage de programmation, de specification, mals aussi
langage de description de documentsstructurés de toute nature (nous appellerons ci-
aprés “documents” les objets que Iéditeur sert a construire).

vinseri i y 1s dévéloppés au coursCépage s‘inscrit dans toute une lignée d’éditeurs structure!

des derniéres années [Allison 1963, Donzeau-Couge1961. Donzeau-Couge,
Habermann1982, Hanseni971, 1981, Teitelbaum1981, Wilander1980, Teitelbaum1981) .

Les éditeurs structurels, par opposition aux éditeurs de textes classiques, permettent

de manipuler des documents non comme de simples suites de lignes ou de caractéres,

mais comme des objets structurés, en leur appliquant des opérations définies

relativement 4 leur structure. Parmi les principaux avantages de cette méthode, on

peut citer:

la garantie d'obtenir des documents syntaxiquement corrects;

ions év ent complexes mais= la possibilité d'effectuer des transformations éventuellemen s

fexattles.coerected, pat-exemple des traas{armalions de programmuns an wie de
leur optimisation ou de leur transport; ; cate outintide a

- bilité de décharger l'utisateur d'une partie des taches de routine liées

in'nbonaatds dans un éditeur de textes classique, de fournir tous les détails de la
syntaxe "concréte" des documents;

+ la possibilité de traduction automatique d'un cadre syntaxique dans un autre

(par exemple dans le cas de conversions entre langages de programmation):

- Vutilisation d'une structure de données normalise fen géntral ‘ wrbee
‘bstrait) qui peut servir de support 4 d'autres outils logiciels (cl. par

Morte fSeneoederi960, ), vere A dev smaronnements de_progremmotion
complets ( [Habermann1982] ). : sca

i ucels n'ont pas encore gagné droit dedépit de ces qualités, les éditeurs structurels n'ont p:

cite dana findestne, ‘Lune des relsone principales de celte situation est, selon nous,
lie a leur interface externe qui dans la plupart dea cas, ext de type "Tigne & ligne’,

clest-a-dire que le dialogue avec [utilisateur consiste en une suite d'échanges de

commandes et de réponses. Or les environnements de programmation disponibles

aujourd'hui offrent de plus en plus couramment des éditeurs de texte pleine page, tels

SPF (sur 1BM), Emacs (sur Multics et Vax-Unix) ou Vi (sur Vax-Unix), qui trent parti des
possibilités des terminaux acluels. Parmi les caractéristiques de ces syslémes, on

peut citer (Meyer1980a] : bic lane, samme wnt ge

+ Vrutilsation de f'écran complet, de préférence a la ligne, comme

Zommusieatien enice le systame et [utilisateur, donnant & celui-ci une wsion
notablement plus large sur le document en cours de construction, et lui

permettant done d'exercer un meilleur controle sur (ensemble du processus
a'édition;

ee Possibilité, plus facile & fournir que dans un systéme ligne A ligne, dePersonnaliser te dislogue en conservant des informations relatives & chaqueutlisateur;

« tiutilisation en paralléie, dane certains systémes, de plusieurs fenetres,permettant a l'utilisateur de posséder a chaque instant plusieurs vues différentessur le document manipulé;

pinta, ct plus généralement, ‘application du principe de "manipulation directe{Shneiderman1983] , selon lequel on maitrise mieux un systéme lorsqu’ll fournit achaque instant une représentation claire et & jour de [état courant des objetstraités,

Le bénéfice de ces différentes propriétés est tel qu'il est & peu prés impossible deGaeta ca ah utitisateur d'un éditeur pleine page de revenir A un éditeur ligne & ligne,quelles qu'en soient par ailleurs tes qualités. Ceci, selon notre expérience vaut anesipour les éditeurs structurels: s'ils sont de type ligne a ligne, ils ne pourront gegner lesfaveurs des utilisateurs habitués A des systmes pleine page.
Les objectifs de Cépage découlent des réftexions précédentes. Il s'agissait deSombiner les avantages des éditeurs structurels en matiére de sareté et de puissanceavec la commodité d'emploi des éditeurs de textes pleine page, en tirant le meilleurparti possible des terminaux modernes.

Le projet Cépage ne se voulait pas un projet de recherche, mais plutet unWransfert de technologie, destiné & rendre industriellement utilisables des idées, cellesde edition structurelle, qui ont fait l'objet de travaux importants de la part deschercheurs. En fait, nous avons du, a notre corps défendant, "inventer" un peu plus quehous'ne I'avions envisagé initlalement.

Les principales sources d'inspiration ont été, pour les éditeurs structurels,Gandalf et (dans une moindre mesure) Mentor et CPS; comme moddle dinterfacebomme-machine, Smailtalk nous a également influencés.

Seton tout critare objectif, le projet Cépage est un petit projet. La spécification etla conception sont I'oeuvre des deux auteurs de cet article, la réalisation presquePrclusivement du second (Cépage inclut un petit éditeur de textes, écrit par N,Triquet). Les premidres discussions remontent la fin de 1962; le projet avéritablement pris corps au début de 1983, avec pour objectif (qui a &té respecté)dobtenir un prototype en état de fonctionnement le 20 décembre 1963 LaProgrammation proprement dite n'a commencé qu'en septembre 1983. Le programmepomprend environ 6000 lignes en Pascal; il utilise par ailleurs le progiciel Gescran pouria Bestion de Vinterface écran (Audin!980) , réalisé dans la meme équipe, et quiTeprésente environ 4000 lignes de Fortran 77 (Gescran est un ensemble de sous.Programmes permettant de déctire commodément les interactions "plein écran” en nemanipulant que des objets appartenant & quatre types abstraits, appelés écran,fenetre, zone, terminal et accessibles uniquement a travers les primitives du progiciel(Meyer1962] ; il s'appuie sur le progiciel d'entrée et sortie Ensorcelé [Brisson 1962,Meyer19B1} ). Les conditions quelque peu particulidres dans lesquelies ce projet a été‘réalisé expliquent sans doute que ces paramétres ne correspondent guére a ce que l'onpourrait déduire de l'étude des bons auteurs [Boehm 1982] .

Tt peut etre intéressant de noter que Tutilisation partielle de spécificationsformelles, fondées sur le langage Z {Abriai1980) puis sur la méthode M [Meyer1984a}, arendu quelques services.
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2. UTILISATION DE CEPACE

2.1, Lécran

Lécran affecté & une session de Cépage est divisé en un certain nombre de
fenetres (figure 1). Chacune de ces fenetres remplit une fonction. précise:

+ la fenetre “document” contient une représentation de l'état actuel du document,
en cours de construction ou de modification: certains des éléments de cette
représentation, affichés entre chevrons (par exemple instruction), correspondent
a des éléments du document qui n'ont pas encore été affinés et sont dits non-
terminaux

+la fenetre “texte” est destinée a recevoir les textes non structurés qu'il peut etre
nécessaire de fournir A cerlaines étapes d'une session (par exemple des
identificateurs, des commentaires);

~la fenetre “menu offre & chaque étape la liste des choix disponibles;

~ la fenetre “type” donne le type syntaxique des éléments délimités (ct. ci-apras);

> des fenetres “réserves" (non présentes sur la figure 1) donnent des informations
sur des documents ou éléments de documents autres que le document en cours
d'édition; ces fenetres sont utilisées pour changer de document pendant la session
ainsi que pour les opérations de copie et de transfert.

-la fenetre "message" sert a afficher les diagnostics.

2.2, Le dialogue

A chaque étape de !'exécution d'une session de Cépage, le systéme propose &
Vutilisateur de choisir entre un certain nombre de possibililés l'aide d'un menu,
Pour utiliser les fonctions de base de Cépage, les menus suffisent: un manuel
utilisation n'est donc pas nécesseire pour peu que l'on ait compris les concepts
principaux du systéme. Dans la version IDM actuelle, le choix entre les différents
éléments du menu s'effectue grace aux touches de fonction du terminal. Sur des
terminaux plus évalués, on peut imaginer d’utiliser une souris.

Chaque fois quill est nécessaire de désigner un élément du document (par
exemple pour indiquer & quel terminal s‘applique un affinage, comme sur la figure la),
on utilise A cet effet le curseur, que I'on posttionne sur l'élément en question. C'est la
seule facon d'accéder au document (la notion de numéro de ligne, par exemple, est
absente). utilisation d'un dispositi plus rapide te! que la souris serait
particuligrement bienvenue ici.

Queiques fonctions plus avancées exigent I'emploi de commandes; ces commandes
sont formées d'un mot unique, et leur existence découle uniquement du nombre limilé
de touches de fonctions disponibles (12), Cépage n'a done pas de "langage de
commande” au sens classique du terme: toutes les interactions avec le systéme se font
par “pointer-toucher”.

En particulier, l'utilisateur construisant avec Cépage un Llexte de programme,
Pascal par exemple, n'est jamais amené a frapper au clavier des éléments de syntaxe
coneréte, par exemple des mots-clés tels qu’ if, procedure, record, etc. Au lieu de cela,
un menu lui permet de choisir entre conditionnelle, déclaration de procddure,
déclaration de type enregistrement, etc., et le systéme produit pour lui la syntaxe
correcte (les teches de routine sont I'affaire des ordinateurs, non ceiles des humains).

Le seul cas of le clavier (hors touches de function) est nécessaire est celui od
Vutilisateur doit fournir un texte que le systéme ne pourrait invenler seul, comme un
identificateur ou un commentaire. La fenctre “texte” est utilisée A cet effet; le texte y
est construit grace a un éditeur de textes (pleine page) inclus dans Cépage.
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2.3. Les fonctions de base

Les principales fonctions offertes par Cépage se rattachent aux catégories
suivantes.

> promenade: parcours du document (montée et descente dans la hiérarchie des
entités syntaxiques, avancée et récul dans les listes);

> construction-modification: affinage, changement d'un affinage antérieur,
insertion et destruction dans une liste;

- copietransfert: reproduction ou déplacement d'un élément de texte (utilisant
Vopération de “délimitation”: voir ci-aprés),

- archivagerestauration: archivage sur un fichier, sous une forme adéquate, de
Vétat actuel d'un document en cours d‘élaboration, partiellement ou
complétement affing; restauration d'un document précédemment archivé.

-génération: production de la forme finale d'un document complétement affing;

~ controle de session: choix du document courant, passage d'un document a ua
autre, définition de bibliothéque etc. (une bibliothéque est un ensemble de
documents; on peut au cours d'une session travailler sur plusieurs documents,
dont un seul est actif 4 chaque instant, et passer librement de l'un a \autre).

2.4. La délimitation

La délimitation (figure 2) est une opération nécessaire pour les fonctions qui
exigent de l'utilisateur qu'il définisse un sous-ensemble syntaxique du document: ainsi,
pour une copie ou un transfert, il faut délimiter la partie du document a laquelle
s'appliquera l’opération. Cette délimitation s'effectue selon les principes de la
manipulation directe.

Pour “délimiter", on place le curseur & un emplacement quelconque de l'élément a
délimiter, et l'on précise la portée de ce document par une suite de commandes,
effectuées grace aux touches de fonction (indiquées sur le menu de délimitation); a
chaque étape, le systéme fait ressortir I'élément délimité par un changement des
attributs d‘affichage (couleur, affichage en négatif, etc.).

Les commandes de délimitation sont les suivantes:

- englober: inclure dans l’élément délimité 1a structure syntaxique
immédiatement englobante (par exemple, si l'on avait jusque la délimité une
instruction, inclure l'ensemble du bloc qui la contient);

- “désenglober’: annuler l'effet d'une opération “englober" en revenant au niveau
inférieur;

- étendre & gauche: inclure l'élément immédiatement. antérieur (cette opération
s'applique au cas of l'élément délimité est une sous-liste; les trois opérations
compiémentaires sont exclure 4 gauche, étendre a droite, exclure 4 droite);

- terminer (accepter l’élément actuel): annuler.

2.5. Modification du langage

Cépage est entitrement indépendant du langage; ta syntaxe (coneréte et
abstraile) est un paramétre qui peut etre modifié A volonté, Dans la version actuelle, la
description ou la modification du tangage se fait de [acon assez classique, par l'entrée
d@une grammaire. Jl est prévu ultérieurement de fournir pour cette opération
“interface du systéme lui-meme, ce gui revient 4 dire que l'un des langages pour
lesquels Cépage sera défini est un langage de description syntaxique (il est bien
conforme aux principes généraux de la conception de Cépage de faire en sorte que
Vutilisateur n’ait pas a connartre la syntaxe coneréte de ce "langage”).
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délimite Itensemble de la rone entourée on polntiilé.

La modification du langage peut parattre une opération peu utile en pratique, pour
autant que Cépage soit fourni avec des descriptions des principaux langages. En fait, la
possibilité d’adapter facilement la description du langage a des conditions locales nous
parait une caractéristique vivernent souhaitable, Elle permet en particulier de mettre
en place des normes de programmation d'une facon plus commode (et plus facile 4
faire accepter) que par l'utilisation d'outils de controle @ posteriori. On peut ainsi
définic des sous-ensembles d'un langage, des conventions relatives aux commentaires,
Ala structure des programmes, etc.

3. CEPAGE: LES CHOIX TECHNIQUES

3.1. Les structures de données fondamentales

Au cours d'une session, Cépage travaille (figure 3) A partir de deux structures de
données principales:

- la description interne du langage, cu graphe de grammiaize,

+ la description interne d'un ensemble de documents: foret syntaxique abstraite.

Nest important de noter que ces deux structures de données sont traitées sur un
pied d'égalité. C'est ce gui fait de Cépage un systéme entigrement paramétré par le
langage: la description du langage est interprétée répétitivement par le systéme. Ceci
distingue nettement Cépage d'un systéme tel que Gandalf, paramétrable certes, mais
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Figure 3: Les structures de données

dans lequel la description du langage est “compilée", c’est-d-dire dans lequel on doitpartir d'une version "noyau” de Gandalf et d'une description d'un langage X (ou Z, ou Cc)pour obtenir un outil Gandalf-X, ou Gandait-C, adaptée au langage choisi. La solutionadoptée par Cépage offre une plus grande souplesse et explique qu'il soit possible demodifler tacilement le langage. En revanche, elle ne permet pas de prendre aussifacilement en compte des actions sémantiques, ce qui est un des buts de Gandalf.
Le graphe de grammaire est une structure de données permettant de teprésenterVensemble des propriétés de la grammaire du langage. La syntaxe abstraite estulilisée comme base; elle est décrite par un ensemble de types syutaxiques et deproductions. Chaque type syntaxique apparart 4 gauche d'une Production au plus; ceuxqui n'apparaissent 4 gauche d’aucune production sont dits terminaux. Il y @ troissortes de productions, dites “soncaténation’, “union et “liste, illustréesrespectivement par les exemples suivants:

canditionnelle = c: baolden i stl, st2: instruction,

instruction = affectation | condiliannelle | composée

compasée = instruction”

La syotaxe coneréte est obtenue par “décoration” des productions de la syntaxeabstraite; par exemple, A toute Production de type liste sont associés un en-tele, undélimiteur et une fin (par exemple begin, le point-virgule et end dans te cas decomposée), Le graphe de grammaire regroupe l'ensemble de ces informations.
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Les noeuds internes d'un arbre syntaxique abstrait (figure 4) sont de quatre

sorles, correspondant aux quatre types de productions:

- les noeuds “concaténés’ ont une arité fixé;

«les noeuds “alternatifs” représentent seulement un choix dans une production de

type union

- les noeuds liste’ peuvent avoir un nombre quelconque de fils.

161



~ les noeuds “texte”, correspondant A des éléments terminaux affinéy par
Yutitisateur a l'aide de I’éditeur de textes inclus dans Cépage,

3.2, Autres structures de doantes

Drautres structures de données complétent les deux précédentes.

Outre les arbres syntaxiques abstraits, trois représentations sont nécessaires
pour les documents:

~ la forme visualisable, un ensemble d’éléments destinés A etre transmis A Gescran
pour affichage sur le terminal a chaque étape de la session:

> la forme archivable, pour préservation et restauration ultérieure de l'état
instantané d'un document;

- la forme textuelle, but ultime du processus d'édition.

Par ailleurs. la foret syntaxique abstraite s'accompagne d'un dictionnaire,
contenant les différents éléments textuels nécessaires (identificateurs, etc.). Les
feuilles des arbres syntaxiques contiennent des références au dictionnaire.

3.3. Les algorithmes

Il convient de faire remarquer que tes objectits définis précédemment impliquent
Tabsence d'analyse syntaxique dans Cépage. La construction d'un texte s'effectue par
choix successifs, correspondant a la syntaxe abstraite; la syntaxe concréte est
construite par ie systéme, qui effectue en réalilé l'opération inverse de lanalyse
syntaxique, appelée parfois “désanalyse" (un-parsing).

On notera que la liberté Jaissée aux utilisateurs dans la description du langage
permet d'établir en pratique un bon compromis entre la facilité d'utilisation et le
degré de détail auquel descend le systéme; par exemple, on peut envisager de
considérer expression comme un terminal. Une autre technique pour ce type d'entité
syntaxique, non mise en oeuvre dans la version actucile de Cépage, est celle de
(Kaiser1962] , intermédisire entre “analyse” et “déanalyse”

S'il_n’y a pas d'analyse syntaxique, un autre type dalgorithmes a posé des
problémes sérieux la construction de la forme visualisée. Il s'agit de proposer a
chaque instant une représentation aussi riche que possible de l'état du document, ea
tenant compte des limites imposées par la taille physique du terminal.

Avec un éditeur de textes, pleine page ou non, on ne peut en général fournir qu'un
extrait du document formé d'une suite contigué de lignes (certains éditeurs offrent la
possibilité d'exclure des groupes de lignes de la partie affichée afin de se concentrer
sur les éléments les plus intéressants A un moment donné). Un éditeur structurel doit
etre capable de fournir une vue globale du document ou d'une partie de celu-ci, meme
s‘il ne peut ta représenter sur ('écran avec tous ses détails. La solution est élision: on
remplace certains éléments du document par une abréviation - plus précisément, par
une simple indication de leur type. Ainsi, une procédure de 2000 lignes pourra elre
figurée par la simple indication "procédure"; nous appelons ce type d'abréviation
abstraction. Le second type d'abréviation eflectue par Cépage est le rétrécissement,
qui consiste en une abstraction appliquée 4 une cu plusieurs sous-listes d'une liste.
comme dans-

231 instructions"

zpression;

"57 instructions”

A chaque étape de la session, le systrne détermine le foyer sur lequel l'utilisateur
semble vouloir concentrer son attention d'aprds les dernidres opérations quill a
eflectuées, et cherche d afficher une vue aussi détaillée que possible d'une portion du
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document, de part et d'autre du foyer, déterminant les abstractions et

retrecissements nécessaires. Il en déduit la forme visualisable qui est transmise &

Gescran pour affichage.

La recherche d'une bonne représentation visualisable s'est révélée une tache

d'une difficulté inattendue, Nous avons été surpris par le peu de documents

disponibles; si l'on excepte une bréve allusion dans fearstowi984) . la seule référence
publiée est a notre connaissance [Mikelsonsi981] , qui est difficilement utilisable du
fait de son imprécision et des caractéristiques particuliéres de l'environnement décrit.

Liabondante littérature sur le formatage des programmes (“prettyprinting”,

paragraphage) est ici de peu d'utilité, I'hypothése fondamentale, quoique en général
implcite (cf. en particulier (Oppen1980] } est que, si la longueur des lignes est limitée,
le nombre de lignes, lui, ne l'est pas. Pour un formatage sur écran, les colonnes et les

lignes sont des ressources sévérement limitées.

Nous avons done été amenés a concevoir des algorithmes spécialisés décrits
ailleurs [Meyer1983b, Meyer1984b] , et qui dépassent le cadre de cet article. Ces
algorithmes sont linéaires par rapport au nombre de noeuds de I'arbre syntaxique. It

s'agit de l'un des domaines od nous avons da“inventer”.

4. LAVENIR DE CEPAGE

Comme il a été indique au début de cet article, la version de décembre 1983 est un

prototype, comprenant cependant les fonctions essentielles du systéme. Les actions

ci-aprés sont ensuite prévues.

+l faudra étudier tes réactions des utifisateurs. La conception de Cépage repose

sur ce que nous pensons etre une bonne base ergonomique pour des systémes

interactifs, opinion confortée par des études récentes reposant sur de solides

bases scientifiques [Card1963] , mais demande, bien entendy, a etre validée
expérimentalement.

- Ilest également prévu d'adapter le systéme a d'autres environnements. Cépage a

été concu pour etre portable: le choix de Pascal, de préférence a un langage

orienté objets comme Simuta 67 (utilisé précédemment avec succés dans la meme
équipe pour réaliser des outils interactifs de qualité), Stait justifié par cet objectif.
Nest prévu a court terme d'adepter Cépage a un environnement Unix, a la fois sur

Vax et sur une station de travail SUN (a 'université de Californie); le SUN est un
poste de programmation A base de 68000, possédant un écran a haute résolution
("bit-map") et une souris. Ce projet est pour nous particuligrement important,
car c'est Seulement dans des environnements matériels de ce niveau que des

outils tels que Cépage pourront, selon nous, tenir toutes leurs promesses; nous

espérons que Cépage sera également adapté a d'autres systémes de ce type (Perg,

Apollo, SM 99...).

- convient également dejouter les principales fonctions absentes du prototype,
en particulier l'outil de modification du langage, et préparer des grammaires-
Cépage pour les principaux tangages utilisés en pratique (le prototype a été testé

avec une grammaire d'un langage voisin de Pascal).

A la lumidre des premitres expériences, nous aurons peut-etre la réponse 3
quelques-unes des questions qui restent actuellement en suspens, comme celle de
Yanalyse syntaxique: faudra-ti, dans une version uligrieure, gjouter un analyseu

syntaxique, de facon 4 permettre de manipuler par Cépage des programmes existants,

obtenus par d'autres moyens?

Nous espérons que la mise en service des premiéres versions confirmera ce que

nous pensons etre le grand intéret potentiel du systéme actuel, et permettra d'en faire

un élément essentiel d'un environnement de programmation puissant et ergonomique.
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ABSTRACT

The system described in this paper, Cépage, is a powerful tool for creating programs or other

documents in any language with a non-trivial structure. With Cépage, the computer, not the

user, generates the proper syntaz for the documents under construction, and produces on the

terminal screen, at every step of the interaction, a clear and consistent display of the current

state of the the document.

Cépage applies principles of Computer-Aided Design to provide users with structural views of

programs and other documents, allowing them to look at the program at any chosen level of

detail.

The language is a parameter for Cépage, so that it is easy to use the sytem to support a new

language or a local variant of an existing language. 7

The system offers facilities not only for creating and modifying texts, but also for performing

systematic transformations and, in the case of programs, checking and ezecution. It may thus be

used towards interactive testing and rapid prototyping, more generally, as a basis for an

advanced programming environment based on the manipulation of structured» documents

through a sophisticated user interface.

A preliminary version of this paper was presented at the Convention Informatique, in Paris, on

September 18, 1985.
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1 - CONTEXT

Many of the tools used to design software are still very primitive when compared to those

which have been made available by software engineers to the engineers of other fields. This

paper presents a tool whose aim is to provide software designers with facilities similar to what

is known in other application areas under the general name of “Computer-Aided Design”.

A prototype of the system presented here, called Cépage (English-speaking readers should

pronounce ,its name as Sea-Page) was developed at Electricité de France in 1983 (13] using

standard mainframe equipment: an IBM 3081, running MVS—TSO—SPF. The version described

in this paper is an entirely new development; although based on the same fundamental ideas

and on experience with the prototype, it pursues more ambitious aims and is designed as a

commercial product. This new product is being manufactured by Interactive Software

Engineering, Inc. (in Goleta, California), initially for a Unix environment!; plana are under way

to port it to other architectures (VAX-VMS, IBM-PC, IBM-MVS, Apple Macintosh)’.

Cépage will show its best on a bit-mapped display, but scaled-down versions for less

expensive terminals are also useful.

The design of Cépage relies on a simple but (we think) powerful idea: to allow visual

manipulation of atructured documents in terms of their structure, not just as if they were mere

sequences of characters. Typical ‘structured documents” are programs written in some high-

level language; but it is important to add immediately that all documents with non-trivial

structures, such as specifications, designs, schedules, technical reports whose structure follows a

regular pattern and other standardized documentation are equally good candidates for handling
by Cépage.

Since the visual aspect of Cépage is so important to its understanding, we will for the time

being defer any theoretical explanation of the tool and rather give a short “demonstration” of

the system, to help the reader get a feeling for the kind of interaction that goes on with such a

tool.

2- EXTRACTS FROM A SESSION

We are using Cépage on a unspecified display. In this paper, we use various font

conventions (roman, italics, boldface) to distinguish the display styles that emphasize the

different types of elements; on an actual screen, Cépage relies on the facilities provided by the

hardware: fonts on a black-and-white bit-mapped screen, different colors on a color display,

various levels of highlighting, etc.

Below is the picture that we might have at a given moment in a Cépage session (figure 1).

Actually figures 1 to 4 do not show the whole screen, but the main window, devoted to the currently

active document. The screen contains other windows, for such things as session information, help

messages and the catalog of available documents (one may work on several documents at a time and

switch back and forth between them).

2 The kernel version (serving as a basis for the others) is developed on a Sumitomo U-station, a 68000-based

Unix System V workstation with a color bit-mapped display. The implementation language is Dilars (Design

and Implementation LAnguage for Reusable Software), an object-oriented language with multiple inheritance

and information hiding, pre-processed into C.

2 VAX is a trademark of Digital Equipment Corporation, Unix of AT&T Bell Laboratories, Macintosh of Ap-

ple Corporation.
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program <NAME> ;

(® This is a presentation of CEPAGE *)

label <Label_list>

<Constant_declarations> ;

<Type_declarations> ;

<Variable_declarationa> ;

begin

repeat:

<Statement>

until

<Boolean>

end;

<Statement>; G

<Statement_list>

end (*program*)

Figure 1: A Cépage Document Window

‘As you see, we are working on a program in some Pascal-like, slightly Adaish language’.
out to be slightly Adaish as well.4

‘The most original feature of this program is that it is not complete: it contains not only

“true” program elements, appearing in boldface on the figures like label, until, the initial

comment ("This is a presentation of...”), etc. but also things in italics like <Stetement>,

<Statement_list> etc. which represent as yet unexpanded program parts (the reader who

remembers his compiler courses will know them as “non-terminals"). They are distinguished

from the expanded parts by the angle brackets and by the italics font (or, on a particular

terminal, by a different color).

Texts such as the one displayed here are called Partially Expanded Documents (we use

the word “document” rather than “program” to emphasize again the fact that the underlying

language could describe structured objects other than programs). Partially expanded documents

are the basic entity that Cépage handles. Of course, eventually a document should be

completely expanded, and Cépage can then generate a textual version of the finished product -

which, in the case of a program, may be passed on, for instance, to a compiler; other kinds of

documénts might be handed over to a text formater such as troff on Unix, ete.

There is also an instance of <Statement>, in the repeat... loop at the beginning of our

program body, that appears in roman font (again, it might be a color), rather than italics, That

one does not represent an unexpanded statement: quite to the contrary, the statement hes

indeed been expanded, and its expansion is so long that, given the size of the window, there is

no way to display the details of the statement without losing some of the context (the whole

program). The expansion of this statement perhaps contains as many as several hundred lines

(which would imply that you are not a programmer of the most modular kind).

We call abstraction the process of displaying just the name of a non-terminal type, like

<Statement>, to stand for a possibly large part of a document.

4 So far as we know, Pascal-like and Adaish are not trademarks of anybody yet.

20 Extracts from a session 5

Of course, you may at some point want to see some of the abstracted part. Nothing could

be easier: just move the cursor to some position in the <Statement> in roman and press a

mouse button (or function key, depending on the terminal). Of course, as you go down you will

lose some context, which you may see again by moving “out” again, using the corresponding

option in the menu.

For the moment, however, we are interested instead in developing our program a little

more. We have decided to expand the <Statement> that appears just before the end; thus we

have brought the cursor (represented by the hand on figure 1) to the “window” in which the

word <Statement> appears. We look and choose the Expand option, again using whatever

selection medium is available: mouse to point in the menu, function key etc. Actually, as the

menu shows, the Ezpand operation is so fundamental that you don't really need to select it

explicitly: just moving the cursor to a non-expanded element and pressing a button or function

key will trigger the expansion mechanism.

The basic interaction with Cépage is normally done in this fashion: Show and Select

(S&S), i.e. indicate a position on the screen and select a function from menu. S&S is a very

effective way of dealing with computers interactively; Shneidermann (18] indicates that many of

the interactive systems that are really popular with their users rely on the principle of direct

manipulation and on the idea that the user should "see what he has got" at every stage of the

interactive session. This applies not only to editors but alfo to systems for Computer-Aided

Instruction, Computer-Aided Design (an application area which influenced Cépage significantly,

as will be seen below), to video games etc.

The effectiveness of this approach is backed by extensive psychological studies {3]. Of

course, the “S & 8" principle is at its best when the display and the selection device (mouse,

joystick) are adequate.

Once we have said that we wanted to expand a particular statement, something new will

appear on the screen. The text of the document does not change, but a new menu pops up,

listing the set of possible statements in the language at hand (figure 2).

program <NAME> ;

(* This is a presentation of CEPAGE *)

label <Label_list> ;

<Constant_declarations> ;

<Type_declarations> ;

<Variable_declarations> ;

begin

repeat

<Statement>

until

<Boolean>

end;

<Statement>; T

<Statement_list>

end (*program*)

Figure 2: Selecting an expansion in a menu

‘The new menu allows us to select the type of statement we want. We do not need to type

any keywords (e.g. if, etc.); we just select the choice we want in the menu, and the system will

take care of generating the proper syntax for us. (However, we may also type the beginning of
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the statement if we prefer to work in this fashion, as will be explained. below).

Here assume we decide we want a conditional statement and choose the corresponding

item in the menu, with any available selection facility. The system generates the resulting

structure: figure 3 shows what now appears on the window.

program <NAME> ;

(* This is a presentation of CEPAGE *)

label <Label_list> ;

<Constant_declarations> ;

<Type_declarations> ;

<Variable_declarations> ;

begin

repeat

<Statement>

until

<Boolean>

end;

i if <Boolean> then

<Statement>

else

<Statement>

end ;

<Statement_list>

end (*program*)

Figure 3: Result of Expansion

The part which previously read <Statement> has been replaced with the syntax for a

conditional statement.

Note that up to now we haven't used an alphabetic keyboard: the mouse suffices for the

manipulations done so far. We do not have to use the mouse: we could type phrases, or

meaningful beginnings of phrases, if we prefered to. But we may work by S & S if we like. Which

solution makes more sense depends on the user’s individual taste and on the power of the

terminal hardware available.

At some point, for elements such as expressions, it may become tedious to have to describe

the structure; one just wants to type in the stuff. For the elements of lowest levels such as

identifiers or constants, this is the only possibility anyway since they have no further structure.

To enter such elements, one just types them at the place where they appear; they will be

immediately parsed by the system.

For example, one may wish to resort to typing when entering the boclean expression of our

newly built conditional statement, as shown on figure 4.

2% . Extracts from a session 7

program <NAME> ;

(* This is a presentation of CEPAGE *)

label <Label_list> ;

<Constant_declarations> ;

<Type_declarations> ;

< Variable dectarations> ;

begin

repeat

<Statement>

until

<Boolean>

end;

ey if f (2) # $*2-2 then

<Statement>

else

<Statement>

end ;

<Statement_list>

end (*program*)

Figure 4: Entering Text

It is important to note that the user has a choice at all levels between menu selection and

typing. In the latter case, an added advantage over text editors is that one may type just the

beginning of a phrase provided it is long enough to dispel any ambiguity; for example, typing

just while at a place where a statement is expected is enough for the system to generate the

entire pattern for a while loop.

We stop here our little demonstration. Other features resemble those which are generally

available in text editors: delete, copy, move, search, replace, “yank” (i.e. put aside for later re-

use), etc. There is an important difference, however, since here all such manipulations may only

apply to syntactically meaningful parts of the partially expanded document; so if we have, say

ifz> Othen

[feted
else

a@s= 5;

call P (z)

end

and want to apply an operation such as delete, copy etc. to a part of the document containing

c, then this part may only be one of the boxes above. On the other hand, there is no way to,

say, replace “else call” by “; goto”, since neither pattern corresponds to a syntactic entity.

This is what is meant by “structural” manipulation.
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3 - THE BACKGROUND: STRUCTURAL EDITORS

A tool such as Cépage is known as a “structural editor” (in other terminology for the

same concept, “editor” has been used with the qualifiers “structure”, “syntax”, “syntax-

oriented’, “language-based", etc.). A structural editor manipulates documents in terms of their

underlying structure, not as if they were flat sequences of characters. Many of the basic ideas

were contained in Hansen's EMILY system [10]; the best-known structure editors are Mentor,

developed at INRIA (4,5,6], Gandalf, from Carnegie-Mellon [9] and the Cornell Program

Synthesizer [19]. A more recent tool with graphical facilities is Pecan (16, 17].

Structural editors offer several potential benefits:

« they guarantee that only syntactically correct programs are generated;

e they provide a unified basis on which te build complete programming environments,

where all tools can rely on a single data structure describing programs (this data

structure, as we shall see below, is the abstract syntax tree);

e they make it possible to perform possibly complex program transformations in a safe

and efficient way;

@ they allow automatic translation from one programming language to another;

e they may be used to free the designer from routine tasks like generation of the concrete

syntax,

Note that in listing these benefits we have referred to “programs” to emphasize the most

immediate applications but, again, it should be noted that other kinds of documents may be

handled by structured editors.

Most structural] editors have been used so far in academic environments only, which we

think is a pity because of their great potential advantages. In our opinion, the main reason for

this situation is that structural editors have lagged behind in terms of their user interfaces.

* In most present programming environments, one or more full-screen editors are available.

These tools make it possible to take advantage of current video terminals to edit documents in

a “direct manipulation” mode; the size of the “window” provided by the system on the

document is the size of the available screen, which gives the user a much wider view of the

document and better control of the editing process than with traditional “line-by-line” editors.

The advantage of full-screen editors over line-oriented ones is so clear that it is impossible

te convince users to go back to the latter once they have experienced the joys of the former. We

were particularly aware of this fact after having witnessed in two different cases how how a

full-screen editor (IBM’s SPF and Vi on Unix, respectively} all but ousted the previous line

editors in a matter of months in two different installations; the philosophies of Vi and SPF are

remarkably different, but the results were identical. This is all the more significant when one

considers the resistance of most users to any kind of change in their software habits

~ languages, methods or tools.

It was thus clear to us that no structural editor, regardless its other qualities, would

become successful in industry if it did not provide at feast the services of modern full-screen

editors. Cépage is an attempt to combine the best of both worlds,

A particular attention was devoted in Cépage to the design of the display algorithms:

the idea is to provide users with structural views of their programs or other documents, instead

of just the contiguous extracts offered by text editors. The paradigm here is that of computer-

aided design: one should be able to hierarchically traverse a program in the same way that one

explores, say, an electronic system at various levels (system, subsystem, wafer, gate,

transistor...); similarly, one wants to see the global structure of a software system, then a little

more of a particular module, then one of the procedures of that module, then some of its

statements, etc. The display policy will be outlined below.

4a System structure , 9

4-SYSTEM STRUCTURE

The structure of Cépage is given by Figure 5. A kernel, or “pilot system”, works on a set

of data structures: grammar graph, abstract syntax forest, display form, visual form, library,

external form. The design of Cépage was done according to the “object-oriented” philosophy,

which may be roughly summarized as implying that a system should be described by the types

of objects it manipulates and their patterns of communication. True to this approach, we shall

present the internal structure of Cépage by describing successively each of its main data

structures.

Abstract

Syntactic

: Forest

orm Construct

a Modify

Read | Display., -

Display Show ‘as Store
aa, Cépage External

Analyze Retrieve Form

Generate Modify \\. Interpret
Language \

\

\
3A

Text Form er
Graph

Figure 5: Cépage System Structure

4.1- The Grammar Graph

The grammar graph data structure is used to describe the language in which the

documents are written. A distinctive feature of Cépage is that this data structure is repetitively

interpreted by the kerne! system, which means that the system as such is completely language-

independent; the language is a parameter, easy to modify even at run-time. This flexibility may

be used for instance by a software project leader to modify the standard description of the

language used, so as to enforce programming standards. For example, the syntax for the

modified Pascal used in the above figures includes 2 compulsory comment at the head of all
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programs, procedures and functions (the comment used in the examples was This is a

presentation of CEPAGE).

In a different application of the same concept, one might wish to extend the syntax of

Fortran to include statements such as while... do or repeat... until, which will be translated

on-the-fly into lower-level Fortran equivalents (using IFs and GOTOs). The idea that the

language should be a mere parameter thus allows Cépage to offer a modern interactive

alternative to the concept of pre-processor.

The description of a language, as embodied in the grammar graph, is based on the notion

of abstract syntax. The abstract syntax contains the specification of syntactic types

covering the various kinds of constructs in the language. A syntactic type is defined by a

production of the abstract syntax, which is a description of its deep structure, independently of

its external representation. Thus the production defining conditional statements, which inf

classical Backus-Naur Form would be something like

<conditionat> := if <boolean> then <statement> else <statement> end

will just be, in abstract syntax:

conditional = statement ; boolean ; statement

The abstract syntax that we use for describing languages, has three kinds of productions.

The one describing conditional in the above example is called an aggregate production; it defines

the elements of a syntactic type as having a certain number of components ; some components

may be defined as optional as e.g. the label_part in a Pascal program. An aggregate production

is not unlike a Pascal record type definition. A type may also be defined by a choice

production, giving the list of alternative expansions, as in the following example:

staternent = assignment | procedure_eall | conditional | loop | compound

The third and last type of production comprises list productions. As an example, a

compound statement is defined abstractly as consisting of zero, one or more statements; this is

expressed as a list production, using the star notation:

compound = statement*

The abstract syntax of a language is defined by a set of productions of the above three

types. A syntactic type is defined by (ie. appears on the left of} at most one production, so

that we can speak of aggregate types, choice types, list types. Syntactic types that do not

appear in the left-hand side of a production are called terminal types; examples are types like

Identifier, Constant etc. that have no further meaningful structure.

The grammar graph contains a representation of the abstract syntax of the language, i.e.

of the productions defining it. The nodes of the graph correspond to the syntactic types; an

appropriate data structure is associated with productions of each kind; for example, the

description of an aggregate or choice type will contain a list of pointers to the nodes associated

with the types appearing on the right-hand side of the corresponding production.

More information must be present in the grammar graph in order for the system to be

able to display readable views of the documents. Such views must be shown in the form familiar

to the user, ie. the concrete rather than abstract syntax. The operation which makes it

possible to construct a concrete representation from an abstract one is known as un-parsing,

since it is the exact opposite of the “parsing” task performed by compilers (and by Cépage, since

the user has a choice between entering by menu or by typing the beginning of a meaningful

phrase), In order to un-parse a document, the system must know the concrete syntax of the

language.

In the grammar graph, the concrete syntax is defined by additions to the abstract

productions. For example, the concrete syntax for conditional , defined above by a production
of the aggregate type, may be included in the grammar graph through a list of elements

representing the following sequence:
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if @2 then @1 else @3 end

Such a sequence is to be understood as follows. Elements such as if, etc., are called

operators and represent the constituents that appear in the concrete syntax only. Operators

may be keywords of the language; they can also be formating marks like line_break, indent (n)
(meaning “indent right by n positions”), blanks (m) (meaning “skip m blanks”), tab (p) (meaning

“continue at position p of the line” and useful for fixed-format languages like Fortran), ete.

Elements of the form @i represent abstract syntactic elements, indexed relative to their position

in the right-hand side of the abstract production; thus here @1 is the first statement, @2 is the

boolean expression, @9 is the second statement. So the above concrete syntax addition means

that to display a conditional statement we display if, followed by the boolean expression,

followed by then, etc.

In this example, the order of the components of a conditional expression is not the same in

the concrete and abstract forms. This was done not only for elegance (the order statement,

boolean, statement is more symmetric than the concrete one), but also to point out that these do

not have to be the same. In fact, the notion of “order” of components in the concrete syntax

disappears if, as may happen, some components appear more than once in the concrete form; for

example, we may wish to automatically include at the end of each procedure a comment

reminding the reader of the name of the procedure, so that we will associate with the abstract

production

procedure = name ; parameter_tst ; body

the following concrete syntax, using the Pascal convention for comments:

procedure @1 (@2) ; @3 end procedure {@1}

Associating a concrete syntax with a non-terminal defined by a list production is simple;

all we need to record in the grammar graph is three operators: a header h, a terminator tand a

delimiter 4; a list will be displayed as

h@1d@2d@s...d@nt

where @i is the concrete representation of the +th element of the list. Thus for a compound

statement in an Algol-like language, A is begin, t is end and d is the semicolon.

There is no need to associate concrete syntactic information with nodes of the grammar

graph representing choice types such as statement.

The grammar graph is thus a powerful structure which makes it possible to describe

possibly complex languages in a flexible way. As stated previously, it seems to us very

important to allow for easy creation and modification of grammar graphs.

One of the standard languages supported by Cépage is thus LDL, @ language

description language. LDL’ documents are descriptions of grammars by abstract syntax

productions and concrete syntactic additions, as seen above.

4.2 - The Abstract Syntactic Forest

To represent partially expanded documents, the system uses a a set of abstract syntax

trees, or abstract syntactic forest.

An abstract syntax tree is not unlike the “parse tree” used by compilers, but it

corresponds to the abstract syntax of the language rather than to the concrete one; in other

words, it contains only essential, structural information, and excludes anything that is only
associated with the external representation of documents (i.e. keywords and more generally

what we have called “operators” above).

Figure 6 gives an example abstract syntax tree.

The relevant productions of the corresponding abstract syntax are the following (with [A], [C|

and (L] standing for aggregate, choice and list production respectively):
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#

integer
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Lo assignment statement
ver_decl

# ;

z binary expression

nao

Figure 6: An Abstract Syntax Tree
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#
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loop

statement
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[A] block = var_part ; compound

{L| var.part = var_decl

[A] var_decl = variable_list ; type_description

{L] variable_list = variable

{A} variable = name

[A] compound = statement
{C] statement = assignment | conditional | loop | compound

[A] assignment = vartable ; expression

(Cc expression = variable | constant | binary

[A] binary = expression ; operator ; expression

[A] loop = ezpression ; statement

The Cépage abstract trees have four kinds of nodes, corresponding to the syntactic type

categories: aggregate nodes, choice nodes, list nodes and terminal nodes. In the implementation

of an abstract syntax tree, the type of each tree node is known through a pointer to the node of

the grammar graph associated with the type.

The leaves of a tree are either:

e nodes corresponding to elements yet to be expanded (like the leaves labeled var_decl,

boolean and statement in the tree of figure 6); such nodes may belong to any of the four

categories;

¢ expanded terminal nodes, to which a text has been associated by the user thanks to the

text editor.

Note that choice nodes may only appear as leaves, corresponding to the first of these two

cases.

We have referred above to the basic data structure as abstract syntactic forest rather

than tree. The reason is that users will normally manipulate not one but several partially

expanded documents or sub-documents simultaneously. Each such element is represented by an

abstract tree; their reunion constitutes a forest. At each time, only one element is active; the

list of all available elements is contained in a catalog. Users may freely add elements to or

delete elements from the forest, using the catalog, and go from one element to the others,

making them active in turn.

All document manipulations performed in response to user requests are executed by the

system as operations on the abstract syntax forest. The available operations are listed in

section 5 below.

4.3 - Display form

Although the abstract forest form of the document is best from the system's point of view,

users need a clear, concrete representation of the current state of the document.

A full-screen text editor can only show a contiguous excerpt ‘of the document, which makes
it very hard for users to keep a global view of the document and the editing process; often, in

applications such as program design, users end up going constantly back and forth from one end

of the document to the other. Some text editors (e.g. SPF) provide an eliston mechanism that

makes it possible to mask temporarily certain lines of the text in the output, but this feature

only yields a marginal improvement in the ergonomics of document preparation. :

With a structural editor, it should be possible to do much better. The view offered should

itself be structural: users should be provided both with the details of the particular local part of

the document in which they are concentrating their attention at any given time, but also with

the relevant structural context, for example the enclosing structures in a block-structured
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language.

The display mechanism used by Cépage is entirely automatic: after each operation

requested by the user, the system will determine the best possible view of the text that it can

present to the user, and display it.

The display algorithm, one of the main contributions of Cépage, is rather complex and

described in another paper [14]. We shall only mention here some of the main problems

involved.

The display task is close to what is known as pretty-printing, ic. printing of a program

in a form suggestive of its syntactic structure. However, most published discussions of pretty-

printing (see e.g. (15}) are of little interest for an interactive structural editor because they apply

only to the case of paper output, for which it is assumed that the output width is fixed but

there is no constraint on the number of lines. With a screen editor, both lines and columns are

scarce resources; we want to find a representation of a partially expanded document in the

limited space available in a given window.

Since the concrete texts may be of arbitrary length, there will in general only be solutions

if we allow abbreviating the parts of a document that are the least relevant at display time.

Such abbreviation was called holophrasting by Hansen (10). It occurs in Cépage in two

different ways:

« We may perform abstraction by replacing a possibly complex substructure by its

syntactic type name. This was done with the <Statement> in roman on figures | to 4.

e In a long list, we may perform collapsing by replacing a certain number of list elements,

say 35 statements in a <Stetement_list>, by the mere mention

<35 Statements>

The aim of the Cépage display algorithm is thus to un-parse the abstract syntax tree into

a concrete form that will fit into the available window area, performing abstraction and

collapsing as necessary.

Technically, the algorithm produces a list of rectangular windows containing the text of

the various parts of the document; these windows are handed down to a screen management

package, called Screenpack, which takes care of the physical display. Screenpack works on

abstract objects called “windows”, characterized by attributes which may be modified by

Screenpack’s primitives,

An interesting possibility is for users to attach comments to nodes; there is a special

explain display mode, in which the information displayed for an abstracted node is not just a

syntactic type indication such as <Statement> (not very informative), but rather the comment

attached to the node, if there is one. Note that this feature supports both top-down and

bottom-up design: in the former case, the comments will normally be written before the nodes

are expanded, in the latter the nodes will be expanded first.

One may imagine systems for displaying programs that go beyond the facilities offered by Cépage and

offer true graphical views of programs. Research on such tools was recently described in a sp

of IEEE Computer [8]. As mentioned previously, the Pecan system (16, 17] also offers graphical views of

programs. This line of research is obviously important, and future versions of Cépage may include

graphical views. We have, however, included textual views only in both the Cépage prototype and the

current industrial version, for four reasons: first, designers are used to manipulating programs and other

softwarerelated documents as texts and, regardless of the usefulness of pictures for explanatory purposes,

text remains the ultimate basis on which to determine what a program really does, what a specification

second, the problem of providing consistent views at a variable level of detail, with

issue

really means el

zooming and un-zooming capabilities, seemed to us at least as important as the inclusion of graphical

facilities: third, graphic programming is still at the research stage, as the articles in [8] clearly show, and

we are interested in producing @ practical product for today’s software professionals in industry: finally,

the variable-level display problem seemed difficult enough with text, as we learned by solving it for
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Cépage [14]: so it was reasonable to first limit ourselves to textual views before we went to graphical

representations,

4.4 - The Library

The library is an external data structure that makes it possible to store and retrieve

partial designs. Thus an editing session may be interrupted at any time and re-started later.

The library is organized as 2 database, where documents may be retrieved by name.

Technically, abstract syntax trees are stored in the library in an extended Polish form.

Trees, however, are not the only thing to store: since the language description is entirely

parameterizable, a suitable external form must also be found for storing and restoring grammar

graphs, and care must be taken to ensure that each tree is stored together with a reference to

the appropriate grammar graph; an abstract syntax tree without a grammar graph is as

meaningless as a dinner without cheese (un repas sans fromage est comme une belle d qui il

mangue un oeil (2} ).

4.5 - The External Form

When a document is ready (completely expanded), the system must be able to generate a

text form suitable for handling by other tools. This is done by simply using the standard display

algorithm, with its output directed to a file or printer and its parameters set up in such a way

that the number of available lines is considered infinite and no abstraction or collapsing may

occur.

& - THE FUNCTIONS OF CEPAGE

To allow the reader to get a better grasp of the whole scope of Cépage, we now give a

systematic list of the functions that are or will be supported by the current version of Cépage.

5.1 - Moving around

A basic set of functions makes it possible to move around a document, by climbing along

the corresponding abstract syntax tree:

© up (to parent)

@ down (to +th child)

@ left (to sibling)

right (to sibling)

© existence tests: is there a parent, a left sibling, a right sibling? How many children?

The names above refer to the abstract syntax forest. We have been very careful, however,

to make Cépage usable by non-sophisticated users who do not necessarily know about trees and

forests; thus the names of the options in the basic menu (see figure 1 above) are not up, down,

left and right, but (respectively) Move out, Move in, Move te previous and Move te

expressing the move in user's terms rather than system terms.

5.2 - Marking

The marking commands make it possible to take note of positions in the document while

moving around, and to come back to them later.

There are three such commands: Mark marks the current position in the document; Back

returns to the most recent position to which one has not yet returned; Forth cancels the effect

of the most recent Back command that has not yet been canceled in this fashion.>

5 The effet of commands such as Back and Forth is rather awkward to explain in natural tanguage. The

some applies to Undo and Redo (see below). We have written formal specifications of these commands, which el
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5.3 - Expansion

The expansion function makes it possible to expand a previously unexpanded node of the

abstract syntax tree. It ts executed according to the information contained in the grammar

graph. For an aggregate or list node, no user input is needed; for a choice node, the user must

make a selection between the various possibilities (see 5.7 and 5.8 below); for a terminal node,

he must enter the text to be attached to the node.

5.4 - Cancel /Modity

Canceling a expansion puts an expanded node back into the unexpanded state. In the case

of a choice node, the Modify function allows the user to make a new selection; as much as

possible of the initial expansion will be carried over to the new one (for example, when

transforming an if... then ... else ... statement into a while loop, the boolean expression and

the then part of the conditional statement will be transferred to the loop).

5.5 - Comment/Explain

The Comment command attaches a comment to a node (expanded or not). The Explain

command changes the display mode so that comments will be displayed with particular
emphasis.

5.6 - Search/Replace

Search and Replace correspond to traditional editor functions. In Cépage, however, the

search pattern and (in the Replace case) the replacement are structured elements similar to the

document being edited: the editor is called recursively to enable the user to define them (in
special windows).

5.7 - Selection

‘The selection facility allows the user to make a choice among a set of predefined

possibilities and allows the system to determine which item was selected. The way in which the
list of choices is displayed and the user makes his selection (pointing with a mouse in a menu,

pressing a function key, typing an ordinary key etc.) depends on the terminal hardware.

5.8 - Parsing

The parsing function makes it possible to read a text typed in by the user and to build the

corresponding syntactic structure (subtree of the abstract syntax tree). The text can be

incomplete: the parsing method used in Cépage allows the system to fill in the missing parts if

the text typed is incomplete but unambiguous.

5.9 - Undo/Redo

Undo makes it possible to back up to previous states of the editing session by canceling

the effects of previously issued commands. Redo cancels such a cancellation.

iminate any potential ambiguity.
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6.10 - Record/Replay

The record/replay facility makes it possible to archive the succession of commands issued

during an editing session and to replicate them. It thus allows recovering from a system crash.

6.11 - Catalog management /Copy

Catalog management keeps several documents during an editing session, one of which is
the “active” document, the others constituting the “catalog”; this function allows the user to

select an element of the catalog as the new active document, to copy part of the active

document into a new entry of the catalog, or to copy an element of the catalog onto an

unexpanded node of the active document.

5,12 - Delimit

The delimiting function enables the user to define a part of a document, to be uscd as

parameter for a function such as cancel, copy etc. Since the “moving around" functions are

particularly simple to invoke, delimiting is mainly useful for selecting sublists.

6.13 - Save/Restore

The save/restore function copies documents (which may be partially or totally expanded)
from memory to files and back, using an appropriate external representation.

5,14 - Library management

Library management maintains databases of (partially or totally expanded) documents,

stored under the external representation mentioned above.

5.16 - Generation

The generation function creates textual versions of totally expanded documents.

5.16 - Language description

The language description function makes it possible to translate descriptions of languages

to be supported by Cépage into their internal representations (grammar graphs). The

descriptions must be expressed in a language called LDL (Language Description Language), not

further described in this paper.

5.17 - Interactive language description and modification

‘The interactive language description and modification function is similar to the previous

one but uses Cépage itself to enter and modify LDL descriptions (grammars). It thus relies on a

grammar graph obtained by applying the previous function to the description of LDL in LDL.

This function provides for incremental language modification, i.e. makes it possible to construct,

and modify 2 grammar graph in a stepwise fashion, as the corresponding LDL description is

being developed and updated.

5.18 - Semantic checking

The semantic checking function makes it possible to perform verifications on documents; it

is only applicable if the language description includes the definition of the corresponding

semantic constraints. :
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6,19 - Execution

‘The execution function makes it possible to execute the active document, considered as an

executable program. It is only applicable if the language description includes dynamic semantics

for each operand type. A partially expanded document may be executed: when execution

reaches an unexpanded element, the user is interactively asked to provide the results of the

execution. This facility is a first step towards making Cépage into a tool for rapid prototyping

and program testing.

5.20 - Display

The display function displays an abstract syntax tree or subtree in a given window area,

finding the best representation it can (a detailed description of the display algorithms for

Cépage may be found in the paper (14)).

5.21 - Library of primitives

The library of primitives is a set of procedures which enable outside programs to access all

of the above Cépage functions and the Cépage data structures. By making these Cépage

“internals” accessible to other software tools, it is planned that Cépage will be used as the

kernel of a more complete software environment, in which tools of various kinds (e.g. for static

program analysis, complexity analysis, program transformation, testing, text processing, etc.)

will be able to take advantage of the basic data structures and functions provided by Cépage.

6 - THE NEXT STEP: PATTERN-BASED INTERACTIVE PROGRAM

GENERATION

We have emphasized three aspects of Cépage:

¢ editor, i.e. system for creating and modifying documents at the source language level;

© program development system, with facilities for program checking, testing, and rapid

prototyping;

© basis for a programming environment.

These are the short term goals. To conclude with a more futuristic view, we will now

present a more remote but very promising application of this system towards solving the

problem of software reusability. We may call the Cépage solution pattern-based interactive

program generation.

Most of the software being written today is of a repetitive nature: there exist a small

number of basic program patterns (counting, searching, sorting, comparing, exchanging,

assigning, creating...) on which programmers compose endless variations. Most of this work is

done at the lowest reasonable level, that of common languages; the use of shared, standard

components is not, despite a few exceptions such as libraries of numerical software,

commonplace. This situation stems in part froin the fact that each new situation may be

slightly different from the ones encountered previously. For example, even though most search

routines share a general organization (go to the beginning of the table, loop until either the

required element has been found or the subset of the table in which it may appear has been

exhausted, report “found” or “absent”), the representation details will considerably vary from

one case to the next. :

It is not easy to construct software components that provide a suitable answer to the

problem of reusability. Consider the simple problem of providing the users of a computing

center with a tool for sorting arrays. Assume that the algorithm is chosen to be, say, Quicksort,

which is well explained in computer science textbooks, so that one does not have to worry about
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this aspect of the question, A particular problem instance is characterized by how elements will

be compared and how they will be exchanged. The solutions open to @ software toolsmith are

the following:

© A - Provide procedures for the most frequently occurring cases: e.g. increasing and

decreasing sort of integer, real, etc. arrays.

B~ Provide a single procedure (or operating system command) with many parameters or

options.

© C - Provide a single procedure with two procedure parameters, corresponding to the

comparison criterion and the exchange mechanism.

e D - Have a sorting procedure “skeleton” and manually create a tailor-made version for

each user who requests it, filling in his particular sorting criterion and exchange

mechanism, with the help of a text editor.

« E- As D, but use a macro-processor to generate the various versions.

None of these solutions solves the reusability problem satisfactorily. Solution A is too

partial; in many cases, the users will want to sort an array of pointers, leaving the elements

themselves in place, or use only part of the elements as keys, etc., so it is unlikely that many

actual cases will be covered by the library routines. In solution B, the options may cover a

larger number of cases, but the tool will require coding many options, thus using a reference

manual, a cumbersome and error-prone process. Solution C will work but with great

inefficiency, since the procedures passed as parameters will be called repeatedly in the inner

loops of the sorting program; the overhead, which is typically a factor of 10, will be

unacceptable in many cases. Solution D, using an editor to generate tailor-made versions, is

tedious and error-prone. Solution E implies learning the conventions of the particular macro-

processor on hand, which may be at odds with those of the programming language used, even if
they were designed by the same group®; furthermore, macro-processing is not interactive: the

user must first provide actual arguments in the adequate formalism, then wait for the macro-

processor to generate a text for inclusion in his program.

Structural editing may provide a better solution. A simple idea is to apply the notion of

abstract syntax. A sorting program may be defined as belonging to the following syntactic type:

sorting = comparison ; exchange

One can thus envision a simple extension of the editing process in which the user

interactively describes the comparison criterion and exchange mechanism to be used in a

particular instance, and the system generates the appropriate sorting procedure by the same

expansion mechanism (abstract. to concrete) which was used to automatically produce the

displayable form

ifc then A else Bend

from the description of the language, the user providing only c, A and B. The only difference is

that the amount of text generated by the system will be proportionally larger in the case of

program generation.

We believe that such interactive, pattern-directed program generation is possible in the

Cépage framework as presented above. The basic mechanisms are already present; in particular,

since the language is a modifiable parameter, it is possible to extend the basic constructs such as

conditional, loop etc. with libraries of program patterns such as search, sort, or even payroll,

etc. Such patterns will be defined in the same way as basic language constructs: by their

abstract and concrete syntax.

_The idea of program patterns is close to the concept of “plans” used in the Programmer's

Apprentice project [20]. We think, however, that reusable, parameterizable program modules

© For example, on Unix, the macro-processor embedded in the C compiler [LI] and the M4 macro-processor

[19] have different conventions regarding parentheses, commas, reserved words ete.
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can be implemented in the Cépage framework without recourse to the Artificial Intelligence

techniques used in the Programmer's Apprentice.
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ABSTRACT

We show how a sequence of systematic program transformations may be used to derive an

efficient, vectorizable program (to be used on vector computers such as the Cray machines} from
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1. BACKGROUND

s work, we have investigated the application of modern software engineering techniques to

the design of vector programs (c.g. [15,5,6,7] cte.). Our general approach has been to investigate super-

computer programming not as a set of recipes designed to yicld maximum performance on some or other

specific machine architecture, but rather as a systematic design activity, in which the concern for
elliciency must not offset other important software qualities such as corrcetness, reliability, extensibility,

portability and others.

Techniques which can be applied towards this goal include asscrtion-guided stepwise program

development (10] and the use of abstract data types for the specification of “virtual vector machines” as

models of actual vector processing hardware.

This paper continues our previous efforts by studying the application of another well-known pro-

gram construction method, program transformation, to the development of an efficient vector program

corresponding to an important algorithmic concept, cyclic reduction. We start from a correct but very

inofficiont program, obtaincd as a straightforward implementation of the basic mathcmatical idea and

expressed in terms of high-level operations of the abstract "vector machine"; we then perform a scrics of

transformations, cach aimed at removing some of the inefficiency while preserving Lhe semantics of the

program. The final version, for which we offer an Ada implementation, is an elficient, roadily vec

program.

2, THE TOTAL REDUCTION PROBLEM

2.1, Statement of the Problem

Consider a set $ with a binary operation, written @, which gives S the structure of a monoid, ic. @

is associative and has a zero element, written 0. Note that @ is not required to be commutative. [lements

of Swill be called acalara.3

We define V= VECTOR /Sj, the set of finite sequences of elements of S. An clement vof V, called a

vector, is of the form

VES Oy U>

where v, € Sfori=4J,2,...m The number of elements of a vector vis written fy,

We define the shift operation

nV ov

such that

TS Uy ove YA) = SO, Vy Uys om OD

The total reduction problem is, given a vector ¢ € V, to find another vector z € Ysuch that

z= aOrz Al

which can also be written, in scalar terms:

{ ne 4
y= 4 OF .

or equivalently:

4,0 4,,90,,0...04,

for i= 1, 2, ... fol

2 This use of the word "sealaeTM does not quite conform to standard mathematical usage, but is eonimnn in

discussions of vector programniing.



2.2. Applications

The total reduction problem, as defined by /1/ above, has several applications. The most obvious

ones are the sum of Lhe elements of a, obtained by taking ordinary addition for ®, and linear recurrences,

which may be written as a .

or

1 ot

which is an instance of the total reduction problem obtained by taking for @ the product of 2 xX 2

matrices.

zationBut some classes of non-linear recurrences fall into the same model, a straightforward gencral

a fa + 8

gta + oj
z=

which can be put into the form of /1/ by again taking for ® the product of 2 X 2 matrices and writing

the equation as

where

uy ja; 5,

wy) le

A useful particular case where this is applicable is Cholesky factorization: consider a symmetric

matrix with diagonal

Kd) y dy, d >

and subdiagonal

<sy Sy

The recurrence to be solved for Cholesky factorization is

which is a problem of the above form if we take z= a7

3. THE VECTOR MACHINE

3.1, Vector operations

Equation /1/ does not seem to lend itself naturally to efficient solution on vector processors such as

the Cray-l or Cray-XMP, which favor the exccution of “extension” operations {15,5]. Roughly speaking,

extension operations are those which can be executed in parallel on all the elements of » vector (or more

generally, in the case of the Cray machines, on whole vector slices). A typical extension operation is the

addition of two vectors, element by clement.!

"Ie shoutd be noted that on the Cray machines or on the CDC Cyber 205 vector operations are not actu-

ally perforined on all elements in parallel, but rather se pipelining. For most. practical purposes, however,

pipelining may be considered as a form of parallelism.

-5-

Such operations on vectors may be exccuted by vector hardware much more efficiently than by just
applying repetitively their non-vector, or “scalar” counterparts. More precisely, a scalar operation which
takes Lime S$ when applied to onc element will take time

beat (n) = n° S

when applied to a vector of nclements. A true vector operation, when applied to this vector, will take a
time approximately equal to

treet (n) =U + nV

where Uis the start-up time and Vis the asymptotic unit vector time. On a vector machine, of course, V
must be significantly less than S.

The performance of vector addition in both scalar and vector mode on the Cray-1 is illustrated by
the diagram below. Vector mode becomes better than scalar mode for vector lengths n> U/ (S-V). The

non-linearity of actual vector processing time, which is apparent on the figure, is duc to the fact that the
Cray aaa vectors by slices of maximum length 64, hence the discontinuity at n = 64 (and also 128,
192 ete.}.

scalar mode

execution time

(microseconds)

vector mode

The performance of an operation executed in vector mode may be characterized by two parameters
(13}:

= the asymptotic vector speedup p = 4

" ” u
+ the "half-performance length” n, = p defined as the value of n for which the per-clement per-

U+nty
formance is half the asymptotic one, i.e. 2 ¢ V; this parameter gives an idea of

”

the minimum length for which the benefits of vector mode offset the penalty incurred for short vee=

tors because of the startup time.

On a Cray-1, depending on the operation, p varies between 7 and 10 and my between 20 and 30.

Only those parts of a program which conform to certain rules may be executed in veetor mode and
thus achieve high performance. For Portran programs on the Cray-1, the rules are the Following {15}

- L only "DO" loops are "vectorizable";

+ 2 these loops may only contain “primitive” operations such as assignment and

boolean operations (no jumps, etc.),
bmeti

+ 3. the data clements accessed during successive loop iterations must be regulurly spaced in
memory, i.c. array indexes must. be lincar functions of the loop index;

+ 4. no "backward dependency", in which a statement updates an array value a (i) and usos a provie
ous value of the same array, a (i-p) (for some p > 0), is permitted;

- 5. no “cross dependency”, in which an array value may be updated by one statement of the loop
and used by another, is permitted.
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Tn the last two cases, vectorization is inhibited by the compiler not because the hardware could not
carry out the computation in vector mode, but because the vector somantics of the program may be
different from the standard (sequential) semantics implied by Fortran and other common languages. If, on
the other hand, one fecls certain that the dependency is only apparent, for instance if the clement
updated in a loop with index iis a (2*i +4) and the value used is that of @ (2%) (so that the array slices

updated and used are in fact disjoint), then one may force vectorization; the Cray Fortran compiler will
accept a special dircclive, [VDEP, to that effect.

The above rather stringent rules seem to preclude the vectorization of many simple algorithms; for
example, the formula which we have given for total reduction, ic. /1/ above, clearly implics repeated

backward dependencies.

In order to obtain vectorizable versions of this and other algorithms, morc perspective is needed on
the "vector machine” and the operations it may perform.

3.2. An Abstract Model

Rather than studying at the scalar (e.g. Fortran) level what can be veetorized and what cannot, it is
preferable to provide a formal model of the machine at the appropriate level of abstraction. Ilere we con-
sider a vector computer as a virtual machine associated with an abstract data type, type V =

VECTOR |S}, and capable of performing a certain number of operations.

There is in fact probably no such thing as the vector machine, but rather various models adapted to
various applications. We thus tailor our specification to the problem at hand. Rather than giving a com-
plete formal description of the abstract data type “vector”, we concentrate on some useful operations and
their essential properties.

Operation Type Notation Properties

Zero Vv 0 All clements
Vector, zero.

Length V — Integer I

Access to

teger —> zBicenctte V x Integer s »,

Extension let z=0Ow:
of a Scalar ld=mingu Jul);

vxVvV=>y vOw

Operation

@

voy mw vy. for’> f,

Ofort= 1

Odd Part voy 0 Ou = vn

Even Part voy Ev Ey = wy;

Merge into . Let 2=

Odd and yxvoy alternate (o, w) alternate (v, w):

Keven Parts Oz=0;Ez=u

?-

On a vector computer such as the Cray-1, all the operations in the above table (except for “length”
and “access Lo clement” which require constant time) are “extension operations" which can be executed in
veelor mode. It should be noted, however, that some vector computer architectures may be more restric-
tive: the CDC Cyber 205, for instance, requires array elements to be contiguous, not just equally spaced,
so that operations such as "odd part”, “even part” and "merge" do not quality.

The above list of operations is by no means exhaustive; more complete lists may be found in eg.
8,7]. It should also be noted that for some applications it may be useful to introduce operations extract-
ing other “slices” than just the odd and even parts. The operations given here will suffice, however, for
our purposes,

Among the abstract properties of these operations which are particularly interesting are the follow:
ing (for any vectors v, w €

Ery = Ov if
Ow = rhe if

O(v@wv) = Ov@Qw fis
Elv@wv) = Bv@Ew — Jiv/
r(v@w) = wOw f/f

4, CYCLIC REDUCTION

‘The above properties, expressed at the vector rather than scalar level, provide the key to an efficient
solution of the total reduction problem /1/ by a veetor algorithm. The idea to be applied here is a very
fruitful houristics, using the concept of recursion and close to techniques such as “rcd-black ordering”
which can be applied to the development of several efficient vector algorithms.

In the "total reduction” equation

z=aQrz /i/

let us try to reduce the problem size by a factor of 2 by applying operators O and # (odd and even parts)
to both sides, yielding:

02 = O(a @ rz)

Ez = E (a@ rs)

ic. by epplying properties /i/ to fiv/:

Oz = 0a rEx /2f

Ex = Ea @0Oz 1

The intoresting fact here is that by substituting the value of Ez, as obtained from A3/, into /2/, and
using the associativity of @ combined with property /v/ above, we obtain a new equality:

Oz = (Oa @ rEa) @ rOz Al

Which is a new ingtance of the total reduction problem, applicd to the new vector variable Oz, a being
replaced by Oa @ ra, This new instance uses vectors of approximately half the size of the original ones.

We thus have the essential ingredients for an efficiont recursive algorithm, known as cyclic reduce
tion:

- for vectors of length 0 or 1, the result z will be just a:

+ Wor larger vectors, we apply the algorithm recursively, using formula /4/, to obtain Oz; formula
/3/ then yields Ez ;

- we obtain z by merging these two vectors (alternate operator).



&. PROGRAM DEVELOPMENT

5.1, First Procedural Version

The first version of the procedure is a dircct translation of the basic mathematical definition. We

use an Ada-like notation.

procedure total_reduction, (a:in VECTOR ; z: out VECTOR)

var oddpart, evenpart : VECTOR

begin

if lo < {then

a

else -- [a> 1

totaLreduction, (Oa rBa, oddpart) ;

cvenpart := Ea ® oddpart ;

zo alternate (oddpart, evenpart)

endif

end procedure - - lotal_reduetion,

The above version is correct but grossly inefficient for several reasons:

~ the procedure is recursive;

+ it has local vector variables (oddpart and evenpart) which must be allocated anew for each recur-
sive instance of the procedure;

+ it uses two parameters, an input @ and an output z, whereas in practice onc usually prefers to

work on a single vector, which is initially the input and will gradually be "iransformed" so as to

become the output (the initial value being saved if necessary).

We shall get rid of these sources of inefficiency through ® stepwise process. To make the successive

program transformations clearer, we underline in each version the elements which have been changed from

the previous version.

§.2. Removing Extra Variables

Our first transformation is a straightforward one, which gets us a little closer to our aim of working
on a single object (z): we note that it is harmless to begin the procedure by the assignment z := a in all

cases, not just when fa] < J (in the other case, this assignment will be overridden by the assignments to

the odd and even parts of z).

procedure total_reduetion, (a :in VECTOR ; z : out VECTOR)

var oddpart, evenpart: VECTOR

begin
‘Zipat ars

it{a|> 1then

total_reduction, (Oa @ rEa, oddpart) ;

evenpart := Ea @ oddpart ;

z -= alternate (oddpart, evenpart)

end if

end procedure - - total_reduction,
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The next simplitication ig to get rid of the local variables oddpart and evenpart by extending the

notation a little: we now allow assigning vector values directly to the sticcs Oz and Ez of » vector z. Vor

example, to change the cyen part of z to y, we shail just write

Escey

instead of

z= alternate (Oz, y)

With this new notation, the procedure can be simplified as follows:

procedure total_reduction, (ain VECTOR ; 2: out VECTOR)

begin

za;

if | > 1 then

total_reduction, (Oa @ rEa, Oz ) ;

Ex Ea @ 07;

end if

end procedure - - totalreduction,

The next obvious step towards the goal of working wilh only one vector variable is to replace all

occurrences of @ with z after the initial assignment z := a. We have to be very careful here: in the pro-

cedure resulting from such a transformation, the same vector z will be used as both an in and out actual

parameter of the recursive call. It should be noted that Hoare’s specification of the semantics of recursive

procedures [12] specifically excludes this case.

The replacement will be correct, however, if for the time being we assume a copy mechanism for

parameter passing. In other words we take in to mean “parameter passed by valuc", i.e. copicd upon each

procedure call into a variable local to the proccdurc instance; and we take out to mean “parameter

passed by result”, i.e. copied back, on procedure return, from the local variable. To avoid any confusion

resulting from the fact that we are using an Ada-like notation, it should be noted that this mode of

parameter passing is nof the normal Ada mechanism for in and out parameters.

procedure total reduction, (a :in VBOTOR ; =: out VECTOR)

begin

risa;

if [iq > 1 then

total reduction, (0 2@ rE z, Oz);

Ex := Ez@ Or;

end if

end procedure - - ial reduction,
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5.3. Isolating the Recursion

It is useful now to separate the procedure into two parts: one which uses the initial vector a and one

which does not, To this effect, we transform the procedure into a sct of two mutually recursive pro-

codures, only Une first of which depends on a; the second one, called internal part,, has only z asa param-

ctor, of mode in out. Again, this is correct only if we assume a copy mechanisin for parameter passing,

ie. an in out parameter is copied to (at call time) and from (nt return time) a variable local to Lhe pro-

cedure instance.

Procedure total_reduction, (a :in VECTOR ; x : out VECTOR)

begin

za;

internal part, (2)

end procedure - - total_reducti

procedure internal part. (2 in out VECTOR)

begin

if | > {then

totel_reduetion, (Oz @ rEz, Oz) ;

Ex = Er Or;

end if

end procedure - - internal_part,

We can now isolate the recursion by expanding the call to tolal_reduction in internal_part. The

effect of this call is to assign the value of the first parameter to the second and to call internal_part recur-

sively. By carrying out this expansion, we get tid of the mutual recursion introduced in the previous step:

in the new version, only internal_part will be (directly) recursive; total_reduction remains useful for initiali-

zation only.

procedure fotal_reduction, (a :in VECTOR ; 2: out VECTOR)

begin

24;

internal_part, (2) ;

end procedure - - total_reduction,

procedure internal_part, (2: in out VECTOR)

begin

if |q > f then

Ore Orbs,

internal part, (Oz) ;

Er := Bx Oz;

end if

end procedure - - internal_part,

-Ule

5.4. Introducing an Integer Parameter

The remarkable feature of the recursive scheme which we have obtained is that the recursive call

as a single and simple actual parameter, Oz, where the formal parameter was z. Thus Uke sequence

wal parameters in successive recursive calls, starting with the initial call from total_reduction,, witl

z=, Or, 0*s,...,0TM2,

where O *s (k > O)is the k-th iterate of O. The value of the exponent for the innermost call is

-n)

(hore and in the sequel, logarithms are in base two; for nny real number z, [2] denotes the floor of z, i.
the greatest integer n such that n < 2).

m= 1 + [log (ha

This remark suggests @ new version in which the explicit parameter to le recursive part is not z

itself any more, but k, the number of times operator O must be iterated. OF course all instances of Ute

recursive procedure must be able lo work on 2; thus we make za variable global lo the recursive pro-

cedure. To this end we make procedure internal_part local Lo the non-recursive procedure totel_reduction.

procedure total_reduction, (a:in VECTOR ; z : out VECTOR)

var m:NATURAL, -

procedure internal part, (k:in NATURAL)

~~ local to total_reduction,

. non-negative integer ;

begin

if k< mthen

o'r =0se@rBO*:;

internal part, (kt) ;

coks=£0"'2@0's;

end if

end procedure - - internal_part,

begin - - total_reduction,

internal_part, (1) ; == initial parameter t9 one

end procedure - - total_reduction,
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5.5. Removing the Recursion

‘These procedures can be further simplified. ‘The body of procedure internal_part, is of the form

if kS mthen

Us

internal_part, (+1) ;

Dy
end if

where U, is the statement

O'::=0'r@rE0*'s

and D, is the statement

£0*'z = EOTM'2@ 0%

Thus the execution of the successive recursive calls amounts to a traversal of Lhe following tree in the

order indicated by the dotted line, i.e. the successive execution of

Uy Uy on Un Day Dg.pr oe Dy Dy

where m= [1+og ({e} —1)J. Note that there is one more instance of D, than of U, since U is a null
statement,

internal_part (1)

&

| internal_part (2)

U,

t

2

internal_part (m-1}

1
1

internal. part (m)

D

D,

i
1

1

'

D,

D
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Thus no recursion is needed after all: the body of procedure totalréduction, may be readily

represented by

up ; down

whore up and down are two simple ioops:

<= up:

for k = 1tom-1do

end for ;

- + down:

for k := m downto f do

Be
end for ;

(tho mnemonics used for the loops reflect the fact that the index & gocs up in the first loop and down in

the second one).

It is particularly interesting to note that, although the recursion initially seemed quite necessary, it

has heen completely removed. The above version is truly non-recursive in that it does not seein to contain
any hidden recursive feature, for example a stack lurking in the guise of an integer representing an array

of binary values as in some iterative implementations (see e.g. [I4]) of the Tower of Hanoi, Quieksort, the

Deutsch-Schorre-Waite tree traversal algorithtn etc.

6. A SCALAR, VECTORIZABLE VERSION

6.1. The Program

It is useful to write U, and D, in a form which is closer to how they would be expressed in an ordi-
1) programming fangunge, but still easily amenable to autoniatic veevorization. We definenary (seal

slice (low, high, step)

where low, high and step are integers such that low < high and step > 0, ns the sot of all intogers of the
form

low + k*step

which fall into the range low ..high. Then U, and D, can be written as follows:

--U, (ie. O's = O's @r £0“)

forall vin slice (t+ 2, |ol, 2*) do

2fif@zfi-2*!)zfif=

end forall

++ D, (ve. BO *'z = EO *1,0 0"):

forall iin slice (1+ 2*', Jal, 2*) do

2 ff 2 @2fi-2*!)
end forall
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We have.used the notation forall ... in ... to emphasize the fact that the above are paratlel loops:
on a veelor processor, all the vector operations corresponding to an instance of U, or D, ean be performed

simultancously.

Note that the backward dependencies in these loops are only “apparent” in the sense of section 3.1 :
since hoth loops are low-level translations of vector operations (U; and D;, kept as comments in the
above code), the expected interpretation is the vector one (which anyway turns out to be identical to the
sequential loop semantics in this case). Thus if a conservative vectorizer such as the Cray Fortran Trans-
lator inhibits vectorization of these loops because of the apparent dependencies, the programmer should
override the inhibition.

n of lotalreduction whick integrates the various improvements
achieved so far. This version would be readily vectorizable by any simple vectorizer (such ag CFT, the
Gray Fortran Translator, on the Cray-1). A further simplification is obtained by using variables step and
half_step, corcesponiing to 2* and 2" respectively, in licu of k

Below is a non-reeursive vei

procedure total reduction, (a:in VECTOR ; 2: out VECTOR)

var step, half_step : NATURAL ;

size : NATURAL ; - - size will stand for lo

fo ;

forall iin slice (t, size, 1) do

thf=ofif;

end forall ;

step = 2; half_step = 1 ; - - This corresponds to k

while step < size do - - U,

forall iin slice (1 + step, size, step) do

aff 2 [i] @ z fi - half_step]

end forall ;

half_step tep ; step = 2 * step

end while ;

++ here {1 < half_step < size < step = 2*half_step}

while step > Ido - - D,

forall iin slice (1 + half_step, size, step) do

3 /if = 2 fi] @ 2 /i- half-otep/

end forall ;

step i= half_step , half_step = half_atey /2

end while

end procedure - - totalreduetion,

6.2. A Timing Diagram

The diageam below may be helpful it vis

of the procedure. It applies to the

represents Lime. Execution of the ope!

2 fil = 2/i] @ 2 fi}

al Lime tis pictured as

izing the operations performed on = during an execution

lal = 9. The clerments are represented horizontally; the vertical axis
tion

Elements: i i

t p—~

The two main loops {"up" and “down"} appear clearly on the diagram: the first one ix executed in
steps | to 3, the sceond one in steps 4 to 7.

It is interesting to note that this diagram follows directly from the non-recues

cedure; it can also be deduced from the initial recursive version (by expanding the
deduction is much more difficult.

ve version of Ube pro-

graph), but the

Elements: 1 2 3 4 5 6

——~_|

t=4 )-—~

Note that there i

nent method has not captured

tninor possibility for extea parallelism, between steps t and 8, that our develop=

needed for total reduction of a vector a using eyelic reduction on the Gray ix approxitna:

2%(ra1)U + (24(n—1) — 2) *V



- 16-

where r = Llog (J@[) |. This time should be compared to tei, =(n—-1) *S for the trivial algorithm (con-
stants U, Vand S$ were introduced in section 3.1). For the Cray, the cutoll point at which cyclic reduction

becomes more efficient is approximately |a] = 40.

7, AN ADA VERSION

Below is an implementation of the algorithm as an Ada function, embedded in a generic package.

The following points are worth noting:

+ the gencric mechanism of Ada provides a way to write lhe package so that it can be applied to

various cases; the same generic package can have many inslances depending on what the type

SCALAR and the "+" operation, which corresponds to the operation written @ above, arc chosen to

be: for instance the type INTEGER and integer addition, a matrix type and matrix multiplication,

etc.

- The Ada generic mechanism is Nexible but strictly syntactical: Lhc language provides no way to

specify that the actual generic parameters must have predefined semantic propertics, for instance

that "+" must be associative. A language such as LPG (Language for Gencric Programming, (4])

makes it possible to impose such conditions on gencric parameters.

- Procedure ADD_TO_VECTOR is the one which performs the vector operations (corresponding to

U_and D, as defined above}. These operations must be expressed in sealar form, using loops {for ...

in ... loop ... end loop). Thus on a veetor computer an Ada program such as this one will require

the intervention of a vectorizcr, similar to those which exist for Fortran (c.g. CFT on the Cray-f), in

order to take advantage of the vector computation facilities of the hardware.

- The loop in procedure ADD_TO_VECTOR sccms to involve a backwards dependency. [lowever,

this is only an apparent dependency, as defined in section 3.1, since the loop updates s and uses s -

offset, but these two slices are disjoint whenever affset # s.step; which iy the case for the two calls to

ADD_TO_VECTOR in the package. This implies, however, that a vectorizing Ada compiler would

still have to provide some kind of "vectorize at any risk” dircetive similar to Cray Fortran's [VDEP.

The fact that vector programmers should still resort to such low-level and error-prone techniques in

Ada is all the more disappointing that Ada comes close to providing adequate notations for true vector

programming: it has vector operations such as vector assignment (used below in the initializing statement

z:=aof function TOTAL_REDUCTION) and the notion of slice; however, an Ada slice must be a con-

tiguous subarray, whereas the slices which we nced here are not contiguous, which is why we must use

loops.

On the other hand, a language such as Actus {16], explicitly designed for use on vector computers,

readily allows for non-contiguous slices, but lacks the generic facility of Ada,

generic

type SCALAR is private ;

with function "+" (X, Y : SCALAR} return SCALAR is <> ;

package CYCLIC_REDUCTION is

type VECTOR is array (NATURAL range <>) of SCALAR ;

function TOTAL_REDUCTION (a : VECTOR) return VECTOR ;

private

type SLICE is record low, high, step : NATURAL end}

end CYCLIC_LREDUCTION ;

a ies

package body CYCLIC_REDUCTION is

procedure ADD_TO_VECTOR (x : in out VECTOR ;

s:in SLICE

offset :in NATURAL)

--z(s) i= 2(s) +2 (s- offset)

bottom : constant NATURAL = s.low ;

top : constant NATURAL := s.htgh ;

stride ; constant NATURAL := s.step ;

last : constant NATURAL := (top - bottom) / stride ;

begin

for tin 0..last do

z (bottom + t*stride) := z (bottom + i*siride) + z (bottom + i*stride - offset)

end for ;

end ADD_TO_VECTOR ;

function TOTAL_REDUCTION (a : VECTOR) return VECTOR is

imitial s conatant NATURAL := a’FIRST ;

final : constant NATURAL := a’LAST ;

stze: constant NATURAL := inttial - final + I ;

zr: VECTOR =a;

step; NATURAL := 2; half_step : NATURAL -= 1;

begin

UP:

while step < stze loop

ADD_TO_VECTOR (z, (inttial + step, final, step), half_step) ;

half_step := step ; step := 2 * step:

end loop UP ;

~ + here {1 < half_step < stze < step = 2*half_step}

DOWN:

while step > {loop

ADD_TO_VECTOR (z, {inttiel + half_step, final, step), half_step) ;

step := half_step ; half_step := half.step / 2;

end loop DOWN ;

return z;

end TOTAL_REDUCTION ,;

end CYCLIC_REDUCTION ;
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8. CONCLUSION

Transformational programming has been advocated by soveral authors, e.g. ‘{1,2,9,3,8).

Whereas other researchers in software design methodology prefer a more direct approach to the syn-

thesis of programs from spceilirations [10,11]. Aluhongh we do not wish to enter this debate here,

the derivations oblained in this paper may bring some interesting elements.

Even though the sequence of transformations necded to produce the final program may seom
overly long and complex, we do not know of any other rigorous way to derive that program. We

would be interested to learn of a more dircct argument, if there is one.

On the other hand, it is not clear lo us whether any of the existing program transformations

systems (whore the term “system” is taken to denote coherent sets of tools and/or methods) may

indeed support the transformations d wribed here.

In any case, we feel that the development presented here is another example of the need for

applying systematic bechniques Lo the design of vector programs, [fective supercomputer program:

ming requires a wide range of modern software engiacering techniques; program (ransformation may

be one of them.
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On Formalism in Specifications.

Bertrand Meyer, University of California, Santa Barbara

A critique of a natural-language specification, Pecification is the software life-
followed by presentation of a mathematical cycle phase concerned with precise

alternative, demonstrates “¢finition of the tasks to be performed
= the weakness of by the system. Although software en-

. gineering textbooks emphasize its ne-

natural language cessity, the specification phase is often
and the strength overlooked in practice. Or, more pre-

of formalism cisely, it is confused with either the
in requirements preceding phase, definition of system
specifications. Objectives, or the following phase, de-

. sign. In the first case, considered here

in particular, a natural-language re-
j quirements document is deemed suf-

t ficient to proceed to system design—

without further specification activity.

This article emphasizes the draw-

backs of such an informal approach
and shows the usefulness of formal

specifications. To avoid possible mis-
understanding, however, let’s clarify

One point at the outset: We in no way

advocate formal specifications as a
replacement for natural-language re-

quirements; rather, we view them as a

complement to natural-language de-

scriptions and, as will be illustrated by

an example, as an aid.in improving the

quality of natural-language specifica-

tions.

Readers already convinced of the

benefits of formal specifications might
find in this article some useful argu-
ments to reinforce their viewpoint.

Readers not sharing this view will, we

hope, find some interesting ideas to
ponder,

pa ae aie 2

The seven sins

of the specifier

The study of requirements docu-

ments, as they are routinely produced

in industry, yields recurring patterns of

0740-7459/85/0001/0006S01.00 © 1985 IEEE. IEEE SOFTWARE



deficiencies. Table | lists seven classes

of deficiencies that we have found to

be both common and particularly

damaging to the quality of require-

ments.

The classification is interesting for

two reasons. First, by showing the pit-

falls of natural-language requirements

documents, it gives some weight to the

Requirements \

t Specification \

The iN Global
software ~~ DESIGN --4
life cycle Detailed | \y

This “water- ‘
fal| model” of the

software life cycle

Implementation

\
originated with W. W.

Royce (‘Managing the

Development of Large Soft-
Validation

'ware Systems: Concepts and ‘

Techniques,” Wescon Proc., Aug.

1970), but many varlants have been .
published. A well-known one is in

Boehm (1975). The IEEE Standard on Soft-

Distritbution \

\

thesis that formal specifications are

needed as an intermediate step be-

tween requirements and design, Sec-

ond, since natural-language require-

ments are necessary whether or not

one accepts the thesis that they should

be complemented with formal specifi-

cations, it provides writers of such re-

quirements with a checklist of com-

mon mistakes. Writers of most kinds

of software documentation (user man-

uals, programming language manuals,

etc.) should find this list useful; we'll

demonstrate its use through an exam-

ple that exhibits all the defects except

the last one.

Arequirements document
The reader is invited to study, in

light of the previous list, some of the

software documentation available to

him. We could do the same here and

discuss actual requirements docu-

ments, taken from industrial software

projects, as we did in a previous ver-

sion of this article,! But such a discus-

sion is not entirely satisfactory; the

reader may feel that the examples cho-

sen are not representative. Also, one

sometimes hears the remark that noth-

ing is inherently wrong with natural-

language specifications. All one has to

do, the argument continues, is to be

January 1985

ware Quality Assurance (Standard P732) also Operation

defines a variant.-

Table 1.

The seven sins of the specifier.

Noise: The presence in the text of an element that does not
carry information relevant to any feature of the

problem. Variants: redundancy; remorse.

Silence:

not covered by any element of the text.

Overspecification: The presence in the text of an element that cor-

responds not to a feature of the problem but to

features of a possible solution.

Contradiction: The presence in the text of two or more elements

that define a feature of the system in an incompati-

ble way.

Ambiguity: The presence in the text of an element that makes it

possible to interpret a feature of the problem in at

least two different ways.

Forward reference: The presence in the text of an element that uses

features of the problem not defined until later in

the text,

Wishful thinking:

with respect to this feature.

The existence of a feature of the problem that is

The presence in the text of an element that defines

a feature of the problem in such a way that a can-

didate solution cannot realistically be validated

careful when writing them or hire peo-

ple with good writing skills. Although

well-written requirements are obvious-

ly preferable to poorly written ones,

we doubt that they solve the problem.

In our view, natural-language descrip-

tions of any significant system, even

ones of good quality, exhibit deficien-

cies that make them unacceptable for

rigorous software development.

To support this view, we have cho-

sen a single example, which, although

openly academic in nature, is especial-

ly suitable because it was explicitly and

carefully designed to be a “‘good””

natural-language specification. This

example is the specification of a well-

known text-processing problem. The

problem first appeared in a 1969 paper

by Peter Naur where it was described

as reproduced here in Figure |

Naur’s paper was on a method for

program construction and program

proving; thus, the problem statement

in Figure 1 was accompanied by a pro-

gram and by a proof that the program

indeed satisfied the requirements.

The problem appeared again in a

paper by Goodenough and Gerhart,

which had two successive versions.

Both versions included a criticism of

Naur’s original specification.

Goodenough and Gerhart'’s work

was on program testing. To explain

why a paper on program testing in-

cluded a criticism of Naur's text, it is

necessary to review the methodologi-

cal dispute surrounding the very con-

cept of testing. Some researchers dis-

miss testing as a method for validating

software because a test can cover only

a fraction of significant cases, In the

8

Formalism

words of E. W. Dijkstra,? “Testing

can bea very effective way to show the

presence of bugs, but it is hopelessly

inadequate for showing their absence.”

Thus, in the view of such critics, tes-

ting is futile; the only acceptable way

to validate a program is to prove its

correctness mathematically.

Since Goodenough and Gerhart

were discussing test data selection

methods, they felt compelled to refute

this a priori objection to any research

on testing. They dealt with it by show-

ing significant errors in programs

whose “proofs” had been published.

Among the examples was Naur’s pro-

gram, in which they found seven er-

rors—some minor, some serious.

Goodenough and Gerhart

found seven errors—some

minor, some serious—in

Naur’s program.

Our purpose here is not to enter the

testing -versus-proving controversy.

The Naur-Goodenough/Gerhart prob-

lem is interesting, however, because it

exhibits in a particularly clear fashion

some of the difficulties associated with

natural-language specifications. Good-

enough and Gerhart mention that the

trouble with Naur’s paper was partly

due to inadequate specification; since
their paper proposed replacement for

Naur’s program, they gave a corrected

specification. This specification was

prepared with particular care and was

changed as the paper was rewritten.

Apparently somebody criticized the

initial version, since the last version

contains the following footnote:

Making these specifications precise is

difficult and is an excellent example of
the specification task. The specifications
here should be compared with those in
our original paper.

Thus, when we examine the final

specification, it is only fair to consider

it not as an imperfect document writ-

ten under the schedule constraints

usually imposed on software projects
in industry, but as the second version

of a carefully thought-out text, de-

scribing what is really a toy problem,

unplagued by any of the numerous

special considerations that often ob-

scure real-life problems. If a natural-

language specification of a program-

ming problem has ever been written

with care, thisis it. Yet, as we shall see,

it is not without its own shadows.

Figure 2 (see p. 11) gives Good-
enough and Gerhart’s final specifi-

cation, which should be read carefully

at this point. For the remainder of this

article, numbers in parentheses—for

example, (21})—refer to lines of text as

numbered in Figure 2.

Analysis of the specification

The first thing one notices in look-

ing at Goodenough and Gerhart’s

specification is its length: about four

times that of Naur’s original by a sim-

ple character count. Clearly, the au-

thors went to great pains to leave noth-

ing out and to eliminate all ambiguity. *

As we shall see, this overzealous effort

actually introduced problems. In any

case, such length seems inappropriate

1EEE SOFTWARE
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. for specifying a problem that, after all,

looks fairly simple to the unprejudiced

observer.

Before embarking on a more de-

tailed analysis of this text, we should

emphasize that the aim of the game is

not to criticize this particular paper;

the official subject matter of Good-

enough and Gerhart’s work was test-

ing, not specification, and the pre-

scription period has expired anyway.

We take the paper as an example be-

cause it provides a particularly com-

pact basis for the study of common

mistakes.

Noise. “‘Noise”’ elements are identi-

fied by solid underlines in Figure 2.

Noise is not necessarily a bad thing in

itself; in fact, it can play the same role

as comments in programs. Often, how-

ever, noise elements actually obscure

the text. When first encountering such

an element, the reader thinks it brings

new information, but upon closer ex-

amination, he realizes that the element

only repeats known information in

new terms, The reader must thus ask

himself nonessential questions, which

divert attention from the truly difficult

aspects of the problem.

Here, a fraction of a second is needed.

to realize that a “‘nonempty sequence”

of characters (8) is the same thing as

“one or more’’ characters (9). These

two expressions appear within a line of

each other; the authors’ aim was, pre-

sumably, to avoid a repetition. One is

indeed taught in elementary writing

courses that repetitions should be

avoided, and no doubt this is a good

tule as far as literary writing is con-

January 1985

Given ate parated by BLANKS or by NL (newline)
‘characters, convert it to aline-by-line form inaccordance with the following
rules: "8 wigeetal ays rqeanes seatit Jon Din agi tearing ahd

\(1) line breaks must be made oniy where the given text has BLANKorNI

~02) each line is filled as far as possible, as long as 1s

»,(@) no line will contain more than MAXPOS characters
iealted ta

Figure 1. Naur’s original statement of a well-known text-proc

Peter Naur,

250-258.
; 1969, pp.
oid iss

Payotag. of

John B. Goodenough and Susan Gerhart, ‘Towards a ‘Theory of Test Data”
Selection,” Proc. Third Int'l Conf. Reliable Software, Los Angeles, 1975, pp.
493-510. Also published in JEEE Trans, Software Engineering, Vol. SE-1, No.
June 1975, pp. S613. oe ate :

Revised version, Goodenough and Gerhai ait etbrinte

John B. Goodenough and Susan Gerhart, “Towards a Theory of Test: Data
Selection Criteria,” in Current Trends in Programming Methodology, Vol. 2,
‘Raymond T. Yeh, ed., Prentice-Hall, Englewood Cliffs, N.J. 29,

Another paper that uses the same problem as an example: “3, ssye fein.
Glenford J. Myers, “A Controlled Experiment in Program Testing and
Walkthroughs/Inspections,” Comm, ACM, Vol. 21, No. 9, Sept.,1978,
760-768. : bias pe ay

“Programming by Acti
oe ay

ion Clusters,” BIT, Vol. 9, Nos
6

cerned. In a technical document, how-

ever, the rule to observe is exactly the

opposite—namely, the same concept

should always be denoted by the same

words, lest the reader be confused.

An interesting variant of noise is

remorse, a restriction to the descrip-

tion of a certain specification element

made not where the element is defined
but where it is used, as if the specifier

suddenly regretted his initial defini-

tion. An example here is “the output
text, if any’” (20). Up to this point, the

specification freely used the notion of

output text (12,17); nowhere was there

any hint that such a text might not ex-

ist. If the reader wondered about this
problem, the specification did not pro-

vide an answer. Now, suddenly, when

the discussion is focusing on some-

thing else, the reader is ‘‘reminded’*

that there might be no such thing as an
Output text, but no precise criterion is

given as to when there is and when
there isn’t.

Another instance of remorse is the

late definition of the “line”? concept
(24), to which we will return. We will
meet again the tendency to say too
much, which generates noise, as a

source of contradiction and ambiguity,

Silence. In spite of all his efforts, the
specifier often leaves, along with over-
documented elements, undefined fea-
tures. Commonly, these features are

faicly obvious to a community of ap-
plication specialists, who are close to
the initial customers, but they will be

more obscure to those outside this cir
cle. An example is the concept of
“line,” which is not really defined ex-

10

cept in a parenthetical bit of remorse

toward the end of the text (24), where it

is described as a sequence of characters

“between successive NL characters.””

(By the way, are those characters part

of the line?)

An interesting point here is the cul-

tural background necessary to under-

stand this concept. In ASCIl-oriented

environments, ‘New Line” is a char-

acter; thus, people working on ASCII

environments (DEC machines, for ex-

ample) will probably understand easily

the specification’s basic hypothesis

—namely, that NL is treated as an or-

dinary character upon input but trig-

gers a carriage return upon output.

These concepts are foreign, however,

to somebody working in an EBCDIC

environment, especially on IBM OS

systems, on which files are made up of

a sequence of “‘records”’ (correspond-

ing, for example, to lines), each made

up of a sequence of characters. A per-

son coming from such an environment

would not have written the above speci-

fication and will probably have trouble

understanding it.

Besides, the late definition of line is

plainly wrong. It applies only to lines

that are neither at the very beginning

nor at the very end of the text. In both

these cases, a line is not ‘between suc-

cessive NL characters” but between

the beginning of the file and an NL, or

between an NL and the end of the

file—that is, between an NL and an

ET. If we accept the authors’ defini-

tion, the first and last lines of the out-

put may be of arbitrary length; in fact,

an output containing no NL ataillisac-

ceptable regardless of its length, since

it does not have lines according to the

definition given! This is obviously ab-

surd and not what the authors had in

mind, but the use of natural language

leads naturally to such slips of the pen.

Another interesting silence concerns

the variable Alarm. Line 16 specifies

that this variable should be set to

TRUE in case of an error, but nothing

is said about what happens to it in

other cases. The answer is obvious, of

course; but the matter can only be

brushed aside as minor by program.

mers who have never run into a bug

due to an uninitialized variable. . .

It must be pointed out that Good-

enough and Gerhart corrected a nota-

ble silence in Naur’s original descrip-

tion. Naur’s text does not explain what
should be done with consecutive groups

of more than one break character; this
is one of the seven errors analyzed in

Goodenough and Gerhart’s paper,

Their specification’ corrects it by re-

quiring that such groups be reduced to

a single break character in the output.

Although something had to be done

about the problem, note that this solu-
tion is, to some extent, obtained at the

expense of simplicity. Eliminating re-

dundant break characters and dividing

atext into lines aretwo unrelated prob-

lems; merging them into a single specifi-

cation complicates the whole affair,

It is probably better to deal with

these two requirements separately, and

this is what we do in the formal

specification given below. Some of the

current trends in programming meth."

odology emphasize this approach—

most notably under the influence of

the Unix programming environment,

IEEE SOFTWARE
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which, at least in principle, favors

tools that are simple and composable

rather than large and multipurpose.

Contradictions. There is another

problem with the concept of line.

Given a type #, one should distinguish

between the types seq[t}], whose ele-

ments are finite sequences of objects of

type ¢, and seq [seq [‘]], whose ele-

ments are sequences of sequences of

Objects of type ¢. Such a confusion can.

be found in Figure 2, where weare first

told (1) that the inputis a “stream,” or

sequence, of characters and later (10)

that it “can be viewed’’ as a sequence

of words and breaks. As any Lisp pro-

grammer knows, the sequences *

<abacca>

[sequence of objects]

and

<<a> <ba> <cca>>

[sequence of sequences of objects]

are not the same. Note that the same

problem with respect to the output is

redeemed only by ambiguity; the type

of the output is not clear:

© Is it seq [CHAR] as (21-22) seems

to imply?

* Is it seq [WORD]|—that is, seq

[seq [CHAR]}—as (12-13) in-

dicates?

© Orisit even seq [LINE] —that is,

seq{seq[seq{CHAR]]}—if we con-

sider a line asa sequence of words

and breaks?

Thus, a sentence that at first appears.

to be only noise (9-11) yields a con-

tradiction within a few lines (13-14):

“The program's output should be the

same sequence of words as in the in-

January 1985

19

20

24

22

23

24

25

26

The program's input is a’Stream of characters whose end is

signaled with a special end-of-text character, ET. There |s exactly |
character in each Input stream. Characters are classified

t
break is a sequence of one or more break characters. Thus, the’

wed as a Sequence of wordsInput can be vi

with possibly leading an

The program's output should be the same Sequence of words:

ah 7
as in the input, with the exception that an. oversize word (i.¢., a

word containing more than MAXPOS characters, where MAXPOS,
7

\s a positive integer) should cause an error exit from the program
7

(Le., a variable, Alarm, should’have the value TRUE).’Up to the
Se z 1,
point of an error, the program's output should have the following

properties: oo .

should start only between words and at the be-1.4 new |

Ginning of the output text, if any.

2.4 break in the input is reduced to a single break character in

in the output.

3. As many words as possible should be placed on each line

(i.¢., between successive NL characters).

4, No tine may contain ‘more than MAXPOS characters (words
and BLs).

Figure 2, Goodenough and Gerhart's final speci tion of the original prob-

lem statement in Figure 1. Analysis of this text, overprinted in blue, is accord-

ing to the following key:

Noise

Remorse

Contradiction —

Ambiguity SZ
Overspecification

Forward reference

1

put.” This last comment is remarkable

since neither the input nor the output
is a sequence of words. Worse yet,
even if we parse the input into a se-
quence of words, this sequence is not
sufficient to determine the output—
one also needs two binary informa-

tions: whether there isa leading and/or
a trailing break.

The same sentence (9-11), in its
overzealous effort to leave no stone
unturned, ends up introducing another

contradiction. An. unbiased reader
would be puzzled. How can the input
“end with [the character) ET’? (1 i
and at the same time have a “trailing
break” (11)? “Trailing,” precisely,

means “‘at the end’’! What’s the last
character if there is a “trailing” break:
ET or a break character?

A more experienced reader, such as

@ programmer, will have no difficulty

resolving this contradiction; his ex; ‘peri-
ence will tell him that “‘end”” markers
follow “trailing’’ characters. But this
reliance on intuition and knowledge of
the application domain can be par-
ticularly damaging when transposed to
large requirements documents, which
will be handed down to a group of
system designers and implementors of

diverse backgrounds and abilities.

Overspecification. Overspecifica-
tionin requirements can be annoyingly
close to silence. The reader is told too
much about the solution while he is
desperately trying to grasp the ‘problem
and figure out—by himself—features
not covered by the text. Overspecifica-

tion is typically, although certainly not
exclusively, found in requirements

12

documents written by programmers.
Psychologically, this is understand-
able. Animplementation-level concept
is good, concrete, technical stuff,
whereas true requirements deal with
much less tangible material. To a com-
puter specialist, a stack is easier to
visualize than, say, the flow of infor-
mation in a company or the needs of a
tadar operator. Thus, many specifiers
have a natural tendency tocling to pro-
gramming concepts. There is a price to
pay for this: Implementation decisions
taken too early may turn out to be
wrong, and important problem fea-

tures can be overlooked.

The example text contains an over-

specification right from the first
sentence: the notion of the end-of-text

character ET. The only reason for the
presence of this notion is Goodenough
and Gerhart’s desire to correct Naur’s
original program. Input-output facili-
ties of the version of Algol 60 used by
Naur (and, for fairness, by Good-
enough and Gerhart) do not provide

for end-of-file detection when reading,
so One must assume the presence of a

special character at the end of the file
to make up for this deficiency. But ET

isan implementation detail and should
not be included in an abstract specifi-
cation. Conceptually, the input is a fi-
nite sequence of characters; it should
be transformed into an output that is a
sequence of lines or, depending on the

interpretation chosen, a sequence of
characters. It is a programmer's vice to
insist that finite sequences be specially
marked at the end.

Why does the ET character receive

such emphasis in Goodenough and

Gerhart’s specification? The reason is

one of the errors in Naur’s original

program, which would go into an in-

finite loop unless the input was incor-

rect (that is, contained an oversize

word). Upon closer examination, how-

ever, a case can be made for Naur’s

solution (without the other errors, of

course). It is not so unrealistic to con-

sider the required program as a poten-

tially infinite process, which takes

characters as input and produces lines

as output, working somewhat like a

device handler (for instance one that

drives a printer) in an operating sys-
tem. Such an interpretation should, of

course, be clearly described in the

specification, which was not the case

with Naur’s text. That decision would

be less arbitrary than the one taken by
Goodenough and Gerhart: their inclu-

sion of ET changes the data structure

at the specification level to accom-
modate the programming language
used at the implementation stage.

‘The unacceptability of the change is

further evidenced by the fact that the

Output does not satisfy the require-

ment on the input. Is it realistic to ex-

pect an existing file to be terminated by

an explicit marker? If it is, the output
produced by the program should satis-

fy Unai condition; however, examina-
tion of the specification, which is not
completely clear on this matter, and,

as a final criterion, of the proposed
program, shows that ET will nor be

passed on to the output file. Assume
that we want to write another pro-
gram, for, say, right-justifying the

text, that will take Goodenough and

Gerhart’s output (in “‘pipe’” mode a la
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Unix). In designing that program, we

will not be able to make the same

assumption on its input. Thus, the

overspecification has opened the way

to serious inconsistencies.

Another overspecification in the

text is the concept of ‘‘error exit”” (16),

which causes a ‘‘variable,”’ Alarm, to

have the value TRUE. Clearly, the no-

tion of a variable belongs to the world

of programs, not specifications. This

piece of overspecification would have

been less shocking if the problem had

been defined as the task of writing a

procedure, with Alarm as one of its

parameters, or as one of the ‘“‘excep-

tions’ (in the sense of Clu or Ada) it

might raise. A variable is internal to

the program unit to which it belongs,

whereas the specification of a param-

eter or an exception can be given rela-

tive to the environment of that unit.

The problem of the Alarm variable

is less innocuous than it seems. One

reason for shock at meeting the refer-

ence to this variable in a sequential

reading of the text is that the definition

of the error case (the onein which there

is an oversize word) looks like over-

specification until one sees the fast sen-

tence (25-26), 10 lines down, which

gives the basic line-size constraint,

MAXPOS. The world is really stand-

ing upside down here. Clearly, the

constraint on word size is a conse-

quence of the constraint on line size,

and the definition of the error case

cannot be understood until the latter

constraint has been introduced.

We see here one of the major defi-

ciencies plaguing requirements docu-

ments of more significant size: early
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inclusion of detailed descriptions of er-

ror handling, interwoven with descrip-

tions of normalcases, which are usual-

ly much‘simpler. Here the matter is

even worse; error processing is de-

scribed before the reader has had a

chance to recognize the problem —that

is, before gaining an understanding of

normal processing. Failure to clearly

separate normal cases from erroneous

ones makes the document much harder

to understand.

Mathematically, a program that

performs an input-to-output transfor-

mation often corresponds to the im-

plementation of a partial function,

which is not defined for some argu-

ments of the input domain. Error pro-

cessing then consists in ‘‘completing””

the function with alternate results,

such as error messages, for those

arguments. This completion should

not be confused with the definition of

the function in its normal cases. Here,

as we'll see later in a formal specifica-

tion, failure to accommodate words

larger than MAXPOS is a conse-

quence of the requirements for normal

processing, which can be proved, as a

theorem, from the definition of the

function.

Ambiguities. Error processing raises

an ambiguity in the example text (Fig-

ure 3). The requirement that the out-

put text satisfy properties 1 to 4 “upto
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the point of an error’’ is susceptible to.

at least two interpretations.

The text says that up to (and pre-
sumably including) the point of the er-

ror, the program’s output should cor-

tespond to the input. But where is the

“point of the error’ in Figure 3? Is it
{line 4, column 10], last acceptable let-
ter, or (3, 7], end of the last acceptable

word? Nothing in the text allows the

reader to decide between these two in-
terpretations.

Another interesting ambiguity is

connected with the basic constraint on

acceptable solutions (23): “As many

words as possible should be placed on

each line.” If we have, say, MAXPOS

= [0 and the input text

WHO WHAT WHEN

there are two equally correct two-line
solutions (WHAT may be on either the
first or second line}. This ambiguity

may be acceptable since neither solu-

tion appears superior to the other; the
specification as such is nondeter-

ministic. We suspect (perhaps wrong-

ly) that this nondeterminism was not
intentional and that there was an im-
plicit overspecification in the authors?
minds: they considered it obvious that

the input would be processed sequen-
tially, so any ambiguity, as in the ex-
ample above, would be solved by plac-

ing as many words as possible on the

earlier line (giving line WHO WHAT.

followed by line WHEN). In this inter-
pretation, property 3 (23-24) actually

means, “As many words as possible

should be placed on each line as it is
encountered in the sequential con-

Struction of the output.” If this is the

14

case, the specification should state it

precisely.

Another potential source of am-

biguity is the use of imprecise or poorly
defined terms—for example, the use

of “stream” (1) rather than the more

standard ‘“‘sequence.”’ The expression

“error exit” (15), stemming from the

overspecification seen above, is am-

biguous, and the reader is not com-

forted by the explanation that follows
it (“ie., a variable, Alarm, should

have the value TRUE”); the notion of

assigning a value to.a variable does not

by itself imply the idea of an “exit,”
which also means that the program

stops in some fashion, We have seen

that the concept of “line” is not well
defined (24). Also note that the expres-

sion “new line” is to be parsed as a

single entity (the new line character) in

its first appearance (5) and as separate

words (‘‘a new fine should start. . .””)

in its second (19).

Forward references. In a require-

ments document, not all forward

references are bad. Some, corre-

sponding to a top-down presentation

of the concepts (“the notion of . . .

will be studied in detail in sec-
tion . . ."’), might even be considered

good practice, provided there are not

too many. But implicit forward refer-

ences (that is, uses of a concept that

come before the proper definition of

the concept, without particular warn-

ing to the reader) can present much

more of aproblem. They makeadocu-

ment extremely hard to read, especiat-

ly in the absence of the technical ap-

paratus (index, glossary, etc.) that

should be a part of all requirements

specifications and other software

documents.

Here, of course, the text is very

short, so the annoyance caused by

forward references is nowhere near

what it can be with full-size docu-

ments. Note, however, that ET is used

three times (2, 3, 6) before it is defined

(7), that the notion of line, defined not

quite satisfactorily (24), has been used

earlier (19-20), and that MAXPOS is

used just before its definition (14).

‘So what? In dissecting Goodenough
and Gerhart’s specification, we iden-

tified a significant number of prob-

lems in a text that may seem innocuous

to a superficial observer. Not all the

problems were equally serious, and the
reader may have felt that we were a bit

pedantic at times. We submit, how-

ever, that one must bepedantic in deal-

ing with such matters. Inconsistencies,
ambiguities, and thelike may not war-

rant the gallows when the problem is to

split up a sequence of characters into

lines. But keep in mind how the above
defects transpose to more serious mat-

ters—a nuclear reactor control system,

a missile guidance system, or even just
@ payroll program. The computer that

executes the code resulting flout a faui-

ty specification is more’ pedantic than

any human referee could ever be.

Thus, we should consider Good-

enough and Gerhart’s specification

not only as an object of study in itself

but also, and more importantly, as 4
microcosm for conveniently observing

deficiencies typical of more mean-

ingfui requirements documents. Al-
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though the text was written with great

care, we have witnessed how the au-

thors, who started out to improve

upon Naur’s terse but simple text,

sentence after sentence became a little

more entangled in their own rosary of

caveats. This says a lot about why in-

terminable manuals occupy so much

shelf space in programmers’ offices

and computer rooms.

In our opinion, the situation can be

significantly improved by a reasoned

use of more formal specifications. But

again, let’s emphasize that such speci-

fications are a complement to natural

language documents, not a replace-

ment. In fact, we'll show howa detour

through formal specification may

eventually lead to a better English de-
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scription. This and other benefits of

formal approaches more than com-

pensate for the effort needed to write

and understand methematical nota-

tions.

We will now introduce such nota-

tions, which will allow us to give a for-

mal specification of the Naur-Good-

enough/Gerhart problem.

Elements for a

formal specification

Many formal specification lan-

guages have been designed in recent

years (see box). Choosing one of these

languages would force the reader to

learn its particular notation and would

obscure the essential fact—namely,

that their underlying concepts are, for

the most part, well-known mathemat-

ical notions like sets, functions, rela-

tions, and sequences. We thus prefer

to use a more-or-less standard mathe-
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matical notation. The style of exposi-

tion will be similar to that found in

mathematical texts; translation to a

specific formal specification language

should not be hard, provided the lan-

guage supports the relevant concepts.

Overview. Perhaps the only difficult

part of the Naur-Goodenough/Ger-

hart problem is that the processing to

be performed on the text involves three

aspects: reducing breaks to a single

break character, making sure no line

has more than MAXPOS characters,

and filling lines as much as possible. If

these three requirements are sepa-

rated, things become much simpler.

Consequently, we will define the prob-

lem formally by considering two sim-

ple binary relations, called short_

breaks and limited_length, and a

function called FEWEST_LINES.

(Throughout the discussion of the for-

mal specification, the reader may wish

to refer to Figure 4 for a picture of the

overall structure of the relations and

functions involved.)

Relation short_breaks holds be-

tween two sequences of characters a

and b if and only if bis identical to @,

except that breaks in a (i.e., successive

break characters) have been reduced to

single break characters in b.

Relation fimited_length holds be-

tween two sequences of characters b

and c if and only if c is a “limited

length version” of b: that is, no line in

c has length greater than MAXPOS,

and cis identical to 6 except that some

blanks may have been replaced with
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new lines and/or some new lines with

blanks.

By applying these two relations suc-
cessively, we associate with any se-
quence of characters a all sequences of

characters that are “made of the same
words," separated only by single

breaks, and fit on lines no longer than
MAXPOS. Given such a set of se-
quences, say, SSC, then FEWEST_

LINES (SSC) is the subset of SSC
containing those sequences that con-

sist of a minimum number of lines and
thus are acceptable outputs for the
program,

Formalism

We'll now define these notions for-

mally, but a few simple conventions
are needed first,

Basic form of the specification. Asa
general convention, we use uppercase
for sets and for functions whose results
are sets and lowercase for other func-

tions, elements of sets (except for
MAXPOS, which we write in upper
case as in the original specification),
sequences, and relations.

The program to be written is the im-
plementation of a function

INPUT and OUTPUT. A binary
relation between these two sets is a

wart ny

where each i, belongsto set INPUT
and each o, belongs to set OUT-
PUT. Such a relation is represented
Pictorially at right. If goal is a rela-
tion, then we write goat (i, 0) toex-
Press that the pair <i, o> belong

to the relation,

:#<The do

MEST Met Lo

_Areminder on functions and relations
Consider two sets—for example, #284: -

ae

of such a relation, written dom (goa/), is the subset of //V-
PUT containing only those elements istich that goal (i, 0) holds for atteast
one element o in OUTPUT. Thus, in the example pictured, iy, dg, andi,
but not i3, belong to the domain of the relation. o
A function is a relation f such that for any é there is'at most one o for

which f (i, 0) holds; if o exists, then one may write o=/{/) . The relation
pictured above is not a function, since /, 1» for instance, has two buddies 0and 02. Note that the domain of a function is made of those elements of
INPUT for which there is exactly one corresponding element in OUTPUT.

sol: INPUT ~ OUTPUT

where INPUT and OUTPUT are the
sets of possible inputs and outputs,

which we will describe below as sets of
Sequences. Function so/ must satisfy

certain constraints, which it is the role

of the specification to express.

As noted above, there may be more

than one correct output for a given in-
put; in other words, a truly general
specification of the problem should be
nondeterministic, We will represent

this fact by defining a binary relation
between sets INPUT and OUTPUT.
We call goa/this binary relation; thena
Function sof will be acorrect solution if
and only if the following two condi-

tions are satisfied (readers who are not
So sure about functions and relations

are referred to the refresher in the ad-

jacent box):

* function sof is defined wherever

relation goal is defined—that is,
Sol (i) exists for any 7 in the do-
main of goal;

© for any i for which goal is defined,

then sof (/) yields a ‘solution’? to
Soal—that is, goal (i, sol (i)
holds.

This definition is expressed in math-
ematical notation by writing that sol is
an acceptable function if and only if

vi € dom (goal),

# € dom(sol) and goat (i, sol (i)

where dom (sol) is the domain of
function sol. Note that there may be
some inputs for which there is no ac- .
ceptable solution (those not in the do-
main of goal), so sol may bea partial
function. Also, in more concise nota-
tion, the above property can simply be
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expressed by writing that the domain

of sofis at least as large as the domain

of goal, and that sol is included in goal

(both being defined as sets of pairs):

dom (goa/) C dom (sol)

and sol C goal

This way of presenting a specifica-

tion is of very general applicability for

programs performing input-to-output

transformations. Such a program may

be viewed as the implementation of a

certain function (sol) which must en-

sure that a certain relation (goal) is

satisfied between its argument and its

result; in mathematical terms, the

function is included in (is a subset of)
the relation. To specify the problem is

to define the relation; to construct the

program is to find an implementable

function so/ satisfying the above con-

ditions.>

Characters and sequences. The

principal set of interest in our problem

is the set of characters, which we de-

note by CHAR. The only property of

CHAR that matters here is that

CHAR contains two elements of par-

ticular interest, blank and new_line.

We call BREAK_CHAR the subset of

CHAR consisting of these two ele-

ments:

BREAK_CHAR & | blank, new_line}

The basic concept in this problem is

that of sequence. If X is a set, we

denote by seq [X] the set whose ele-

ments are finite sequences of elements

of X, Such a sequence is written, for

example, as

limited_Jength (°) _ FEWEST_LINESks (F)short_breaks (¢) TAIMMED ()
[°2 COMPACTED (F)

— goai

Figure 4. Overail structure of the specification: (r) indicates a relation, (F) a
function.

Basic set and logic ‘notations "
The definitions marked ( *) introduce predicates, that i is, expressions

which may have value ‘“true”” or ‘false."” 2 Ae

(a, 4, ¢, : the set made up of elements a, b, c.

X€A: x is an element of A(*).

x€A: xis not an element of A (*).

A CB: Aisa subset of B (all elements of A are elements of B)(*). ).
{x€A | P(x)]: The (possibly empty) subset of A made up | of those

elements x which satisfy property P.

vxeA, P (x): All elements x of A, if any, a property y Plot: no ele-
ment of A violates ?); holds in particular whenever A is empty (+).

axeA, P(x): There is at least one elementxin A which satisfies property P; .
may only hold if 4 is nonempty (+).

a=b: a implies b. a 4

a..5: the integer interval containing all the integers such that @i:<b;
empty if a>b, This notation is borrowed from Pascal.

The symbol = means '‘is defined as.””

<a, b a,c, ¢,d>
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and has a length that is a nonnegative
integer; thus, /ength isa function from
seq [X] to the set of natural numbers.Elements are numbered starting at 1;
the /th element of a sequence s (for
1 sislength(s)) is written SG). A

subsequence of sis a sequence made of
ero or more of the elements of s, in

the same order as ins; for example, ifs
is the above sequence, then some of it its
subsequences are

<a, b,c,d>

<b, c,¢>

On the other hand, <b, d,c> isnota
subsequence of s because the original
order of its elements in s is not pre-
served,

The set of subsequences of s will be
written SUBSEQUENCES (s).

The concept of sequences is well
known, and we rely on the reader’s
understanding here. A formal defini-
tion of sequences and of the above no-
tions is given in the box on the adjacent
page.

Minima and maxima. If X is a set,

and fis a function from X to the set of
natural numbers,

MIN_SET (X, f}

denotes the subset of X consisting of

the elements for which the value of f

is minimum. For example, if X is the
following set, containing four se-

quences

X® [<a,¢,b, a>, <a, b>,

<6, a,b>,<c,c>}

and f is the length function on se-
quences, then MIN_SET (X, f) will

be the set consisting of the shortest of

18

these sequences, namely, the second
and last.

In the same fashion, we denote by

MAX_SET (X, f)

the subset of X consisting of the ele-
ments for which the value of fis max-

imum; thus, in.the above case, MAX_
SET (X, f) is the set (<a, c, b, a>},
containing just one sequence.

MAX_SET, however, is not always
defined; we have to be careful.to apply
it only to sets X which are fi finite; other-
wise, there might be no maximum

value for / Note that the results of
MIN_SET and MAX_SET are a
subset of X rather than a single ele-
ment, since there may be more than

one element with minimum or max-

imum f value. These subsets are non-
empty if and only if Xis nonempty.

We will also need a way to denote
the minimum and maximum elements
of a set of natural numbers SN. They
will be written, in the usual fashion,
min (SN) and max (SN). Thus, if SV
is the set

SN = (341, 7, 3, 654)

then min (SN) is 3 and max (SN) is
654, Note that min and max, contrary

to MIN_SET and MAX_SET, yield a

natural number, not a set. Also in con-
strast to MIN_SET and MAX_SET,

which are defined for empty sets (they

yield an empty result), both min and
max are defined only if the set SN is

not empty; max further requires that

SN be finite. It is essential to check for

these conditions whenever using these

functions,

Input and output sets. In the prob-
lem at hand, the input is a sequence of
characters; we choose to describe the
Output as a sequence of characters as

well. Thus, we define the two sets:

INPUT = seq [CHAR]

OUTPUT = seq {CHAR}

Note that, as mentioned above,
another interpretation could have

defined the set of possible outputs as
seq [LINE], with LINE itself being
defined as seq [CHAR] (or possibly
seq [WORD] with WORD = seq
{CHAR}, plus information on leading
and trailing breaks).

We will now define the relations

short_breaks and limited length and
the function FEWEST_LINES.

The formal specification
Short breaks, Let 2 be a sequence

of characters. We define SINGLE_
BREAKS (a) as-the set of subse-
quences of a such that no two con-

secutive characters are break charac-

ters:

SINGLE_BREAKS (a) =

(s € SUBSEQUENCE (a) |

vi € 2..length (s),

s(i-1) € BREAK CHAR
= s(i) ¢ BREAK CHAR]

Note that we use the Pascal notation,
a. .b, to denote the (possibly empty)
set of integers j such that @<i<b.

Next, we define COMPACTED (a)
as the subset of SINGLE_BREAKS (a)
containing those sequences of maxi-+

mum length:

COMPACTED (a) = MAX_SET

(SINGLE_BREAKS (a), length)
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Asstated above, MAX_SET (X,f)

may be be undefined tf X is an infinite

set. This cannot occur here, however,

since SINGLE_BREAKS (a) is a

subset of SUBSEQUENCES (a)

which, for any sequence of characters

g, is finite.

Note that any sequence b in COM-

PACTED (a) must have retained

from aall nonbreak characters (if such

acharacter had been omitted, it could

be inserted into 6 and yield a longer

element of SINGLE_BREAKS (a)),

and has a single break character where

a had one or more consecutive break

characters.

Thus, the relation short_breaks (a,

b), which holds between aand bifand

only if @and bare made of the same se-

quences of words and breaks but the

breaks in 5 consist of a single break

character, can be expressed simply by

short_breaks (a, b) =

b € COMPACTED (a)

Limited length. The relation fim-

ited_length (b, c) holds between se-

quences b and c if and only if

* cis the same sequence as b, except

that it may have a new_line wher-

ever b has a blank, or conversely;

and

© the maximum line length of ¢,

defined as the maximum number

of consecutive characters none of

which is a new.line, is less than or

equal to MAXPOS.

This is expressed more precisely as

follows:

limited_length (b,c) =

A definition of sequences Scclisaf

The following presentation is based on the formal specification o!

sequences given in the Z reference manual. '!

N will denote the set of natural numbers.

Definition: oe

|, the set of finite sequences of elements of X, is defined as the set of parti

me trom N to X whose domains are intervals of the form 1..1 for some
natural number 1. 3 r =

So a sequence is defined as a partial function; for example, the se-

quence s= <a, b, a, c> is the function defined for arguments 1, 2,3,

and 4 only, and whose value is a for 1 and 3, b for 2, and ¢ for 4. The

following is a pictorial representation of s:

A 2 3 4° 567 ... N

s 1 1 1 4

@ ob @ 7 x

iti = ty interval, thusNote that the above definition allows 2=0 {emp i

empty function — that is, empty sequence) and that it justifies the nota-

tion s() for the th element of sequence s (which is the result of apply-

ing function s to element /). : a

The length of a sequence is defined as the largest integer for which
the associated partial function is defined (i.¢., m in the above Sofi

tion). i 2 oe

Now let s be a sequence of elements of X and g be a (total) function

from X to some set Y. The composition

ges

is a partial function from the set of natural numbers to Y, which has
the same domain as s; thus, it is a sequence of elements of Y with the

same length as s. This sequence is obtained from s by applying gtoall
the elements of s. Again, a picture may help (we set g(a) =a’, etc.):

192 3 4 $67... N

s tot tod

a b aie mex
eg tououu i
oF ee Y

“Now take for X the set N of natural numbers. A sorted sequence of

natural numbers is an element s of seq [N] such that

vi€2.. length (s), s(i-1) <s(i)

With this definition, it becomes easy to formally define the notion of

subsequence used in the text.

Definition:

Let s be an element of seq [X] for some set X. A subsequence of sis a se-

quence of the form sew where u is a sorted sequence of natural numbers.

The following picture shows how <a ab c> is obtained as a subse-
quence of <abaabdcd> using the above definition. The sorted

sequence u of natural aumbers used hereis <3 457>; <1357>0r

<1457> would also work.

I 2 ba a ae
r 'ial st rten fs N
"i yadood
abaabdcd x

c¢ € TRIMMED (b)
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where

TRIMMED (b) =

{s € EQUIVALENT (b) |

max_line_length (s) < MAXPOS}

EQUIVALENT (b) =

{s € seq(CHAR] |

length (s) = length (b) and
(VE L..length (6),

s(i) # Bi) =

s(i) € BREAK_CHAR and

b(i) € BREAK.CHAR) }

max_line_length (s) =

max ({j~i|

Oxsisj length (s) and

(vkei+l f

s(k) # new_line) })

A few explanations may help in
understanding these definitions. If sis
@ sequence of characters, max_fine_

length (s) is the maximum length of a
line in s, expressed as the maximum
number of consecutive characters,

none of which is a new line. In other
words, it is the maximum value of /—7

such that (4) is not a new line for any
kin the interval i+1../. (We will have

more to say about this definition

below.) EQUIVALENT (b) is the set

of sequences that are “equivalent” to
sequence in the sense of being iden-

ucal to 6, except that new_line charac-
ters may be substituted for blank

characters or vice versa. Finally,
TRIMMED (b) istheset of sequences
which are ‘“‘equivalent”’ to 6 and have
a maximum line length less than or

equal to MAXPOS.

Fewest lines, Let SSC be a set of se-
quences of characters. These se-
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quences can be interpreted as con-

sisting of lines separated by new_line
characters. We define the set FEW.

EST_LINES (SSC) as the subset of
SSC consisting of those sequences that
have as few lines as possible:

FEWEST_LINES (SSC) =

MIN_SET (SSC,

number_of_new_lines)

where the function number_of_new_

lines is defined by:

numberof new_lines (s) =

card ({1 € 1. length (s) |

s(i) = new_line})

and card (X), defined for any finite
set X, is the number of elements (car-
dinal) of X.

. The basic relation. The above defi-

nitions allow us to define the basic re-
lation of the problem, relation goal,
precisely. Relation goat (i,0) holds be-

tween input / and output 0, both of

which are sequences of characters, if

and only if

0 € FEWEST_LINES (TRANSF @)

TRANSF (i) is the set of sequences
telated to / by the composition of the

two relations short_breaks and lim-
ited_length:

TRANSF (i) = {5 € seq [CHAR} |

tr (i,s)}

with

tr = limited _length eshort_breaks

The dot operator denotes the composi-
tion of relations (see box). A look at

Figure 4 may help explain the role of

the various functions and relations in

the above specification.

Existence of solutions. Once we

have a formal specification, what can
we do with it? Relying on the specifica-

tion asa basis for the next stages of the

software life cycle—program design

and implementation (e.g., translating

Ys into loops) is the most obvious use.

However, we'd like to emphasize two
others. One use, studied in the next

section, is as a starting point for better

natural-language requirements. The

other, to which we now turn, is query-

ing the specification to learn as much
as possible about properties of the

problem and valid solutions.

What can the given specification

teach us about the Naur-Goodenough

/Gerhart problem and its solution?
First, let's determine when solutions
do exist. Itis trivial to prove that, given
@ sequence of characters a, there is

always at least one sequence 6 such

that relation short_breaks (a, b)
holds. Given 6, however, the necessary

and sufficient condition for the ex-
istence of at least one sequence c such
that limited_length (b, c) holds is that

6 contains no word (i.e., contiguous
subsequence of non-break characters)

of length greater than MAXPOS. This
follows from the definitions of
TRIMMED and max_line_length used
in the definition of limited_length.

Thus, the domain of definition of the,
relation ¢r, which is also the domain of

the function TRANSF and thus of the
telation goal, is the set of input texts
containing no word longer than MAX-
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POS. This can be formulated as a

theorem:

dom (goal) =

{s € seq (CHAR] |

wi € 1. . fength(s) -MAXPOS,

aj €i. i +MAXPOS,

SU) € BREAK_CHAR}

The property expressed by this

theorem is that the domain of relation

goal consists of sequences such that, if

acharacter cis followed by MAXPOS

other characters, at least one character

among cand the other characters must

be a break.

An important problem, not ad-

dressed here, is how the specification

deals with erroneous cases—that is,

with inputs not in the domain of the

goal relation—like sequences with

oversize words. Clearly, a robust and

complete specification should include

(along with goa/) another relation, say,

exceptional_goal, whose domain is JN-

PUT—dom (goat) (set difference);

this relation would complement goal

by defining alternative results (usually

some kind of error message) for er-

roneous inputs. Formal specification

of erroneous cases fails beyond the

scope of this article, but a discussion of

the problem and precise definitions of

terms such as “‘error,”” “failure,” and

“exception” can be found in a paper

by Cristian.*

Discussion. What we have obtained

is an abstract specification—thisis, a

mathematical description of the prob-

lem, It would be difficult to criticize

this specification as being oriented

toward a particular implementation: if

January 1985

Composition of relations

Let rand 1 be two relations; ris

from X to Yand fis from Y to Z

(see figure). + - eas

relations, written fer (note the

order), is the relation w between

sets X and Z such that w (x, z)
holds if and ohly if there is (at

least) one element yin Ysuch that

both r (x, y) and t (x, y) hold.

Thus, in the example illus-

trated, wholds for the pairs <x,,

2) >, <X1,%>,and <x5, 73>

{and for these pairs only).

The composition of these two

Formalism

followed to the letter, the specification

would lead toa program that (as illus-

trated in Figure 4) would first generate

all possible distributions of the input

over lines of length less than or equal

to MAXPOS and then search the re-

sulting list for solutions with minimum

number of new_line characters—not a

very efficient implementation!

An element that does seem to point

toward a particular implementation

technique is the composition of rela-

tions short_breaks and limited_length,

which seems to imply a two-step pro-

cess (first remove break characters,

then cut into lines). A first design

could indeed use a two-step solution.

The steps could then be merged using

coroutine-like concepts, such as the

Unix notion of pipe or the “program

inversion” idea of Jackson's program

design method.’

We chose to model the problem’s
object and operations with very simple.

mathematical notions (sets, relations,

functions, sequences}, Because of the
specific nature of this problem, an-

other approach would have been to re-

ly on a more advanced theory, such as

the theory of regular languages. As

emphasized below, a realistic specifi-

cation system should permit reuse of

existing theories.6

Starting from the above definition,

the specification should of course be

refined, taking into account the phy:

cal form of the data structure (i

cluding, for example, the end-of-file
marker) and the particular response

that should be given by the program in

case of erroneous input.
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Conclusion

Although natural language is the
ideal notation for most aspects of

human communication, from love let-
ters to introductory programming lan-

guage manuals, there are cases? where

it is not appropriate. Software specifi-
cations, for example, require more rig-

orous formalism.

The use of formal notation does
not, however, preclude that of natural

language. In fact, mathematical speci-
fication of a problem usually leads toa
better natural-language description.

This is because formal notations

naturally lead the specifier to raise

some questions that might have re-

mained unasked, and thus unan-
swered, in an informal approach.

Mathematical definition, Formal

specifications help expose ambiguities

and contradictions because they force

the specifier to describe features of the

problem precisely and rigorously. The

problem studied in this article contains

many examples of this. For example,

let us try to redefine the function

max_tine_length using the definition

of “line” taken from Goodenough

and Gerhart’s specification (line 24:

“between successive NL characters").

Writing this definition mathematical-

ly, we obtain something like

max_line_length (s) =

max {line length (s, i) |

lsislength (s) and

S(i) = new_line})

where fine_length (s, i), the length of

the line beginning after the new_line at

Position i in sequence s, may be de-

fined as a minimum:

line_length (s, i) =

min((k |

O<k<length (s—i) and

s(i+k+1) = new_line})

However, as mentioned above, the

maximum or minimum of a set of

natural numbers is defined if and only

if this set is nonempty and, in the maxi-

mum case, finite; so using mathemati-

cal notation prompts us to check for

these conditions. Finiteness presents

no problem, but we see immediately

that the set whose maximum is sought

in the definition of max_line_length

will be empty if the sequences does not

contain any new_line character. Even

if it contains one, line_length (s, ¢),

itself a minimum, will not be defined if

there is no other new_line further in

the sequence, This prompts us to look

for a better definition.

A fairly natural reaction at this

pointis to see that we really don't need

to define the concept of “line,” only

that of maximum line length. Once we

have noticed this, it’s easy to come up

with a correct definition: the max-

imum number of consectitive char-
acters, none of which is a new line.

This is the definition that was given

above:

max_line_length (s) =

max {(j—-i|

O<i<j< length(s) and

(Wkeith yf

s(k) # new_line) |)

Note that we have been careful to

apply maxto a set that always contains

at least one value (zero, obtained for
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i = j = 0), even if sis an empty se-

quence (see box).

Natural language definition. Once

such a mathematical definition has

been produced, it may in return in-

fluence the natural language defini-

tion. In this example, the formal

definition suggests that we should

refrain from trying to define the con-

cept of ‘“‘a line in the text”? which,

although intuitively clear, is slightly

tricky when one attempts to specify it

precisely, as Goodenough and Ger-

hart’s text shows. Instead, we should

focus on the notion of “maximum liné

length,”’ which is always defined, even

for a text consisting of new_line

characters only. Once we have ob-

tained the specification of max_line_

length, we can build on it and include it

in the English problem definition a

sentence such as

The maximum number of consecutive

characters, none of which is a new_line,

should not exceed MAXPOS.

This sentence, a direct translation

from the formal definition, is not, ad-

mittedly, of the most gracious sytle;

but it is easy to remove the double

negation, yielding

Any consecutive MAXPOS + | charac-

ters should include a new_line,

The main advantage of natural

language texts is their understandabili-

ty. One should concentrate on this

asset rather than trying to use natural

language for precision and rigor,

qualities for which it is hopelessly in-

The reasoning behind formal specifications:

the example of max__tine. —length
How does one obtain a formal expression such as the one defining

max_line_length? Let’s analyze the different steps involved.

‘We want to express the fact that max_line_length (s) isthe maximum.

length of alineins. A definition that avoids the pitfalls mentioned in the

analysis of Goodenough and Gerhart’s text is, informally, ‘the max-

imum number of consecutive characters, none of which is a new line.’

To translate this definition into a formal description, we have to ex- |

press the notion of a contiguous subsequence of s that does not contain“

a new_line. A contiguous subsequence can be given by its end indices,

say, ‘andj. The sequence comprising the elements between indices and

J will have length j—#+ 1; if itis to yield a line length, then s(k) should ,

bea character other than new_line for any. k between’ Tand j, inclusive: *
Thus, a first try might yield “4 si

“(wk Eig, S(K) 2 new_ ine) }

But beware! Gael should only apply max to nonempty sets. With the”
above convention, we can end up with LINE_LENGTHS being empty ©

if sis an empty sequence or all its characters are new_line; ineither case, *

no i, j pair satisfies the condition. Now, if we write a program for the

Naur-Goodenough/Gerhart problem and put'in into a library, sooner

or later someone will apply it to a sequence that is empty or entirely -

made of new_line characters, so we had better deal with these casesina -

clean fashion. f

The culprit is the Shdlton't isj, whic
satisfactory i and j in the borderline cases mentioned. The problem
disappears, however, if we replace this condition by i—1 <j. Then, for

a sequence having only new_line characters or no character at all, the

set LINE_LLENGTHS will contain one element, 0, obtained for

and j=0. For these values, the interval i..j is empty; thus, the ‘

clause is true. (Remember that a property of the form wx € E, P. (x) is
always true when the set Eis empty, regardless of what f prop
Thus, we obtain the follcving replneoment :

(The first colds has been written O<i~1 instead of 1 <i. ) a
We have chosen to simplify slightly the writing of this condition by a

change of variable (use / for i—1, thus eliminating +1 and —1 terms):

LINE-LENGTHS = |Osisjslength (s)and | 08 >
(vk eit], A s(k) # ne

|. This new version is defined in all cases. hecan i
It should be noted that this kind of analysis, which at first sight might

seem quite remote from programmers’ concerns, is in fact closely con-

nected to typical patterns of reasoning about programs. Anyone who

has tried to debug a loop that sometimes goes one iteration too few or

too many, or works improperly for empty inputs or other borderline

cases, will recognize the line followed in the above discussion. It is our

contention, however, that such analysis is better performed at the

specification level, dealing with simple and well-defined mathematical

concepts, than at program debugging time, when the issues are ob- al

scured by many irrelevant details, implementation-dependent features,

and idiosyncrasies of programming languages.

adequate. Understandability is seri-
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POS. This can be formulated as a

theorem:

dom (goal) =

{s € seq [CHAR] |

vi € 1..length(s) -MAXPOS,

aj €i. .i+MAXPOS,

S(j) € BREAK_CHAR}

The property expressed by this

theorem is that the domain of relation

goal consists of sequences such that, if

a character cis followed by MAXPOS

other characters, at least one character

among cand the other characters must

be a break.

An important problem, not ad-

dressed here, is how the specification

deals with erroneous cases—that is,

with inputs not in the domain of the

goal relation—like sequences with

oversize words. Clearly, a robust and

complete specification should include

(along with goa/) another relation, say,

exceptional_goal, whose domain is IN-

PUT~ dom (goa! ) (set difference);

this relation would complement goal

by defining alternative results (usually

some kind of error message) for er-

roneous inputs. Formal specification

of erroneous cases falls beyond the

scope of this article, but a discussion of

the problem and precise definitions of

terms such as “‘error,’’ “failure,” and

“exception”’ can be found in a paper

by Cristian.¢

Discussion. What we have obtained

is an abstract specification—this is, a

mathematical description of the prob-

lem. It would be difficult to criticize

this specification as being oriented

toward a particular implementation: if

January 1985

coi bation of elation
Let rand ¢ be two relations; ris

from X to ¥ and tis from Y to z

(see figure). = hea fe

The composition of these two.

relations, written ter (note the

order), is the relation w between,

sets X and Z such that w (x, 2)

holds if and ohly if there is (at

least) one element yin Ysuch that

both r (x, y) and ¢ (x, y) hold.

Thus, in the example illus-

trated, w holds for the pairs <x, ,

Zp >, <X1,%2>, and <x, 23>

(and for these pairs only). q
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followed to the letter, the specification
would lead to a program that (as illus-

trated in Figure 4) would first generate
all possible distributions of the input
over lines of length tess than or equal

to MAXPOS and then search the re-

sulting list for solutions with minimum

number of new_line characters—not a

very efficient implementation!

An element that does seem to point

toward a particular implementation

technique is the composition of rela-

tions short_breaks and limited_length,
which seems to imply a two-step pro-
cess (first remove break characters,

then cut into lines). A first design
could indeed use a two-step solution.

‘The steps could then be merged using

coroutine-like concepts, such as the

Unix notion of pipe or the ‘program

inversion” idea of Jackson’s program
design method. 5

We chose to model the problem’s
object and operations with very simple.

mathematical notions (sets, relations,

functions, sequences). Because of the
specific nature of this problem, an-

other approach would have been to re-

ly on a more advanced theory, such as

the theory of regular languages, As
emphasized below, a realistic specifi-

cation system should permit reuse of

existing theories.6

Starting from the above definition,

the specification should of course be

tefined, taking into account the physi-

cal form of the data structure (in-
cluding, for example, the end-of-file

marker) and the particular response

that should be given by the program in

case of erroneous input,
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Conelusion

Although natural language is the
ideal notation for most aspects of
human communication, from love let-
ters to introductory programming lan-
guage manuals, there are cases? where

it is not appropriate. Software specifi-
cations, for example, require more tig-

orous formalism.

The use of formal notation does
not, however, preclude that of natural
language. In fact, mathematical speci-
fication of a problem usually leads toa

better natural-language description.
This is because formal notations
naturally lead the specifier to raise
some questions that might have re-

mained unasked, and thus unan-
swered, in an informal approach.

Mathematical definition, Formal

specifications heip expose ambiguities

and contradictions because they force

the specifier to describe features of the
problem precisely and rigorously. The

problem studied in this article contains

many examples of this. For example,

let us try to redefine the function

max_line_length using the definition

of “‘line’” taken from Goodenough

and Gerhart’s specification (line 24:

“between successive NL characters'’),

Writing this definition mathematical-
ly, we obtain something like

max_line_length (s) =

max ( (line_length (s, i) |

lsislength (s) and

s(i) = new_line})

where fine_length (s, i), the length of
the line beginning after the new_lineat

position / in sequence s, may be de-
fined as a minimum:

line_length (s, i) =

min({k|

Osk<length (s—i) and

s(it+k+1) = new_line})

However, as mentioned above, the
maximum or minimum of a set of

natural numbers is defined if and only

if this set is nonempty and, in the maxi-

mum case, finite; so using mathemati-

cal notation prompts us to check for
these conditions. Finiteness presents

no problem, but we see immediately

that the set whose maximum is sought
in the definition of max_tine_length

will be empty if the sequence s does not
contain any new_line character. Even

if it contains one, line_length (s, i),
itself a minimum, will not be defined if
there is no other new_line further in
the sequence. This prompts us to look
for a better definition.

A fairly natural reaction at this
point is to see that we really don’t need

to define the concept of “line,” only
that of maximum line length. Once we
have noticed this, it’s easy to come up
with a correct definition: the max-
imum number of consecutive char-

acters, none of which is a new line.

This is the definition that was given
above:

max_line_length (s) =

max ({j-i|

O<i<j< length(s) and

(Vkeith yj,

s(k) # new_line)})

Note that we have been careful to

apply max to aset that always contains

at least one value (zero, obtained for
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i= j = 0), even if s is an empty se-

quence (see box).

Natural language definition. Once

such a mathematical definition has

been produced, it may in return in-

fluence the natural language defini-

tion. In this example, the formal

definition suggests that we should

refrain from trying to define the con-

cept of ‘‘a line in the text’? which,

although intuitively clear, is slightly

tricky when one attempts to specify it

precisely, as Goodenough and Ger-

hart’s text shows. Instead, we should

focus on the notion of “‘maximum line

length,”’ which is always defined, even

for a text consisting of new_line

characters only. Once we have ob-

tained the specification of max_line_

length, wecan build on it and include it

in the English problem definition a

sentence such as

The maximum number of consecutive

characters, none of which is a zew_line,

should not exceed MAXPOS.

This sentence, a direct translation

from the formal definition, is not, ad-

mittedly, of the most gracious sytle;

but it is easy to remove the double

negation, yielding

Any consecutive MAXPOS +] charac-

ters should include a new_line.

The main advantage of natural

language texts is their understandabili-

ty. One should concentrate on this

asset rather than trying to use natural

language for precision and rigor,

qualities for which it is hopelessly in-

adequate. Understandability is seri-
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The reasoning behind formal specifications:

the example of max_tine_length

How does one obtain a formal expression such as the one defining
max_line_length? Let’s analyze the different steps involved.

‘We want to express the fact that max_line_length (s) isthe maximum

length of alineins, A definition that avoids the pitfalls mentioned in the

analysis of Goodenough and Gerhart’s text is, informally, ‘the max-

imum number of consecutive characters, none of which is a new line.””

|: To translate this definition into a formial description, we have to ex: bi
press the notion of a contiguous subsequence of s that does not Contain”
a new_line. A contiguous subsequence can be given by its end indices, *”

say, iand j, The sequence comprising the elements between indices jand

jwill have length j—i+ 1; if itis to yield a line length, then s(x) should |

bea character other than newline for any k between i and j, inclusive.
Thus, a first try might yield %

Smax_ fine length (s) == max (LINE_. LENG THS),
where the set LINE. LENGTHS i is defined aS i)

: jSlength (s) and
: ~ (Wk €i..j, s(k) # new. fine) }

But beware One ‘should only apply maxto nonempty sets. With the”
above convention, we can end up with LINE_LENGTHS being empty

ifsisan empty sequence or all its characters are new_line; in either case, *

no i, j pair satisfies the condition. Now, if we write a program for: the |
Naur-Goodenough/Gerhart problem and putin into'a library, sooner *
of later someone will apply it to a sequence that is empty or entirely -

made of new_line characters, =) we had.better deal with these cases ina
clean fashion. 14:41 %

» The culprit is the condition is, j, which prevents t us : from finding a al
satisfactory i and j in the borderline cases mentioned. The problem
disappears, however, if we replace this condition by i—1 <j. Then, for

a sequence having only new_line characters or no character at all, the

set LINE_LLENGTHS will contain one element, 0; obtained for

and j=0. For these values, the interval i../ is empty; thus, the Pt
clause is true. (Remember that a property of the form vx €E, P (x) is is”
always true when the set E is empty, regardless of what roper y Pis
Thus, we obtain the following replacement: 4 . : :

‘LINE. LENGTHS BUH j0si—1z/length (s), and “yy
< 5 (vk € i,j, s(k) # new -line) J

(The first condition has been written O<i—1 instead of 1 <i.)
: We have chosen to simplify slightly the writing of this condition by a

change of variable (use i for i—1, thus eliminating +1 and -1 terms):
Le ENG T HS = Ui Osisjslength (s) and py ee

(vk eit]. stk) # new_. fine) |

., This new w version is defined in all cases. | y

~ Itshould be noted thiat this kind of anglysis, which at first sight might
seem quite remote from programmers’ concerns, is in fact closely con-

nected to typical patterns of reasoning about programs. Anyone who

has tried to debug a loop that sometimes goes one iteration too few or

too many, or works improperly for empty inputs or other borderline

cases, will recognize the line followed in the above discussion. It is our
contention, however, that such analysis is better performed at the

specification level, dealing with simple and well-defined mathematical

concepts, than at program debugging time, when the issues are ob-

scured by many irrelevant details, implementation-dependent features,

and idiosyncrasies of programming languages. =
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ABSTRACT

We present a strategy and algorithms for displaying a meaningful view of structured objects

such as programs on a screen of limited size. The methods introduced here are language-

independent; they were developed for the implementation of Cépage, a structural editor making

full use of modern display technology. The algorithms are linear with respect to the number of

nodes in the syntax tree.

We use a formal model of the screen allocation, the “calculus of windows”, which makes it

possible to reason about the display process at a proper level of abstraction. A systematic

approach was followed, in which a number of “invariants” and “attributes” were defined before

the actual construction of the algorithms and data structures, and served as a basis for their

development; the paper describes the methodology used and includes a semi-formal correctness

proof of the main algorithm, which involves mutually recursive procedures.
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1- INTRODUCTION

1.1- The Need for Structural Views of Software Objects

One of the basic ideas which are making their way into advanced programming

environments is that software engineering tools should be able to deal with the various objects

they have to handle - programs, design documents, specifications, test data, schedules,

maintenance reports, user manuals, etc. - in terms of their structure, not just as if they were

mere sequences of characters. This is all the more important that these objects are often quite

complex. It is only through the application of this idea that one can lay the foundations for true

Computer-Atded Design of software.

Tools which manipulate objects through their structure make it possible, at least in

principle, to perform very sophisticated operations, affecting entire sub-structures. There is,

however, an important problem to be solved before such operations can be made usable in a

safe, practical and efficient way: if the tools know about object structure, then so should the

users. This calls for providing users, at each step of the process, with a proper representation of

the objects being acted upon.

Thus in a good software development system the users should “see’’ the structure of the

objects as clearly as possible; this will allow them to traverse the structure quickly, performing

“zooming” and “un-zooming” operations as they go along, moving and copying sub-structures,

etc.

The problem of providing users with a good structural view of the objects at hand also

exists in engineering CAD-CAM, where it is addressed through the use of powerful graphics

facilities. In software, although graphical representations may be envisioned, most objects are

essentially texts; but in many cases (notably, though certainly not exclusively, when dealing

with programs) these texts may have a deep or even intricate structure. It is thus essential to

find adequate structural views of these texts, even on character (non-graphic) terminals. This
paper presents a solution to this problem.

Work begun at Electricité de France, Direction des Etudes et Recherches, 1 avenue du Géneral de Gaulle
92141 CLAMART (France)
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‘The basic issue it addresses may be summarized as follows: given a structured document

and a screen of finite size, can one find a representation of this text which will fit on the screen

while providing the terminal user with a clear view of the text's structure?

In other words, the problem is to find the best possible mapping of an abstract structure

(that of the document being edited) to a physical area (the screen). A strategy and algorithms

will be described.

To avoid any confusion, we shall use the word document to denote the structured objects

which are to be displayed, reserving the word tezt for external representations built from

characters.

‘The ideas presented here have so far been applied to the display of program texts - hence

the title of this paper. They may however be useful for other kinds of documents with a

sufficiently rich structure.

1.2 - Relation to Previous Work

In the case when the documents are programs, the problem studied here is of course close

to what is known as pretty-printing, i.e. printing program texts in a suitable way, using

indentation to exhibit their structure, Unfortunately, methods used for pretty-printing on paper

are of little use for interactive screen editors: a universal, albeit implicit, assumption in

descriptions of pretty-printers (see, e.g. Oppen (18}) is that, whereas the width of the page is
fixed, lines are an essentially infinite resource. With a screen, both lines and columns are limited

resources.

Apart from a very terse hint at the techniques used for INTERLISP in (3], the only

published algorithms we know for the problem addressed here are those of Mikelsons [17];

although we were able to gain some fruitful ideas from this work, it could not be applied

directly, both because of differing assumptions (the environment described in Mikelsons’ paper

has quite specific constraints) and because much of Mikelsons' method relies on a procedure

(called Measure in [17]) which is not described precisely.

1.3 - Methodological Background

The algorithms presented here were developed in a systematic fashion, using a semi-formal

approach in which a set of invariants played a fundamental role in defining the purpose of the

algorithms and establishing their correctness. Simitarly, for the main data structures, abstract

attributes were defined before representation issues were considered. Invariants and attributes

will be presented in section 6.

After our initial implementation was completed, we worked out a simple formal model of

the basic objects involved in the display process. We call this small theory the calculus of

windows; its discovery led to significant improvements in the algorithms and data structures.

1.4 - Structure of the Paper

The rest of the paper is organized as follows. In the next section, we explain the context

in which this work was carried out (the development of a parameterizable, visual and structural

editor), Section 3 introduces the basic display strategy used. Section 4 gives a first sketch of the

display process. Section 5 introduces the “calculus of windows” which serves as a useful

mathematical model. Section 6 introduces the attributes and invariants. The basic algorithm is

given in section 7. Section 8 contains a semi-formal proof of correctness of this algorithm,

followed by an analysis of its efficiency. Section 9 outlines the other important algorithm (for

list nodes) and is followed by a conclusion discussing the usage of the system, the problems

encountered, and the methodological issues involved.

140 Introduction 6

2- CONTEXT: THE CEPAGE EDITOR

2.1- Overview

‘The system for which these methods were developed is Cépage {15, 16], a parameterized
editor which is both structural and visual,

Structural editors (also called “structure”, “structured”, “syntax-oriented", “language-

based” editors), such as Mentor (6}, Gandalf (8} or the Cornell Program Synthesizer [20], were

the first tools which applied the idea that a program text may be operated upon in terms of its

structure, not as a flat sequence of characters. Many such tools have been developed by

researchers in the past few years; structural editors, however, have not yet been widely accepted

by industry. We feel that this is in part due to the insufficient quality of the user interface in

the first prototypes.

On the other hand, a “visual” or “full-screen” editor such as Vi [12], Emacs (19] or SPF

[11] provides the user with a good instantaneous view of the document being edited by devoting

the whole video sereen to a display of part of the document; this relatively large “window” on

the document gives the user better control over the editing process than he may enjoy with the

more traditional line-by-line text editors,

The design of Cépage resulted from the belief that a powerful yet usable editor should be

both structural and visual. Such a decision (discussed in detail elsewhere (15, 16]) has important

consequences on the user interface. A good visual editor should make the best possible use of

modern display technology (within the constraints imposed by portability concerns). If the

editor is also structural, this view should rely on the structure of the document; in particular,

the system should show the hierarchical context of the current focus of interest (e.g. the

enclosing blocks in a block-structured language), whereas non structural full-screen editors may

only display a contiguous, linear excerpt of the document.

We now briefly introduce the characteristics of Cépage which are relevant for this study.

2.2 - Language independence

Cépage is entirely language-independent. The language, i.e. the description of the structure

of the documents to be edited, is a parameter of the system. This parameter is interpreted,

ie. it is represented by a data structure, the grammar graph, which is used by the editor

along with the structure of the document being edited (abstract syntax tree).

2.3 - Abstract syntax

The most important part of a language description (grammar graph) is a representation of

the abstract syntax of the language. Such an abstract syntax consists of a set of ayntactic
types and a set of productions.

The productions may be of three different kinds: aggregate, choice or list. These three

categories are illustrated by the example abstract syntax given on figure 1, where they are

distinguished by the labels [A], {C], [L] respectively; this example is the syntax of a fairly

realistic subset of Pascal and should be self-explanatory (elements which appear in square

brackets on the right-hand side of aggregate productions denote optional components; e.g. a

procedure, as defined in production 17, may or may not have a procedure_parameter_list).
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1 [A] program = name ; program parameter list ; block

2 [L] porameter_list = variable

3 {L block = flabel_part/ ; [constant_part/ ; ftype_part} ;
fuar_part] ; [procedure_part] ; compound

4 {LI label_part = label

5 [A] label = constant ’

6 [L] constant_part = constant_decl

7 [Al constant_decl = name ; constant

8 {L] type_part = fypeadedl
9 [A] type_deel = name ; type_description

10 [C| type_description = record | name

11 [Al record = var_part

12 [L] var_part = var_deel

13 [A] var_dect = vartable_list ; type_description

14 (L variable_list = variable”
15 [A] vartable = name

16 {L] procedure_part = peacdeureldeel .
17 [A] procedure_decl = name ; [precedure_parameter_liat] ; block

18 [A] procedure_parameter_list = var_part

19 [L} compound = stateresitt
20 (C} statement = assignment | conditional | loop | compound

21 [A] assignment = variable ; expression

22 [C] expression = variable | constant | binary

23 [A] binary = ezpression ; operator ; expression

24 {AJ conditional = statement ; expression ; statement

25 [A] loop = expression ; statement

Figure 1: An Abstract Syntax

In such an abstract syntax, a syntactic type may appear on the left of at most one

production. Those which do appear on the left of a production are called non-terminals; those

which do not are called terminals (here name, constant, operator).

The documents handled by the editor conform to an abstract syntax such as this one; they

may be partially refined documents containing non-terminals yet to be expanded.

A partially or totally refined document will be represented by an abstract syntax tree

having four kinds of nodes: “aggregate”, “choice”, “list” and “terminal” nodes, corresponding

to the four categories of syntactic types in the abstract grammar. Choice nodes may only

appear as leaves in the tree representing a partially refined document: they correspond to

elements which have not yet been refined, e.g. a statement for which the user has not yet decided

between assignment, conditional, loop and compound {when this choice is made, the statement

node will be replaced with an aggregate node in the first three cases and a list node in the last).

Figure 2 gives an example of such an abstract syntax tree, representing a partially refined
program document in the syntax of Figure 1.

2.341 The Cépage editor

block

,

* var_part * compound

assignment statement loop

; | Fl

var_deel var_deel /
; ?

# # # ; : |

z integer z binary ezpression statement

# # #

z + 8

;: aggregate node

* : list node

| : choice node
# +: terminal node

Figure 2: An Abstract Syntax Tree
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2.4 - Program Display, Concrete Syntax and Tree Decoration

To display the current state of a document, the system needs to know the concrete

syntax of the language. The concrete syntax can be given as a set of additions to the

productions of the abstract syntax, containing the information necessary to construct the

external ("concrete") form of the expansion for each production. Two kinds of elements are

needed for the addition of concrete syntax to an abstract production:

- references to constituents of the right-hand side of the abstract production, called

operands (e.g. the concrete syntax of a loop will contain an expression and a statement as

operands);

- elements which only appear in the concrete form, like programming language keywords

(if, repeat and the like) or, for languages with a strange concrete syntax like Fortran,

formating marks such as new line, tab positioning etc. These concrete elements are called

operators.

The concrete syntax information added to an abstract production consists of the

following:

- For a list production, three operators: a header, a terminator and a delimiter, e.g.

begin, end and the semicoton, respectively, for compound (production 19 on figure 1);

- For an aggregate production, a sequence of operands and operators, as in the following

concrete syntax for conditional (production 24 of figure 1):

if 22 then 41 else %3 end if

where % denotes the +th operand on the right-hand side of the production (i.e. in this

case a conditional statement will appear as if ezp then stat/ else stat2 end if);

- Choice productions de not imply any addition.

When the program must be displayed, the abstract syntax tree is “decorated” with ,
concrete syntax information, in the form of new leaves associated with operators. The resulting

decorated tree may be called a conerete syntax tree and resembles the “parse tree’ used in

compilers', Note that all interna! nodes of the concrete tree are operand nodes; its leaves

represent operators, terminal operands or unrefined non-terminal operands.

2.5 - User Interface

The abstract syntax serves as a guide to the editing process, which operates by cursor

movement and menu selection.

For example, Figure 3 shows a partially refined program obtained at some stage, using the

syntax of figure 1. Assume that the user has moved the cursor to a position marked

<statement> (indicated by *** on the figure}. Only a statement may eventually appear at this

position. By choosing the “refine” option in the current menu, the user requests refinement of

this statement. A new menu will then appear, listing the possible choices for statement in this

language, i.e. compound, assignment, loop, conditional according to the given grammar. Assume

the user chooses conditional from this menu; the screen will then be upddted to reflect this

choice, with the proper syntax for the conditional statement inserted at the appropriate place

(Figure 4).

If the user requests refinement of an entity whose syntactic type corresponds to a terminal

in the grammar (e.g. name), then a new frame appears on the screen, on which text for the

terminal may be entered using a simple full-screen text editor included in Cépage.

1 In Cépage, the concrete tree is never physically constructed; the concrete representation is generated from

the abstract tree and information contained in the grammar graph. It is conceptually useful, however, to think

of the concrete tree ag if it actually existed.

2.5% The Cépage editor 9

program <name> program <name>

(<program_parameter_hist>) ; (<program_parameter_list>) ;

flabel_part] flabel_part}

{constant_part} [constant_part}

[type_part/ {type_part/

var var

z, yi integer ; zy: integer ;

a, 6: <type_description> a, bi <type_deseription>

fvar_part/ ; fvar_part/ ;

procedure pri procedure pri

[procedure _parameter_list/ ; [procedure_parameter_ltst} ;

[labet_part] flabel_part}

[eonstant_part/ feonstant_part}

[type_part} [type_part/
fvar_part} fvar_part}

begin begin

<compound> <compound>

end procedure - - pri end procedure ; ~~ pri

begin - + Main program begin - - Matn program

riz 9; ys Cezpression> ; c= 83 y = <ezpression> ;

¥#4< statement>; **4f <ezpression> then

while <ezpression> do <astatement>

yr=y+ 1; <satatement> else

end while <statement>

end program end if;

while <ezpression> do

yrsyt+l; <statement>

end while

end program .

Figure 3: A Partially Refined Document
i i: AR t

(*** indicates the cursor position) Minsre’t ene eR
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3 - DISPLAY STRATEGY

3.1 - Overview

The previous section gives a rough idea of how Cépage works internally and interacts with

the user (for more details, see [15| or [16]}. We shall from now on concentrate on the main prob-

tem addressed in this paper: how, in such a framework, is it possible to ensure at each stage

that the display presents the user with a good picture of his document?

The strategies used for pretty-printing are, to some extent, a matter of taste. We have

found, however, that by sticking to some simple and reasonable principles pretty-printing can be

made fully automatic, which relieves the users from prescribing any specific options.

3.2 - Four Principles

The fundamental idea is that the way a document appears on the screen will be deter-

mined by its underlying abstract syntax. This may be stated more precisely through the follow-

ing principle:

Principle 1: The purpose of a display algorithm is to show a picture of the concrete

text of the program which is as reminiscent as possible of its abstract syntactic struc-

ture.

The main technique for achieving Principle | is indentation. Indenting part of a docu-

ment is a way to highlight it and thus to draw attention upon the fact that it constitutes an

entity. In view of the preceding discussion, it appears that the only subtexts which should be

candidates for indentation are the concrete representations of meaningful entities in the

abstract syntax, i.e. operands. Since on the other hand one should certainly not force all

operand texts to appear indented, we obtain the following second principle:

Principle 2: The concrete text corresponding to the expansion of an operand should

either:

-&: appear ona single line with some preceding and/or following text;

-b: be indented (alone) on one or more lines.

Note that principle 2 is recursive, i.e. it applies to all operands which will appear in the

expansion of an operand.

The following representations of the same program fragment all conform to principle 2:

if ¢ then stl else st2 end if

if

then sti

else st2

end if

3.2 | Display strategy il

if

¢

then

atl

else

st2

end if

if ¢ then

stl

else st2 end if

etc. The principles above may be applied either to screen display or paper pretty-printing. In

the former case, further rules must be obeyed in order to make the best possible use of the lim-

ited available space. To economize on space, we thus add the following principle:

Principle 3: When applying principle 2, rule a should be chosen rather than b when-

ever both are applicable.

Even so, however, there will usually not be enough space on the screen to represent any

but very short programs. The technique to be used in such cases is called ellipsis or holo-

phrasting [9]. We apply it by representing some possibly large subtrees with just the name of

their syntactic types; aggregate and list nodes are treated in a different way

An aggregate node may simply be replaced by the name of its syntactic type, in angle

brackets; e.g. a complex conditional statement may be displayed as just <conditionaf> if there

is not enough space to show more. This we call abstraction Abstraction is also applicable to

a list node; if, however, there is a little more room (although not enough to show all list ele-

ments), we may try collapsing, which is abstraction applied to one or more sublists, each of

which will be replaced by <n {> where tis the name of the syntactic type of the elements and n

the number of elements in the sublist. For example, if we cannot show a whole compound state-

ment but have enough space to show the beginning and end, we might get (with an abstraction

on the third line):

begin

while ¢ # Odo

p i= <expression>

end while;

<28 statements> ;

ac=byevedti;

ef

end

This can be expressed by the following, last principle:

Principle 4: The concrete text for an operand may be replaced by the name of the

operand’s syntactic type; the concrete texts of one or more non-contiguous sublists of

a list node may each be replaced by the number and syntactic type of their elements.

The specification of the display algorithms used in Cépage is based on principles 1 to 4.

The algorithms will try to make the best possible use of the available display space by applying

principle 4 only when they cannot think any better.
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3,3 - Efficiency Requirements

Efficiency is an important criterion for an algorithm which, as in the case of Cépage, must

be used interactively to display adequate pictures of a document. It was easy to foresee that, if

one was looking for the optimal solution to the display problem, one would run into combina-

torial algorithms, which seemed unacceptable. We felt necessary to try to find an algorithm with

time complexity O (N), where Nis the number of nodes in the concrete subtree to be displayed.

4- OVERVIEW OF THE DISPLAY PROCESS

The basic loop of the system may be described as follows:

decode user request ;

perform the corresponding manipulation on the abstract syntaz tree;

update the display to reflect changes to the document

The last statement of this loop is the one of interest here. What the updated display will

represent is a certain subtree of the abstract syntax tree; we call the root of this subtree the

current focus. To update the display, the system first determines the new focus ¢ from the user's

request, and then issues the procedure call

Show (3, a+)

where Show is the basic display procedure and s is an abstract description of the available

screen.2

The Show (s, a+) operation is performed, at least conceptually, in five stages:

Decorate (a+);

-- builds the concrete syntax tree for a;

Measure (ae);

-- computes for each node of the subtree of root a

-- the size of the area which its representation would require

-- in the absence of any space limitations and further formating

Fit (area (3), a+) ;

-- formats the subtree of root aso that it will fit in s.

-- area (a) is the rectangular area associated with s,

~- described as a “window” (see below).

Buildtezt (a, s, window_table —);"

-- interprets the formated tree to build a table

-- of displayable text-filled windows.

Display (window_table)

-- effectively displays the result, using screen management routines

- - which, for Cépage, come from a screen package called Gescran [2]

The effect of the first three calls (to Decorate, Measure and Fit) is to add information to

the abstract syntax tree, in order to transform it gradually into a form from which the fourth

procedure (Butldéezt) may build a screen image, which procedure Display will actually output.

2 For readability, we write actual argument lists in such a way that arguments 7 which may be modified

by the procedure are clearly marked: z+ if the corresponding formal argument is of mode in out and z+—

if it is out.

4u Overview of the display process . 13

Decorate adds concrete syntax; Measure determines the space associated with the representation

of every subtree in the absence of any formating, assuming a screen of infinite height and width;

Fit transforms the representation so that it will fit in the given screen area.

As regards the problem of screen-oriented formating of structured documents, the key

stages in the process are procedures Measure and especially Fit, We shall thus concentrate on

them in the sequel.

5 - A CALCULUS OF WINDOWS

5.1 - Purpose

The aim of the display algorithms is to associate with each node of the syntax tree a rec-

tangular “window” of text of the appropriate size. To understand how this is done, it is useful

to define a set of operations which apply to these windows. This has led us to define a ‘“‘cal-

culus” of windows.

This calculus is a small mathematical theory; as pointed out by a referee, it resembles

what in programming is called the specification of an abstract data type. A complete definition

of “window” as an abstract data type was not deemed necessary, however, since properties of

windows are readily expressed in terms of properties of integers and booleans. On the other

hand, the development of the calculus, which only occurred after we completed our first imple-

mentation, strongly suggests that the ideas should be carried over to the program level, i.e. that

the program should contain an implementation of the calculus in the same fashion that it might

contain the implementation of an abstract data type, especially with a language offering direct

support for such concepts, like Simula 67, Smalltalk, Ada, etc. This will be done in our next

implementation.

5.2 - Basic Definitions

Any window w is characterized (regardless of its contents) by attributes w.height, w.width,

w.line_break_before and w.line_break_after. The height and-width are integers; they are either

both positive or both zero. Attributes w.line_break_before and w.line_break_efter are boolean

and indicate whether the window must be preceded and/or followed by a new line.

To denote a window of height A and width w, we write

Tul

where A | w may be preceded of followed by * to indicate line breaks.

The special windows of height and width 0 are:

- the empty window, (oT al , written Cl;

- the line break windows: |@ 1 f ‘1 ‘ era andl-o1 01 ; the last one will be
written simply as C2I.

6.3 - Order Relation

There is a partial order relation on windows, which we write ©): defined as follows:

z y iff

{z.height < y.height) and (z.width < y.widih) and

(y.hetght = 1 =>

(t.line_break_before => y.line_break before) and

(z.line_break_after => y.line_break_after)}
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The inverse relation is written () Clearly, IZ is @ minimum element for ©>

6.4- Concatenation

Another important operation is the concatenation of windows, written ® . Intuitively,

concatenating two windows means displaying one after the other; if possible (see principle 3

above), they will be concatenated on the same line; otherwise, the second window will be

displayed below the first. More precisely:

Let z=2@ y;

ifz=(C1, thenz=y

ify=C1, thenzoq

otherwise:

z.line_break_before = z.line_break_before ;

zline_break_after = y.line_break_after ;

if z.height = y.height = 1 and not z.line_break_after

and not y.line_break_before then

aheight =f;

zwidth = z.width + y.width + 1

else

zheight = z.height + y.height;

width = maz (2.width, y.width).

Note that windows of height greater than 1 will be separated by line breaks regardless of the

values of their line break attributes. The +/ term for the width in the first alternative accounts

for intervening blanks.

Concatenation has LI as zero element and further satisfies the following properties:

2©Oy

96 Oy

2 ©) zand (zhas no line breaks or z.height > 1) =>

(By ®z@ yJand (Wz QS 4)

5.5 - Multiplication

From concatenation, we can define multiplication of a window by a non-negative integer:

1@ w=it i= Othen C1 else (-1) ®@ w® w

Multiplication satisfies

i<j > Qv©iOw

but is not distributive over concatenation, as the following counter-example shows:

2@ (Me GOH1)=-e@ 121-127, bu

2@Gldo e@Glil-G@laeG@Ti-Glei

5.6 - Division by an Integer; Fairness and Consistent Allocation Theorems

It turns out that multiplication is less useful for application to the display algorithms than

division of a window by an integer i > 1, which we write w@ {and define as follows. If wis

one of the special windows (empty window, line break windows), then w@ t= w. Otherwise if ¢

< w.height, then given

h= [w.height /i

56a A calculus of windows 15

the result of the division is

v® i= Cowal

with the same line break attributes as w. If i> w.height , then given

c= [i/w.height] :

and

d= [(w.uidth —¢ +1) /e]

then

w@ isifd=Othen La ele Ld

with, in both cases, the same line break attributes as w.

Division satisfies

«Diu

G@wOieuw

but #@ (w © i) is not necessarily equal to w, nor even &) to w. It may informally be said to

be “no greater” than w, however, in the sense that i windows of size w Q { will fit (i.e. can be

concatenated with some intermediate line breaks) in the area of w. This property will make divi-

sion useful for allocating space to various parts of a document on the basis of their relative

importance (see procedure Split_a_tine in section 7.3 below, and the algorithm for list nodes in

section 9).

More precisely, assume two elements compete for space in a window w. Each element has

an integer weight, or “share” (shares are described below in section 6.5); assume the sum of all

shares is 7 and the two elements have shares a and f, with a+f <4. The policy used by the

algorithms below, when distributing space to elements on the basis of their shares, is to allocate

to the two elements windows w @ ([y/a]) and w@ ([+7/A]) respectively. That such an allo-

cation is consistent is expressed by the following theorem, whose proof, although not hard, is

tedious and thus not included:

and

Consistent Allocation Theorem: Let a, 8,7 be positive integers such that

ath <4 Let wea window. Let w= wv ® ([7/al) and w= wv (f4/ A).

Then w, © w, wor w, © Cle u, © wv.

‘That such an allocation is also “fair”, ie. obeys the order implied by the shares, is expressed by

the following theorem:

Fairness Theorem: Let i, j be positive integers such that {> j. Let w be a win-

dow. Let v= w@ ‘and v= wO j. Then v;@u,

5.7 - Division by a Window

Another kind of division operation is the division of a window by another window, written

w QJ w’ If wand w’ are windows such that w’ ©) wand w’is not empty, then w J w’ is an
integer, defined (using the previously defined division operation) as:

wQ w'=mx(fi>ol vi @wp

Since this definition involyes the maximum of a set of integers, we must check that this set

is always finite and non-empty (a necessary and sufficient condition for the existence of the max-

imum). This indeed the case since, whenever w’ @) w and w’ is not empty, then (w@ 1) @) v’

(so that the value 1 is always a member of the set) and w@ i= for sufficiently large 1 (so
that the set is finite).

By definition, wQ (w J w') @)w'and wD (w G w'+ 1) ©y-
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Ie may be noted that the definition of the two division operations is consistent with the usual integer

division in the following sense: if n ond j are non-negative integers such that n > j. then it is not hard to

prove that:

[sa] mac i> ol [nsfzay

5.8 - Subtraction

Lastly, subtraction, written z= w © w’ and defined for w’ &) u, is such that, if w.height =

4, then

z= Duidth width
and otherwise

z= :

with the same line break attributes as w in both cases. Note that w@ w' ©) w; but (w© w')

© w’is not necessarily equal to w, nor even 6 w.

6 - ATTRIBUTES, PRECONDITIONS AND INVARIANTS

6.1- “Name” Attribute

For the algorithms to be able to perform abstraction and collapsing, it is necessary to

associate to every node of the decorated tree some string representing its name. More precisely,

we will assume that, associated with any node nin the decorated tree, there is an text attribute,

which we shall write n.name, which represents a displayable name attached to the node and is

determined in the following way:

- If nis a leaf associated with an operator, then n.name is the character string making up

the associated element of the concrete syntax (keyword, delimiter, etc.), e.g. “begin”,

3", ete;

+ If nis an internal node, i.e. an operand associated with a non-terminal in the abstract

syntax, then n.name is the character string making up the name of its syntactic type (e.g.

“ statement");

- If nis s leaf operand (i.e. a leaf whose syntactic type is terminal), then n.name is as in

the previous case if the node has not been refined (e.g. “variable”, etc,); if it has been

refined into a character string, then n.neme is that character string.

6.2 - Minimum Space

We assume the existence of an integer constant MINSPAGE such that, for any node n, its

name n.name can be written, possibly truncated, using MINSPACE characters without too

much loss of information (MINSPACE = 10 to 14 seems reasonable). We assume that Show (s,

a+) is always called with screen s having at least one line and MINSPACE columns; thus the

procedure will always succeed while conforming to the principles above, although it may do so

in a very degenerate way, by displaying <atype>, where <atype> is the name of a’s syntactic

type (e.g. <program>), truncated to MINSPACE characters.

We call MINWINDOW the minimum window which may be associated with a node:

MINWINDOW = CCUMINSPACEI
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8.3 - “Window”

The role of the display algorithm is to associate with every node n 8 window, which will be

denoted by n.window and will be used to display the text associated with the node. The attri-

butes of this window will be written n.height, n.width, n.line_breck_before, n.line_break_after (as

abbreviations for n.window.herght, etc.).

The n.window attributes of all nodes n of the subtree which has the focus as its root must

eventually be such that the representation of this subtree fits in the given screen s. Initially,

however, this will usually not be the case; procedure Fit must thus modify the windows associ-

ated with the nodes until the subtree fits. Throughout this process, it is necessary to make sure

that the n.window attributes of all nodes n of the subtree are meaningful and consistent; in

other words, they must be such that, given a screen of sufficient size, a representation for the

subtree could be produced in which each node would be assigned a window of size n.window.

This very important property, written Representable (n), must be initially ensured for each node

by procedure Measure, and maintained by procedure Fit throughout the space allocation process

(however, we will see in section 8.5 that this restriction may be relaxed in some cases).

The property Representable (n) may be defined more rigorously as follows:

property Representable (a : NODE)

For all nodes n in the subtree of root a:

a. If nis a leaf not representing a line break, then

nvindow ~ UL Llenalh fa name
b. If nis a leaf representing a line break, then

n.window =

c. If nis an interior node, then

nwindow= 5) cwindow
© € children(n)

where the sum refers to the © operation.

It is important to note that this property does not by iteelf involve the given screen s:
a may be “‘Representable” even though it does not fit in ». Representable (a) just means that the

position information associated with a and all its descendants is correct and consistent, but not

necessarily that it is compatible with the space available on any particular screen.

6.4 - “Processed” Attribute

We further assume that every node has a boolean attribute n.processed which will have

value true if and only if n has been visited by Fit (n.processed initialized to false for all nodes).

This attribute plays no role in the algorithm itself but is introduced as an auxiliary variable (7]

which will help us check that the algorithm is linear in the number of nodes of the subtree to be

displayed. Fit will be built so as to maintain the following invariant for all nodes n:

[IP] n.processed => n belongs to a line of length < w.width

where w is the window assigned to the parent node of n by the algorithm,

6.5 - “Share” Attribute

Every node except the root has an integer attribute n.share which is assigned by the editor

and represents its importance relative to ita siblings. Space will be allocated to the children

of a node on the basis of this share. For example, in a list, the editor might decide to assign the

largest shares to the leading and trailing elements, so that even if collapsing occurs the user

may see some of the beginning and end of the list.
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6.6 - “‘Indented” attribute

The fact that an operand d needs to be indented from the immediately enclosing context is

represented by a boolean attribute d.indented.

7. THE BASIC DISPLAY ALGORITHM

7.1 - Initializing the Tree With Dimension Information

As mentioned above, the task of procedure Measure is to ensure that Representable (n) is

satisfied for all nodes n. This is performed by a postorder traversal of the tree:

procedure Measure (in out a: NODE)

" ats a leaf other than line break —* a.window = (i Dengthfa.name}l
[Jats a line break —> a.window = Col

{] « ts an interior node —>

a.window -= LI] bi

for all ¢ in children (a) do

Measure (c++);

a.window := a.window @ c.window

end for

end if

end procedure

Note that when Measure is applied initially, it will always result in a.hetght = 1 if there

are no built-in line breaks in the concrete syntax of the language. For languages such as Fortran

whose concrete syntax includes built-in line breaks, a modification to Measure may be useful (see

section 8.5 below).

7.2 - Outline of the Display Loop

The principle of the algorithm for Fit is as follows. Measure (a+) has resulted in a state

such that Representable (a) is satisfied; i.e. attribute n.window is correct for all nodes nin the

subtree of a. In general, however, a.window will be too wide for the available window w, whereas

w may have more lines; if this is the case, we may try to trade width for height. The task of Fit

(w, a+) is thus to add line breaks, set indent attributes, abstract operands and/or collapse

sublists until e.width becomes lesser than or equal to w.width, with a.height remaining no greater

than w.height. The decision process which is repeated by the algorithm is summarized below for

the case of aggregate (non-list) nodes.
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a.width || < w.width > w.width

< wheight Try adding a line break.

Success

= w height

Failure: abstract a (i.e. replace it by its name)

> w.height

7.3 - The Algorithm for Aggregate Nodes

Fitis recursive. The call

Fit (w, aw)

must ensure the postcendition ¢.window © w. We give below the algorithm for the case when

ais an aggregate node.

procedure Fit (in w: WINDOW;

in out a: NODE):

- - Recursive precondition: w (©) MINWINDOW

- - Recursive invariant: Representable (a)

- - Recursive postcondition: a.window © w

var success, failure: BOOLEAN;

success := falae ; failure -= false ;

repeat

if

a. window ) wom

success = true

0 a.height > w.height

or (c.height = w.height and not a.window © w) —

failure = true

f] a.height < w.hetght and a.width > wuidth —>
Split_a_tine (w, a, failure—J; - - see below

end if

until

success or failure

end loop ;

if

success —> skip

{| failure — a.window -= Lt | min fength fa. name), MINSPACE}
end if;

a.processed := true

end procedure
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The procedure Split_attine (w, a+) is detailed below, It uses an integer function

line_length which, when applied to a sequence z of operators and/or operands (not containing

any line break or other formating mark), yields the number of characters of its representation,

including provision for separating blanks:

line_length (z) = (3) o.width) + m-f

og?

(m being the number of elements of 2). Split_a_ine also uses the constant INDENT whose value

is the number of blanks used for every indentation step.

In the description of Splt_e_tine, d and f stand for operands; z, y, 2 stand for (possibly

empty) sequences of operands and/or operators.

Split_o_line may be expressed as follows:
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procedure Split_a_line (in w: WINDOW,

in out a; NODE,

out failure : BOOLEAN)

var w’, wl: WINDOW ;

ad: NODE ;

remaining_shares : INTECER ;

fatlure := false ;

Consider a as a sequence of lines ;

- - By hypothesis, a.width > w.width, so there is at least one line L

~ + such that linelength (L) > w.width;

if

there is at least one line of length greater than w.width which does not end with an

operand —>

Let L be such a line ;

-- L will be cut, after an operand sf it has one

if

L has only operators —>

- - (degenerate case: oversize line with operators only)

insert a line break somewhere in L

[] £ has at least one operand d ~~

L is of the form zdy, y not empty ;

-- L will be cut after d

a.line_breck_after = true

end if ;

a.height := a.height + t ; update a.width

0 all lines of length greater than w.width end with an operand —>

Let L be such @ line ;

L is of the form zd, d operand ;

- - If possible, indent d

«+ First compute the window w’ which d may claim for indentation

remaining shares = > f.share;
{ €operand children of « on oversize lines

wl = a.window ; wl.width := w.width; -

w= (wO© wl) ® [remaining shares / d.shere]) ;

wwidth == maz (1, w'width - INDENT) ;

-- Can d be indented ?

if

w'® MINWINDOW —>

-- There is enough room to indent d

Fit (w’, de) ;

d.indent := true ; d.line_break_before -= true ;

a.height := a.height+d.height ; update a.width;

[] not wv’) MINWINDOW —

~- There ts not enough room to indent d, but perhaps it

-- may fit ona line with z, possibly in abstracted form

w= tdi - di 2

if

we) MINWINDOW —> Fit (w’, de+)

0 not we) MINWINDOW —> feslure := true

end if

end if

end if

end procedure
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8 - CORRECTNESS, EFFICIENCY AND IMPROVEMENTS

Although a complete formal proof of correctness has not been performed for this program,

it is interesting to note the following properties, which make it possible to check that it per-

forms its intended task and to assess its performance.

8.1 - Partial Correctness

The task which must be performed by Fit may be characterized by the following pair of

assertions:

Precondition:

Representable (a) and

(P| » @ MINWINDOW

Postcondition:

Representable (a) and

(Q] «window ©) w

The procedures Fit and Split_a_line being mutually recursive, a proof of their properties

requires a proof of the corresponding properties of their bodies, in which the properties of the

calls may be assumed {10]. It is in this sense that we have used above the expressions “recursive

precondition” for [P], “recursive postcondition” for (Q] and “recursive invariant” for Represent-
able (a) which appears in both the precondition and the postcondition.

Let us check that if Fit and Split_a_line are recursively assumed to satisfy the properties

mentioned, then their bodies also satisfy them. We first check that the actual parameters to

the internal calls to Fit satisfy [P]; then that Fit ensures postcondition (Q]; finally, that it main-

tains invariant Representable (a).

The fact that both recursive calls to Fit from Split_a_tine satisfy [P| is readily checked:

both are part of if statements, executed under conditions written precisely to be equivalent to

(Pl.
Let us now check that Fit ensures (Q). ‘The body of Fit is a repeat ... until statement

which terminates when either success or failure becomes true; clearly these two cases are dis-

joint. In the first, the condition (Q] is satisfied since this condition is exactly the test for success;

in the second, Fit will devote to a a window no greater than 1 MINSPACEL i. e. MINWIN-
DOW, a solution which satisfies [Q] since MINWINDOW ©) w from the precondition [P}.

We now check that Fit maintains the invariant Representable (a). The only place where

this property could be rendered invalid is the call to Split_c_tine, so we must check the body of

this procedure. This body is an if statement. In the first alternative, a line break is added and

a.height is consequently incremented by one; a.width is also updated so as to maintain the

invariant (more details on the statement update a.width will be given below). In the second

alternative, two cases arise:

- if indentation is possible, the call to Fit may be recursively assumed to ensure that dis

adjusted to a window (int Laude INDENTL . Attributes a.height and a.width are then
updated to take into account the space which has been allocated to d, so as to re-establish

the validity of Representable (a).

- if indentation is impossible, the algorithm distinguishes between two subcases: in the

first, zd can be squeezed on a single line, so that an oversize line is transformed into a line

of length at most w.width; in the other case, Split_o_line reports failure to Fit, which, as

we have seen, takes then a correct decision.
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* Since we have written the conditional statements using Dijkstra’s non-deterministic if con-

struct [4,5], we must also make sure that at least one guard is satisfied whenever any such

statement is executed, Here only two conditional statements are not trivially equivalent to sim-

ple if... then ... else ... statements:

~ The outer if statement of Split_a_tine is correct if and only if there is at least one over-

size tine in the expansion of a; this property is the precondition of the procedure and is

indeed ensured by the call to Splita_tine in Fit.

- The conditional statement in the loop of Fit uses guards which have been designed to

cover all possible cases.

The if ... end if notation was not used for its non-determinism, but because it makes clear

under exactly what condition each branch of a condititional is executed. The reader may have

noted that there is non-determinism of another kind in the algorithm, since Fit may have to

select an oversize line (in two instances in the program text) or an operand on such a line (one

instance) in a way which has been left unspecified.

8.2 - Termination

Procedure Fit is indirectly recursive and contains a loop; both of these features might lead

to non-termination. To prove that any correct call to this procedure terminates, we will first

check that the mutual recursion between Fit and Spiit_a_line may not lead to non-termination,

and then that the loop in Fit always terminates.

Termination of the mutual recursion results from the fact that each call to Fit in

Split_a_line has as its first argument one of the children of a, the node of the tree which is the

second actual argument in the call to Split_a_tine. In other words, the variant of this recursive

scheme is

h- depth (a)

where his the height of the syntax tree and depth (a) is the depth of a in that same tree.

To prove the termination of the loop in Fit, including the call to Split_a_line, we show

that this loop has the following quantity as variant:

v= NRL + NOL + NF

where

NRL = w.height-a.height (Number of Remaining Lines),

NOL = number of lines of length greater than w.width (Number of Oversize Lines),

NF = 1 if failure is false, 0 if true.

Indeed, at least one of the three terms of the sum v decreases whenever Split_a_line is executed:

- NF is incremented in the last alternative of the last innermost if statement.

- NOL is decremented in the first alternative of that same statement, which transforms an

oversize line zd into a line of length at most w.width,

- In all other cases, a.height is decremented by at least 1, without ever becoming greater

than w.height. The only non-trivial case is the one in which indentation is performed

(characterized by the guard w’ © MINWINDOW). In this caso, a.hcight is

the value of d.height after the recursive call Fit (w’, d+). The recursive postcondition (Q|

ensures that, after this call, d.window @) w’. It follows from the properties of the d

of a window by an integer (w@ i €) w, see section 5.5), that uw’) wOa

In each of these cases the terms of v which do not decrease remain unchanged. Thus v is a

variant for the loop.
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8.3 - Quality of the Result

The correctness criteria defined by the above precondition and postcondition require that

a correct representation be found for any a; they give no clue, however, as to how “good” a

representation must be, so that a solution which would just abstract a in all cases would be con-

sidered correct. Evidence to the claim that the above solution is (much) better is given by the

Consistent Allocation Theorem (section 5.5), which guarantees that a conservative policy is used

for the allocation of windows to indented operands: when space is allocated to d using division

of the available window by [remaining_shares /d.share], it is a consequence of that theorem

that no selfish operand d may use the whole window for itself if there remain windows to which

space has not been allocated. It is a consequence of the Fairness theorem that the allocation

process will observe, at least for indented operands, the hierarchies implied by shares: no

“second-rate” operand will get more space than a “VIP”.

8.4 - Efficiency

As mentioned earlier, a basic aim was to obtain an algorithm of complexity O(N), N being

the number of nodes of the concrete subtree displayed. We now prove that the above algorithm

meets this requirement.

Let us first verify that Fit, although recursive, is never called more than once for the same

node of the tree. This follows from the fact that throughout the execution of any call to

Split_o_line (w, a+) the following property consistently holds for all children d of a

[IP] d.processed => d belongs to a line of length < w.width.

Property [IP] is proved by noting that:

- whenever d.processed is false, which we assume to be initially the case for all nodes d,

[IP] is trivially satisfied;

+ during the execution of a call Split_a_line (w, a+), d.processed can only be set to true

for operands d which are children of a; for both recursive calls, the postcondition [Q} of Fit

implies that, upon return from Fit, any such d belongs to a line of length less than or equal

to w.width,

Since Fit may only be called recursively by Split_a_tine for children d of the argument a

which belong to oversize lines, it follows from property [IP] that Fit can never be called for ¢

such that d.processed is true, and thus that it is called at most once for every operand.

This property is, however, not sufficient to prove that the algorithm is linear in the

number of nodes: the algorithm uses twice the statement update a.width which may seem to

imply that a traversal of all the lines of a is required every time a split (cut or indentation) is

performed, thus leading potentially to combinatorial explosion.

A simple data structure representation technique solves this problem. From the properties

of the © operation, @.width is the maximum length of the lines of a. Thus when an oversize line

is split into one or more shorter lines, a.width will only change if the oversize line being split is

longer than all remaining oversize fines in the expansion of a.

We may thus represent the set of oversize lines of ¢ as a sequential list, in such a way that

the last element to be considered is the longest (it is not necessary that the list be otherwise

sorted). When a line is split, it will produce either one or two shorter oversize lines:

- in the “cut” case, a line zdy is split into lines zd and y

- in the “indent” case, zd is split into line z, which may still be oversize, and operand d

which is passed to Fit and thus will not be oversize once indented.

If the line which is split is not the unique element of the list of oversize lines of a, it is not neces-

sary to update a.width; the only constraint to be observed in this case is that the new oversize

lines may be inserted anywhere but at the end of the list, which is occupied by the longest

remaining oversize line. When, on the other hand, a unique oversize line is split, we must make
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sure that, if two oversize lines are created, the longer comes last in the list; this takes constant

time. So the penalty on the overall process is at most linear in the total number of nodes.

The last operation which might endanger the linearity of the algorithm is the computation

of total_shares, the sum of the shares of all remaining indentation candidates among the chil-

dren of a, before each tentative indentation. Clearly, total_shares can be initially computed by

Measure and updated every time the fate of one of a's operand children is decided.

Other optimizations are possible, In particular:

= The editor may try to minimize the amount of work performed by the display algorithm

by initially pruning of the syntax tree so as to a priori eliminate those subtrees which

stand no chance whatsoever of being displayed.

- In the basic loop of the system (see section 4), procedure Show will be,called after every

change resulting from an operation requested by the user. Such a change may involve only

a small part of the tree and/or the screen. If this is the case, the editor should only call

the display procedure Show (s, a+) on arguments s and @ which denote part of the screen

and the tree, respectively. This policy is commendable not only for program efficiency, but

also from the human engineering point of view: it improves the user interface by avoiding

drastic redisplay of the document and redistribution of its various components over the

sereen every time a local change is made. Internally, it can be implemented by replacing

the n.processed attribute by an integer attribute giving the historical index of the last

modification (Mikelsons (17] uses a similar scheme).

8.5 - Dealing with Built-in Line Breaks

One aspect of the above algorithm may seem annoying: displaying a long document in a

language whose concrete syntax includes compulsory line breaks may result in a degenerate

(abstracted) form; this is because Fit quits (by failure) if the number of lines associated with the

focus node, as computed by Measure, is initially too large - a condition which will frequently

occur for, say, long FORTRAN programs. In many cases, however, a better solution could be

found than just abstracting at the uppermost level.

This problem is all the more serious that, when describing a language for Cépage, users

may be tempted to add compulsory line breaks in the concrete syntax even for free-format

languages, for instance by requiring that Pascal procedures be followed by a break, even though

such an explicit addition is unnecessary in view of the algorithm above.

Fortunately, there is a nice solution to this problem. Fit does not need to be modified; we

just adapt Measure so that, in the postorder accumulation of windows which it performs, it

transforms non-linear windows into very long linear ones. Let us define the special window

WIDE_WINDOW as

WIDE. WINDOW = [i Tool

where oo is a large enough integer (for our purposes, s.width + 1, where s.width is the width of

the available screen, is a good enough approximation of infinity). Now defining for any window

wu

squeezed (w) = if w.height = 1 then w else WIDE_WINDOW

we just replace c.uindow, in the for statement of the last branch of procedure Measure, by

squeezed (e.window).

This modification solves the problem of built-in line breaks. Any child of a whose expan-

sion initially extends over more than one line will be considered by Split_a_line as constituting

an oversize line by itself and will thus be the object of a recursive call to Fit if its share permits.

When Fit and Split_a_tine are first applied to a, only first-level line breaks (those which are part

of the concrete syntax for the production defining a, not those attached to its descendants) will

be considered.
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9 - OUTLINE OF THE ALGORITHM FOR LISTS

The algorithm used for list nodes is a natural extension of the above one for aggregate

nodes. It is sketched below.

We consider a list node as equivalent to an aggregate node with one to three children: list

header {if present), list body and list tail (if present). The previous algorithm is applied to this

structure; only the body has to be subjected to the special treatment described below. We also

assume that each element of the list body, except the last, includes the following delimiter.

A new integer attribute is introduced for nodes which are list elements: d.collapsed has

value 0 if dis not is the first element in a collapsed sublist; otherwise, its value is the number of

elements in the collapsed sublist beginning with d. The head of the last. collapsed sublist encoun-

tered so far is represented in the following procedure by variable start. The fundamental pro-

perty of the algorithm is expressed by the loop invariant; note that the validity of this invariant

results from the Consistent Allocation Theorem. The Fairness Theorem implies that space is

allocated to the various elements in a manner which is compatible with their relative impor-

tance, as expressed by their “share” attributes.
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procedure Fit_list_body (in w: WINDOW;

in out a: NODE -- a represents a list body)

var collapsing, too_selfish : BOOLEAN ;

w’: WINDOW ; :

total_shares, remaining_shares, sublist_shares, mazimum_ratio : INTEGER ;

grouped : INTEGER ; start : NODE ;

collapsing := false ;

total_shares = yy, d.share ;
ad € children (a)

remaining_shares := total shares ;

mazimum_ratio = w [J MINWINDOW ;

for all children d of ado

{loop invariant:

the space allocated so far does not exceed w and

if d is not the last child of a, then

w@® ([totalshares / remaining_shares|) () MINWINDOW}

remaining shares := remaining_shares - d.share ;

too_selfish := d is not the last child of a and

([total_shares / remaining. shares|) > mazimum_ratio ;

if

not collapsing ——>

w':= w@® ([total_shares /d.share]) ;

if

w! © MINWINDOW and not too_selfish —>

Fit (w', de+);

grouped == 0

0 not w’ (©) MINWINDOW or too_selfish —>

collapsing := true ;

sublist_shares := d.share ;

start := d; grouped -= 1

end if

gj collapsing —>
sublist_shares := sublist_shares + d.share ;

w's w@ ([total_shares / sublist_shares]) ;

if

not w’@ 2 © MINWINDOW or too_selfish

—> grouped -= grouped+1

{] © 2@) MINWINDOW and not too_selfish —>

. start.collapsed := grouped ;

Fit (MINWINDOW, start);

Fit (w'@ MINWINDOW, de)

collapsing := false ; grouped := 0

end if

end if

end do ;

if

not collapsing —> skip

{] collapsing —>

start.collapsed := grouped ;

Fit (MINWINDOW, start)

end if

end procedure
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10 - PRAGMATICS AND CONCLUSION

10.1 - Usage

The first version of the Cépage system was implemented on IBM 3081 hardware, under

MVS/TSO. It uses IBM 3279 terminals, and takes advantage of the seven colors and various

special effects (reverse video, etc.) available on these terminals to display a clear picture of the

document. For example, a syntactic type name like <statement> is displayed in a different

color depending on whether it represents a non-refined operand or an operand which has been

refined but must be abstracted for lack of space.

‘The system is currently being rewritten and expanded for Vax-Unix and especially for SUN

workstations, which provide a nice environment for such software (high-resolution screen, avai-

lability of various type fonts, mouse, etc.).

The IBM version uses the display algorithm described in this paper (with some minor

differences for list nodes). We have found the results to be up to our expectations, the algo-

rithm displays what we would like it to. We feel that this is a strong case for the fully

automatic pretty-printing strategy which we adopted when designing Cépage: the display policy

is determined by the system solely from the grammar, using universal rules {of course, the

designer of a grammar may add provisions corresponding to special formating requirements).

10.2 - Focus Management

The only serious problem which appeared in actual usage of the display algorithm was

connected not with the algorithm itself, but with the way it is used by the rest of the system.

The display procedures are called by the editor with two arguments: a screen area s and a

focus f, Sometimes the focus chosen was not the best possible one. This is because the focus was

determined rather conservatively by the editor, so as to be close or identical to the user's logical

“focus of interest” (e.g,, if the user requests a refinement, the node being refined). In some cases

this results in the display not providing enough context. In principle, the solution is simple:

choose a focus higher in the tree. The reason a more conservative policy was used was the fear

that, in some cases, the user might get stuck by being unable to force the display algorithm to

show details he needs to see (e.g. an operand which he wants to refine or explore but whose

father in the tree always gets abstracted).

‘The solution which is currently being implemented relies on the following two techniques:

= Using more boldly the possibility of assigning widely differing “shares” to the various
nodes (section 6.5), so that a node can become a “VIP”, even if it is far down from the

focus, by receiving a high share;

- Dividing the display process into two phases; the first (see section 4) calls procedures

Decorate, Measure, Fit; the second, Buildtezt and Display. The editor will perform the first

phase using an “optimistic” focus, high in the tree. Before performing the second phase,

i.e. the actual display, it will test whether any "VIP" node has been abstracted and, if so,

will go down to a more conservative focus, Of course, care should be taken to adopt a

strategy which will result in the target being hit on the first try most of the time.
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10.3 - Implementation

Gépage has been implemented in Pascal; the resulting program includes about 6200 lines,

of which about one third are devoted to the display algorithms sketched here. There is also

about 4000 lines of supporting software, essentially the Gescran package for screen management

[2] and associated tools, mostly in Fortran 77.

We have not performed precise time measurements on the algorithm; in practical usage,

the real-time response to all requests was immediate, with no observable delay.

10.4- On Methodology

One of the essential driving forces in the design of the algorithm described here has been a

constant concern for simplicity. We hope this goal has been reached.

‘The algorithm was conceived as the system was still at the specification and global design

stage and described in a first version of this paper [13], written long before any code was pro-

duced. The only new concept added since then is the formalization of the ‘calculus of windows”

(section 5) which occurred to us as we were writing this second version. The various invariants

and abstract properties were there from the beginning, aad we feel that they helped us

significantly in getting the design and the code right:

‘The “calculus” was initially added just for explanatory purposes, but took more impor-

tance as we were improving this paper and in fact made it possible to find the solution to the

problem of languages with built-in line breaks (section 8.5), This problem had not been evi-

denced by the first implementation, which we only tested on free-format languages, and when

we first discovered it we feared it might require complete re-design of the algorithm; it was thus

a relief to find that the simple solution of section 8.5 is obtained by a minor change to pro-

cedure Measure and fits well into the overall picture, The calculus also allowed us to simplify

and improve the algorithm for lists (section 9).

The approach followed for the design of this algorithm might be called “the poor man's

formal specifications”; it entails using semi-formal assertions and invariants for the design of

algorithms; for the design of the system as a whole, we also used pieces of formal specification,
using elements first from the Z specification language {1}, then from the M Method {14], which

emphasizes modular descriptions (since the first implementation was completed, an almost com-

plete formal specification has been written in M and will serve as a basis for the next implemen-

tation).

When describing our approach as “semi-formal”, we mean “as formal as one needs to be

to get the job done well”; the aim is to obtain the best possible cost-benefit ratio, where the

cost is the effort put into specification and global design, and the benefit is quality of the result-

ing software and speed of implementation (the detailed design and coding of Cépage were per-

formed by one of us, JMN, in ten weeks).

We think that such a moderately formal approach is representative of what can be

achieved today, without undue effort, in applying modern software engineering techniques to the

design of realistic software.
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‘This is a first draft of Chapter 3 of a book in preparation. The working title of the book is Applied

Programming Methodology.

The book follows the spirit of Méthodes de Programmation, which I co-authored with Claude
Baudoin (from Schlumberger); this text was published in 1978 by Eyrolles in Paris. The present work is

nol, however, a translation of the former one; shortly after publication of the French book, we did con-

sider translating it into English, but for various reasons this project was delayed and it soon became clear

that an entirely new design was needed. Claude did not wish to participate in such an endeavor; what

follows is thus my sole responsibility.

The projected audience of the book includes practitioners (engineers, programmers, etc.) who are

looking for a readable survey on modern programming concepts, as well as students, for whom it is

intended as a textbook to be used in connection with courses on programming methodology, programming

languages, programming techniques or software reliability.

The book uses several programming languages as a means to exemplify the programming concepts

discussed and to deepen their analysis. The languages studied include Fortran, Pascal, Simula 67, Ada,

Modula, Lisp and, to a lesser extent, PI/I, Cobol, Algol W, Smalltalk and APL.

The tentative plan of the book is as follows.

Chapter 1: The challenge of software engineering

A short introduction recalling the basic problems of software engineering, summarizing the

current state of the art, and describing the “two schools" of software engineering.

Chapter 2: The structure and role of programming languages

A description of the structure of programming languages, introducing the basic issues in

language design and discussing the role of languages in programming.

Chapter 3: Control structures: Fundamentals (This Chapter).

An introduction to the basic control structures of sequential programming, using from the

outset a systematic, semi-formal approach. Includes a discussion of specification-directed program con-

struction,

Chapter 4: Control structures: Techniques

All elaboration on the concepts introduced in the previous Chapter: variants of the basic pat-

terns; control stuctures as implemented in various languages; technical problems associated with pro-

cedures. ‘

Chapter 5: Data structures and their description

An introduction to the practical use of abstract data structure descriptions. Emphasizes

hierarchical definition of types and reuse of previously written descriptions (through mechanisms of

enrichment and restriction derived from those of Simula, Z and Clear). Offers three levels for the descrip-

tion of data structures: implicit (ie, by one or more abstract data types), constructive, physical.

Chapter 6: Modularity

A discussion of some of the main requirements for modular programming and of existing tech-

niques. Presents a comprehensive definition of modularity through a set of “criteria”, “principles” and

"keywords", and shows how modular designs can be obtained. Emphasizes the object-oriented approach

and ita implementation in such languages as Simula, Smalltalk, Ada and Modula.

Chapter 7: Recursion and Functional Programming

An introduction to the "other culture” of programming, with hints for the practitioner as to

how lo use its concepts.

Inclusion of the next two Chapters is still a matter of discussion.

Chapter 8: Some fundamental data structures

A systematic presentation of some of the most useful data structures, from specification to

implementation, the latter including coding examples in various programming languages.

Chapter 9: Some fundamental algorithms

A systematic presentation of some important algorithms, chosen both for their methodological

interest, clogance and practical usefulness.

.. The second [precept I devised for myself] was to divide each of

the difficulties which I would examine into as many parcels as tt would be

possible and required to solve tt better.

The third was to drive my thoughts in due order, beginning with

these objects most simple and easiest to know, and climbing little by hitle,

so to speak by degrees, up to the knowledge of the most composite ones:

And assuming even an order between those which do not naturally precede

one another.

Descartes, Discourse on the Method (1637)
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3.1. - CRITERIA FOR CONTROL STRUCTURES

In the previous Chapter we have introduced the basic duality of programming: control vs. data.

The present Chapter is a study of the firat term in this opposition.

The question at hand is simple: how should we organize the operations of a program?

More precisely, we are looking for a set of mechanisms which will make it possible to construct com-

plete programs by various combinations of the basic statements studied in the previous Chapter, such as

assignment, input, output, etc. Such mechanisms, allowing the programmer to prescribe the execution-

time sequencing of these basic statements, are called control structures.

In the search for a good set of control structures, we shall be guided by four basic criteria: simpli-

city, clarily, hierarchy and provability.

« Simplicity. We are looking for a small set of constructs, easy to understand and remember, yet

capable of describing any useful arrangement of operations.

e Clarity. A program has a finite text; the object which this text describes is a very complex one,

consisting of all the possible runs of the program, that is to say all the possible sequences of execu-

tions of its operations (depending upon the input data); this usually includes many repetitions

(loops), In other words, the program text is a static description of a set of highly dynamic

phenomena. It is crucial that the constructs used for this description give to the reader the clearest

possible image of these phenomena.

e Hierarchy. It is well-known (at least since Descartes’ Discours de la Méthode} that a complex

ahject, be it natural (as the system of plants on earth) or human-made (as a mathematical theory)

may be understood and mastered only through decomposition. Programs are no exception and the

constructs we are looking for should lend themselves to the process of combination and decomposi-

lion,

e Provability. If "reliable software” is to be more than a catch phrase, one should only write pro-

grams whose precise behavior can be unambiguously and easily predicted. This is true of the basic

statements described in the previous Chapter: we can rest assured that execution of the assignment

yi=z—1 will lead to a state where y > 0 if an only if was initially greater than or equal to 1 (at

least assuming perfect arithmetic, no overflow, etc.). It should be possible to draw the same kind of

conclusions for actual programs built with control structures. Note that we shall be less interested

in proving that programs are “correct” after they have been written than in constructing pro-

grams in such a way that this correctness becomes obvious.



3.2. - SPECIFICATION OF ACTIONS

3.2.1. - Assertions

By insisting on provability we have hit upon one of the basic problems of software engineering: if we

want to be able to check that our programs are correct, we must be able to express what they are sup-

posed ta do. The task of defining the function of a programmed system is known as specification; we

mentioned in Chapter 1 the importance of this step, and now is our first opportunity to study it con-

crotely.

low can we specify the effect of programming constructs, such as basic statements or control struc-

tures? In other words, quoting the title of a classical paper in this field (by R.W. Floyd), how can we
assign meaning to programs? One popular answer is based on the notion of assertion. An assertion is a

property involving the objects of & program, such as

fis sorted

z>0

Cis busy

ged(z,y) = ged(a,b)
m is definite positive

(assuming ie. that f isa file, z,y,a,b are integers, C is a communication line, m is a matrix).

3.2.2. - Annotated programs

To express the meaning of a program statement, we may give the relationship between assertions

which are true before and after execution of this statement. For example, if the assertion z > | is true at

some point and the statement y:=z—I is executed, then the assertion y > 0 will be true subsequently.

We shall express such facts by writing the assertions in the programs themselves, as special com-

ments delineated by braces:

{.-assertion...}

{n this way our progtam will be annotated by arguments (assertions) pertaining to show their

correctness. For instance, we shall write the annotated program

{given z> 1} y= 2-1 {then y > 0}

to express the above property z > 0, assumed to be true before execution of the statement y:=z—I, is

called the precondition of this statement in the case considered here; y >0 is the corresponding

postcondition.

In order to fully understand an annotated program, it is important to see clearly which properties

are ussimed to be satisfied before its execution begins, and which one will be guaranteed to hold after its

execution; hence the keywords given (for preconditions) and then (for postconditions) in our notation for

assertions,

3.2.3. - Strongest postcondition, weakest precondition

In the example above, y >0 is not the only postcondition we may attach to y:=z—I given the

precondition 2 > 1; we may as well write the correct annotated program elements

{given z> fh y:=2-t{y> -}

{given z> I} y:= 2-1 {y# 0}

cle. Tt is clear, however, that they are not as interesting: the postcondition y > 0 embodies the maximum

uifocmation we may assert to be true after execution of y:=z—I, starting in a state where z > I. Asser-

tion y > O is thus called the strongest postcondition of the statement with respect to the given precon-

dition

ew

Similarly, if we take 2 > 2, z =7 etc. as preconditions in this example, with y > 0 as postcondi-

tion, we still get correct annotated programs. However, z >I is the least constraining precondition

which will ensure y >0 as postcondition after execution of y:=z—1. It is thus called the weakest

precondition of this statement with respect to the given postcondition.

An important property of annotated programs is that, starting from a correct annotated program,

we may always replace the precondition with a stronger one and/or the postcondition with a weaker one,

and still have a correct annotated program. That is, if

{given P} A {then Q}

is a correct annotated program, and if P’ and @’ are such that P’ => P (P! implies P) and Q => Q',

thon the following are correct annotated programs:

{given P'} A {then Q}

{given P} A {then Q'}

{given P'} A {then Q’}

This property means that weakest precondition-strongest postcondition pairs contain more informa-

tion than other pre-post pairs and are thus to be preferred. Once available, they make it possible to

deduce many other pre-post pairs.

3.2.4. - Specifying statements

To specify the meaning of any statement A, we will use the above principles: i.e. we will try to

characterize statement A by a pair of assertions, P, Q, so that we may write

{given P} A {then Q}

where P is the weakest precondition of A with respect to Q and Q is the strongest postcondition of A

with respect to P; ie. Q will be true after execution of A if and only if P was true before.

But in the example above the chosen precondition and postcondition, even though they form a

weakest-strongest pair, are not general enough yet: other weakest-strongest pairs seem just as informa-

tive, e.g.

{given z< 0} y:=z-1 {theny<-1

or

{given z= 7} y:=-1 {then y= 6}, ete.

The rule should thus involve not just a pre-post assertion pair, but a whole class of such pairs. Here

the most. general property we may express about the assignment y= z-1 is that whatever condition we

ase on y will be true after execution of this statement if and only if it was true of z—1 before.

In other words, for any assertion P, we may write

{given P7"} ySz—t {P}

where P/-! (read "P with 2-1 for y") means “assertion P, with z—1 substituted for every occurrence of

y". Vor instance, if P is the assertion y > 0, then Py~! is z-1 > 0; if P is z+y > 0, Py, is ztz-1>0

(om assertion which, because of the properties of numbers, is equivalent to 2X 2 > 1}; ete. Thus, the rule

for the assignment y:=z—I, as evidenced by the previous examples, is that one gets the precondition from

Ihe postcondition by substituting z-1 for y. Note that this mechanism gives a weakest precondition-

strongest posteondition pair.

‘This rule is a particular case of the general rule for assignment, namely: for any statement of the

form rose, where v is a variable and ¢ an expression, and for any assertion P, we may write

{given P) urme {then P}
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where Pé means "P, with every occurrence of v being replaced by e”.

Note that this holds whether or not the variable v appears in the expression ¢. The reader is

invited to apply this rule to the following annotated program examples, then check the results with his

intuition about the effects of the statements.

{givenz >0} z:=z+1 {then z > 1}

{givenz <0} zi=zty {then z <2 x y}

{given | 2] #lyl}2o= Soar {then z#l}

{given first non-blenk character in file f ts alphabetic}

z:= first non-blank character of f

{z 1s alphabetic}

{given cre z?-y? {then y = zi (find weakest precondition)

{given z > y} 2 :=2?—y? {then 7} (find strongest postcondition)

A very important point regarding the rule for assignment is that it works from right to left: the

precondition is obtained from the postcondition (through a substitution of variables), rather than the

opposite. This has important consequences on the way program correctness is checked in this method (see

section 3.2).

At this point, the reader may be little puzzled. What is the purpose of all this game with asser-

tions? What have we gained? So far, very little. Most of the properties of statements which we have

obtained are trivial. Yet we have established a framework which will enable us to assert more and more

interesting facts about programs. By annotating programs, we further our goal of obtaining static

descriptions of dynamic phenomena: while a statement is an event, an assertion is a property; the

former is dynamic, the latter static, as a mathematical theorem which expresses that certain objects

satisfy certain conditions.

Thus there is an important conceptual difference between the statement z:=y and the assertion

z=y, The former is an instruction which is to be carried out by a computing system; the latter ts a pro

perty which may or not be satisfied by variables z and y. This is why the pre- and postconditions associ-

ated with a statement, or rather the relationship between them, may be said to give the meaning of that

statement

Any statement may thus be viewed as an assertion transformer; this is also true of any program,

asx characterized by its precondition (hypothesis on the input data) and postcondition (conclusion, ie.

requirements on the computed results). Explicit writing of these assertions will help remind us that a pro-

gram is not just a sequence of computer codes put together haphazardly, but the mode! of a process

doxigned to solve a definite problem. Here are some examples of how programs may be specified in this

fashion:

{given file f consists of records {1,..fn, and every record r has an integer key k(r)}

SORT

{then g consists of records gy,..g, which are a permutation of fiy.fn

and &(g) < ++ * S B(9n)}

{given A ts a non-singular (n.n) matriz; 6 ts an n-vector; € > 0}

LINEAR-SOLVER

{then z is ann-vectorand {| Az || <«}

{given J ts a finite sequence of user requests}

OPERATING_SYSTEM

{then all requests in J have been correctly processed}

As it is clear from these examples, we are not very firm about the language in which assertions are

expressed. Whenever adequate, we shall use predicate calculus (i.e. logical formulae with symbols like

and, or, for all, for some, etc.); in many cases, however, we shall sacrifice rigor for ease of expression

and understanding, and use English phrases.

Having now introduced the framework which will enable us to reason about control structures, we

are ready to study the basic set of structures which will be used in the rest of this book,
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3.3. - FOUR STRATEGIES

Control structures are tools for constructing programs, that is, for solving problems.

Whon faced with a problem to solve, one may adopt several strategies. Four of the most common

ones are summed up in figure 3.1.

A; Find somebody who will do it for you

B- Distinguish between cases

C- Decompose into successive subproblems

D- Find a tentative solution, then improve it if necessary

Figure 3.1: Four ways to solve a problem

Most people use these four strategies daily. In programming, they give rise to four fundamental con-

trol structures.

© A gives the procedure call

© B gives the conditional

© C gives the sequence

© D gives the loop

We now study these four structuring mechanisms, in this order.

ails

3.4. - PROCEDURES

3.4.1. - Definition

A procedure is used whenever there is a need to refer to a certain action, the effect of which is well

defined, without giving the details of how it is to be carried oul.

A procedure is defined by a procedure declaration. It may be used through a statement termed a

procedure call,

A procedure declaration comprises two parts: a specification, which describes the effect of the

action associated with the procedure; and an implementation, which is a (possibly complex) statement

performing this action.

\ proceslure call is a statement referring to a procedure specification; the effect of this statement,

occureing in any program unit which has access to the procedure, is to execute the implementation of the

procedure,

‘The fundamental property of procedures is that cafls only make explicit references to the

sperification, not to the implementation. This means that the procedure is known to the outside world by

its effect, not by the way it achieves this effect. Thus a procedure is the abstraction of a (possibly com-

plex) stutement.

In general, the action associated with the procedure will compute a certain number of objects, called

outputs, using a certain number of objects, called inputs. The inputs may be different in different calls

lo the same procedure; these calls will Uhen in gencral yield different outputs.

‘The specification of a procedure thus comprises three elements:

¢ 1- The name of the procedure;

© 2- A set of requirements for the inputs to be given to the procedure in any call,

¢ 3- The properties of the outputs computed by the procedure in any call.

In simple cases, the effect of the action associated with the procedure call is entirely defined by (2)

and (3) above. (For more complicated cases, we shall introduce "inputs-outputs” below).

The implementation of the procedure will be a statement whose effect is to compute outputs as

roquired by (3), using inputs satisfying the requirements of (2).

The.call to the procedure will include a reference to its name, a set of objects satisfying the require-

ments of (2), to be used as inputs, and a sct of objects to be used as outputs; execution of the call will

censure that they satisfy properties in (3).

‘The inputs and outputs used in any particular call are called the actual arguments (or actual

parameters) for this call.

3.4.2. - Use of procedures; top-down, bottom-up

Procedures give a way of referencing = possibly complex course of actions by « single name. They

play'a fundamental part in the construction of programs; they may be used in two manners:

© A- In the design of a program, it frequently happens that the need for an action satisfying certain

requirements is recognized, but one does not want to spell out the details immediately. In such a

case, a sensible thing to do is to write 2 procedure specification corresponding to these requirements,

J use a procedure call in lieu of the required action. The implementation of the pracedure will be

written only later, after the specification. This technique allows one to concentrate on what an

action results in rather than on how it does it: it uses procedures as a mechanism of abstraction.

eB - When a certain problem which recurs frequently has been solved once, it is good practice to

recard the solution as a procedure, with a well-documented relationship between input and output,

so that it may be used again whenever a similar problem arises later. In this case, a complete

specilication may be written after the implementation. Procedures used in this fashion add new ele-

ments to the set of available operations, as offered by the programming language, operating system

and underlying hardware. This use of procedures may thus be characterized as a mechanism of
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‘These two uses of the procedure concept correspond to two basic approaches to program design: the

so-called top-down and bottom-up strategies, respectively. A convenient way to describe them is to use a

dingram (fig. 3.2) which is ordered in levels of abstraction, the highest one being that of the problems to be

solved, the lowest one being that of the machine in terms of whose operations the solution will have to be

expressed. Note that this machine is usually not the physical machine, but the virtual machine for

which programmers actually write programs. It is defined by the set of possibilities offered by the combi-

nation of a programming language and accessible features of the hardware and operating system (e.g. the

“Fortran - MVS" machine, the "C + Unix” machine, the "Lisp + Lisp machine” machine, ete,).
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Fig. 3.2 - Top-down, bottom-up

In the top-down method, one starts from the specification of the problems to be solved and expresses

thetr solutions in terms of the solutions (yet to be worked out) of a small number of simpler problems

(A.B.C, on figure 3.2). The same process is then applied to these new problems, and repeated until one is

Icfl with problems so simple that they may be solved by applying operations of the virtual machine, e.g.

programming language statements. The method is also called, for obvious reasons, programming by

atepwise refinements. [t will only work if it indeed leads to the "bottom", that is to say, to a state

where everything is expressible in terms of the operations of the virtual machine: every refinement of a

problem should yield one or more new problems which are actually simpler, i.e. belong to a lower level of
abstraction.

eT

The bottom-up method, on the other hand, builds on solid ground by starting from what already

exists - the virtual machine and previously written program elements - and combining existing elements to

icld more and more complex ones. It will only work if care is taken to ensure that these elements are

indioed composable, and that the "top" (a solution to the problems at hand) is indeed reached.

Both of the above schemes actually characterize general approaches to program design rather than

precise strategies which can be used as recipes. It would be foolish to dismiss either one.! The top-down

approach is a very rational way to start working on a problem and decompose it into simpler ones; it is

very efficient as a general design guideline. We will however discover, while studying modularity (Chapter

6) that its application meets some severe limitations. The bottom-up method, on the other hand, favors

the very important criterion of reusability of software, one of the key issues in software engineering.

Any reasonable design methodology should embody both a top-down aspect (which will put the

cmphasis on the new aspects of the problem to be solved every time the methodology is applied) and a

battam-np one (which will emphasize re-use of ezisting hardware and software tools).

In both cases, there is a need to name and specify solutions to subproblems; this can be done with

procedures,

3.4.3. - Notation for procedures: specification and implementation parte

We will use for procedures a notation which distinguishes between the “specification” part of each
proccdure and the "implementation" part.

‘The specification part describes the arguments that the procedure expects and those which it will

return, as follows:

procedure P specification

in zy: ty 22i ty oot Smt tn

{assume PRE} - - see below

out yt yas be ua th!

{ensure POST} - - see below

end procedure specification - - P

‘The names 2), 2% ** 2m, Yu Yn °'° Yq tepresent objects or values that will be passed across

between the procedure and other program units They are called the formal arguments of the pro-

cedure, Formal arguments stand for actual arguments which will be passed to the procedure in any par-

ticular call, Note that each formal argument has a specified type, and that any corresponding actual

argiment should conform to this type.

‘The implementation part describes statements that fulfill the purpose of the procedure as described

in the specification part: .

, Yat—) implementationprocedure P (2, 22... Zm: Yat) Y2

declarations ;

statements

end procedure implementation - - P

1 Funthasinsts of the top-down method sometimes refer to Descartes as having shown the way. The quota-

tion at the beginning of this Chapter (a famous excerpt from the preface to the Discours de la Méthode) shows
very etearly that Descartes’ approach to problem solving inchided both a top-down and a bottom-up com-

It Is interesting in this respect to compare his second and third "precepts".
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As shown here, we repeat the formal arguments, in parentheses, in the implementation part, as a

reminder to readers of the procedure implementation. We include only their names, however, and do not

ropeat their types. We mark the out arguments with an arrow, +, to remind the reader that the pro-

codure must assign a value to the corresponding actual arguments.

In some cases, we may wish to give the specification and implementation together; we shall then

merge the two notations as follows (without repeating the formal arguments in the implementation part):

procedure P specification

in 2): fy, fg te, °° 2m ibn

{ensure PRE} - - see below

a

{assume POST} - - see below

implementation

declarations ;

statements

end procedure - - P

3.4.4. Notation for procedures: assertions

In accordance with the discussion at the beginning of this Chapter (3.2), we would like the

specification part to give not only the list of all in and out formal arguments together with their types,

but also an abstract description of the procedures effect. Keeping in line with the above presentation, we

will characterize the procedure's effect by assertions: a precondition, which will appear after the list of

formal input arguments, preceded by the keyword assume, and a postcondition, which will appear after

the fist of formal output arguments, preceded by the keyword ensure. So the complete form of a pro-

cedure specification is as follows:

procedure P specification

in zy 3 ty, Sgt ta, ey Sm ttm

{assume PRE (2, 29, .--) Zm)}i

out yt ts yet tay a Yat be
{ensure POST (yj, Ya) eos Yat Zar os Im }}

end procedure specification - - P

A procedure specified in this fashion, where PR# (...) and POST (...) are assertions, will yield, when

called with input arguments satisfying PRE, output arguments satisfying POST.

Note that PRE may only depend on the input values, but POST will in general involve both output

and input arguments, since it is the procedure’s purpose to compute the former from the latter.

For example, we could specify in the following way a procedure which computes the maximum value

contained in a file of real numbers:

procedure File_mazimum specification

in f; file of REAL

{assume f is non-empty}

aut r: REAL

{ensure z = a for some cin fand z > 6 for all 6 in f}

end procedure specification - - File_mazimum
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Note that by requiring precise assume and ensure clauses, and giving reasonably meaningful names

to procedures, we do not need the header comment usually required by good programming practice for

each procedure (e.g. "compute the maximum of file f, assumed to be non-empty, and return it via 2”).

The implementation of a procedure specified in this manner must be a statement JMP, such that the

following annotated program fragment is correct:

{given PRE (21, 29, ... Zm)}

IMP

{then POST (ya, Yay oy Yas 21 2 + Zm)}

In the implementation of the procedure (IMP), the names of the input arguments (2,, z9, ..., 2m) will

he considered to denote constants of the appropriate types (t), ts, ..., tm): their values may be used, but

not changed. The output arguments (y;, yo, ..., yx) Will be considered as variables of the appropriate

types (¢,/, ty! ..., 7), uninitialized upon activation of the procedure.

Note that the requirement that in arguments be left unchanged implies that the precondition

expressed in the assume clause still holds when execution of the procedure terminates (this will not be

true any more when we introduce in out parameters in 3.4.5 below). This requirement also eliminates

trivially wrong implementations, such as realizing file.mazimum above by assigning 0 to z and assigning

to f the value of a file with a single zero element.

Here is an example of a procedure specification and implementation (the example is trivial because

we have not yet introduced the other control structures necessary to describe interesting computations):

procedure Compute_account_balance apecification

in credit, debit: REAL

{assume credit > debit};

out balance: REAL

{ensure balance = eredit-debit}

implementation

{given credit > debit}

balance := eredit-debit

{then belance = credit-debit and balance > 0}

end procedure - - Compute_account_balance

To denote a procedure call, we will follow the Algol tradition by just writing the name of the pro-

cedure (without any special “call” verb as in Fortran, Cobol or PL/I) followed by a list of actual argu-

ments, ie objects of the calling program which correspond one by one to the formal arguments, as fol-

lows.

P(a),02, we Om bye boem, bye)

Every actual argument must be of the same type as the associated formal argument.

The details of argument transmission are studied in Chapter 4. At this point, it suffices to note that

actual arguments-corresponding to out formal arguments will be assigned a value by the procedure; to

make sure the reader of the program is aware of this important feature of the procedure call, we put an

arrow (denoting assignment) after the name of any such actual argument (e.g. 6;+-). Note that any pro-

gram object used as out actual argument must be assignable; thus it must be a variable or array element

ete. bil nota constant or an expression

A program calling the two example procedures specified above could have the form.
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variables g : file of REAL,

y: REAL,

0, ¢, d: REAL ;

read g;- - the file read should be non-empty

File_mazimum (, y);

d ;

Compute_account_balance (c, d, 6

3.4.5. - The case of in out arguments; snapshots

For some procedures, we need arguments of mode in out, i.e. arguments which stand for objects of

Lhe calling program whose value may be used and changed by the procedure. In theory, the in out mode

is superfluous, since an argument of this mode may always be replaced by two arguments of the same
type, one in and one out. When, however, it is known that after every call of the procedure the value of

Ue in actual argument will not be needed any more, then merging the two arguments into one will save

space in the calling program (and perhaps in the procedure as well, depending upon the passing mechan-
ism which is used: see Chapter 4).

is

In the same way that our notation draws the reader’s attention on out parameters in parame-

ter lists (both in calls and implementation parts) by drawing a simple arrow after the argu-

ment name (e.g, a+), we will signal in out parameters by a double arrow (e.g. a+).

Arguments of mode in out raise some difficulties with respect to the specification of procedures. We

will include their list between those for in and out arguments. Their values will usually be needed for

reference in both the expected precondition (assume) and the guaranteed postcondition (ensure), so that

we shall write the former after the in out list and the latter after the out list, as follows:

procedure Q specification

in 2y ft 22 5 ta yey Emo tm

im out 21 5 fy, 22! te yn Bp tty

{asaume PRE (25,20, ... ,2m2:i22 «1% )} 5

1

out yi: tives ty, - Unt th
{ensure POST (yiiYas ++ © 1 Yns21Z20 © «+ Fm rZ12Z2) » -~ »Zp)}

end procedure specification - - Q

One should note, however, that the names of the in out arguments (z),22, . . . ,z)) as they appear in
the ensure clause refer to the final values of the corresponding objects (i.e. the values which the pro-

cedure has assigned to them when it terminates its execution), whereas the same names denote the initial

values in the assume clause. Usually, one will want to characterize the new values in terms of the old

‘ones, so one should have some way of recording the latter.

For example, if we are specifying a procedure which writes an element at the end of a file, this file

will be denoted by an in out parameter; the specification should say that the new file has the same ele-

ments as Uhe old one, plus one at the end. So, in order to be able to write the postcondition, we need a

way of denoting both the initial and final states of the file. “

To be able to express such requirements, we introduce the notion of snapshot. A snapshot is a

tiame associated with the value which a certain object of a program (e.g., a variable, an argument, etc.)

takes al a certain point in the execution of this program.

A value becomes associated with a snapshot in a certain assertion; to denote this association, we

will uso he assignment notation in the assertion:

{ ,assertion... ; 8 = uv}
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where » is an object of the program, and s is the snapshot. This will be called a snapshot assignment.

Note, however, that a snapshot is not equivalent to a variable; it is in fact a much simpler object. We

enforee the following rule, which seriously restricts the manipulations which may performed on snapshots:

Snapshot Rule

Let sn be a snapshot.

There can be at most one snapshot assignment to sn

in the program unit in which sn appears.

Thus a snapshot may only be used to record the value of a certain program variable or expression

at one point of the program, so that further assertions may refer to that value. None of the games per-

mitted with variables, like changing their values, passing them as actual parameters to a procedure, etc.,

is applicable to snapshots.

snapshots will allow us to specify procedures with in out arguments, as in the following example

specifies tions:

procedure Round_to_nezt_power_of_two specification

in out z : INTEGER

{assume z >0 ; zo:= 2};

{ensure z < 2X 2) < 2X z and z=2" for some n in INTEGER}

end procedure specification - - Round_to_nezt_power_of_two

procedure Sort_file specification

(in out f : file of T

{assume .... ; fo= f}

{ensure fis a permutation of fo and f is sorted)

end procedure specification - - Sort_file

It will also be convenient to use snapshots and snapshot assignment in assertions other than assume

and ensure clauses (provided there is only one snapshot assignment per snapshot). Procedure SORT», for

instance, is a correct implementation of SORT if and only if the following is correct:

ty{given fo

SORT,

{then f is a permutation of fo

and f is sorted}

Snapshots are only needed in connection with in out parameters. An alternative to using them is to

have a slightly more complicated notion of assertions, so that postconditions involve not only the current

values of program objects, but also their initial ones. This is the solution used in [Jones 80). [t is

thematically more elegant than the use of snapshots, which are @ kind of hybrid concept, halfway

between the notions of variable in mathematics and programming. This other solution results, however,

‘in assertions becoming longer (since objects will appear twice); moreover, it does not combine well with

the idea of annotated program, which we find very useful.

‘The reader should be warned that the difficulties encountered in dealing with procedures with in out

arguments do not just stem from technical problems connected with our (or another) notation for pro-

cedure specification, but have much deeper roots. They reflect the inherent complication of this notion,

having to do with the more general problem of side effects (see Chapter 4). In functional
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programming (see Chapter 7), every procedure is the implementation of a function in the mathematical
sense of this term, with only in and out arguments. One thus avoids all the problems encountered with

in out arguments.

The main reason for having in out arguments is one of efficiency: in most programming environ-

nicnts. we cannot accept that every execution of, say, a “write” operation relative to a file create a new
version of the file, or that any array be re-allocated each time it is sorted.
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3.5, « CONDITIONALS

\\e now turn to our second basic structure, the conditional.

\s announced in 3.3, conditional statements, or just conditionals, correspond to the problem-solving

iectinique of reasoning by cases. It is useful when a problem to be solved, say P, is the “union” of a cer-

tain unmber of problems, say Py,P2,...,P,, in the sense that any instance of P is also an instance of

one (ar more) P,. Moreover, cach P, should be casier to solve than P, and there should be a simple way

of finding, for any instance of P, what particular P, it belongs Lo. In practice, this means that we will

need to know, for every 1, a computable condition ¢, which is true if and only if a given instance of P is

also an instance of P;.

Solving a problem conditionally thus consists in decomposing it into simpler subproblems and con-

structing solutions to each of these subproblems. The program obtained in this way will, for any instance

of the problem, determine which subcase holds, and apply the solution of the corresponding subproblem

(figure 3.4).

Figure 3.3: Solving a problem conditionally.

More precisely, assume problem P is characterized by precondition @ and postcondition AR. A solu-

lion to this problem should be a statement 3 such that the following is a correct program:

{given Q} S {then 2}

We will have a conditional solution to P if we know some conditions ¢), ¢2,.. ¢,, and some state

ments S;, Sa, ... 5, such that the following two conditions are satisfied:

e A- At least one of the ¢, conditions holds whenever Q holds; i.e.:

Q => ¢, or ¢) or... oF Cy

e B Each S; provides a solution to the subproblem of P corresponding to the case where ¢, holds

initially (on top of Q); i.e. the following n annotated programs are correct:

{given (Q and c,)} 5; {then R}

{given (Q and ¢,)} S. {then R}

{given (Q and c,}} 5, {then R}

If these requirements are met, we can construct a program solution to P, which will work in the fol-

lowing way: in any particular instance of the problem, find a ¢, which is true (there must be at least one);
then apply the corresponding S,, The resulting program will be written:



{given Q}

it

a > SO

a> &f]

a

fn > Sn

end if

{then R}

In this if... end if notation for conditional statements, borrowed from Dijkstra*, the symbol (}

serves as a separator between tho various branches of the conditional statement; within each branch, the

nrrow => separates the condition ¢ from the associated statement S,. Each ¢, is called the guard of

the corresponding statement S, since it controls the condition under which this statement will be exe-

cuted,

It is important to note that the correctness of this program will only be guaranteed if both eondi-

tions A and B above hold.

‘A few examples follow. ‘The reader is invited to check their correctness, using the rule for assign
ment (3.2.3) wherever appropriate.

procedure Absolute_vaiue specification

in z : REAL;

out a : REAL

{ensure ¢ =| zl}

implementation

if

r>0 > a

250 — @:

end if

{then =| 21}

end procedure - - Absolute_value

2 We use end if rather than Dijkstra’s ff (which is if spelled backwards),
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procedure Mazimum_of.three specification

in 2), 22, 23: REAL,

out y : REAL

fenoure y= maz (21, 2). 25)}

implementation

if

2) > zy and 2, > 2) —> y:

> 2, and 22> 2; —> y

23> 2, and 23> 2, —> y:=:

end if

{then y > 2 and y > z, and y > z;}

end procedure - - Mazimum_of_three

‘The next example assumes the existence of three procedures, process_A, process_B, process_C, which

will correctly process a card of type A, B or C respectively, the type of a card being given by its first

character (the reader who finds cards a bit out of fashion may replace the word “card” with “user’s

requires” of “mouse selection in a menu").

procedure Process_card specification

in card ; array /1..80] of CHARACTER

{assume card/f/= 'A’ or card/1] = 'B' or card/1/ = ’C};

outr:R

{ensure r is the result of correctly processing card}

implementation

if

card[i] = 'A’ —> process_A (card, r=) []

card{t] = 'B' —> process_B (card, r+) []

cardj/t/= 'C’ —> process_C (card, r-—)

end if

end procedure -- Process_card

Note that the conditional construct in the last example is correct only because the assume clause of

the. procedure specification guarantees that property @ in the definition above will hold (at least one of

the guards is true whenever this statement is executed). An important feature of Lhe conditional as we

have introduced it is that a program containing a conditional statement

if

o> sg

a > SO

0
tr > S,

end if

is incorrect if it may attempt to execute this statement in a state where none of the c; guards is true.

Such an execution is impossible; if one really wants to imagine what “happens” when it is attempted, one

may think of it as raising an error (as when attempting to compute a/b where 6 is zero), or proceeding
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indelinitely without ever yielding control back, let alone producing any result.

Another interesting (albeit surprising at first) feature of this construct is that the guards ¢; are not

required to be mutually exclusive; if more than one is true simultaneously, the rule is that one of the

corresponding S; statements will be executed (and only one), but there is no way to tell which from the

program text (in particular, it does not have to be the first ¢, such that ¢; is true in the order 1, 2, ...n in

which the alternatives are listed. This rule follows from the fact that the n alternatives of the if...end if

play a symmetric role in the notation, and should thus be treated on a par at execution time. There are

other justifications, which will be discussed in Chapter 4.

These two conventions on the if statement (run-time error if no guard is satisfied, non-deterministic

choice if more than one is satisfied) contrast with what is found in conditional constructs of most pro-

gramming languages. Their motivations should be clear: provability and reliability. This discussion will

be pursued in Chapter 4 when we look at the familiar if... then ... else ... construct found in many

languages
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4.6. - SEQUENCING

Sequencing is also a problem-solving technique which entails decomposing a problem into subprob-

lems. lore, however, a solution to the initial problem will be obtained by sequentially composing solu-

lions to the subproblems, rather than by choosing one of them as with the conditional.

Sequencing will be appropriate to solve a problem P whenever there exists problems

P|. Ps. «++, P, such that each of them appears easier to solve than P, and applying successively solu-

tions 1o Py, Py, +++, Py yields a solution to P.

Mare precisely, let P be characterized by precondition @ and post-condition R; to solve P means to

find a statement A such that {Q} A {R} is a correct annotated program.

Figure 3.4: Solving a problem by sequencing

A solution to P by sequencing will be obtained if we know n statements S,, Sq, ...,.$, (n > 1) and

n +1 assertions So, $1, $2, °*°, S,, such that Sy= Q, S, =, and the m annotated programs of the

following form are correct (see figure 3.4):

{given S;_,} S, {then Sj} (i =1,2, --- n)

The solution to P by sequencing will then be a program whose execution consists in executing state-

ments S;, So, .., S, suecessively, in this order. We will write the resulting program using the semicolon

separator introduced by Algol 60:

{given Q} 9,359; -°- ; 8, {then R}

If necessary, we will explicitly introduce intermediate assertions:



~ 24.

given Q

Sui
{then Ai}

Say
{then Aq}

Saati
{then A,-1}

Sy
{then R}

A few examples follow.

procedure Rectangle specification

in width, height: REAL;

out perimeter, area: REAL

{ensure perimeter = 2 x (height + width) and area = height X width}

implementation

perimeter := 2 X (height + width);

{then perimeter = 2 X (height + width)}

area:= height X width

{then perimeter = 2 X (height + width) and area = height X width}

end procedure - - Rectangle

procedure Compiler epecification

in sp: SOURCE_PROGRAM

{assume correct (sp)};

out oc: OBJECT_CODE

{ensure oc is @ translation of ¢}

implementation

variables ts: TOKEN_SEQUENCE,

as : ABSTRACT_SYNTAX_TREE

st : SYMBOL_TABLE;

{given correct(sp}}

LEXICAL_ANALYSIS (3t, ts —);

{then I is the sequence of tokens from s}

SYNTACTIC_ANALYSIS (ts, a3 =, st =);

{then a is the abstract eyntaz tree corresponding ta !,

and st the associated symbol table}

CODE_GENERATION (as, st, o¢ +)

{then oc is a translation of {a, st/}

end procedure -- Compiler

‘The next example, from numerical analysis, is a classical method of solving systems of linear equa~

tions. ‘This example is typical of the way a problem may be solved by reducing it to a sequence of simpler
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subproblems. The program below assumes the existence of two procedures: Triangular-solver, which solves

4 linenr equation a X 2 = where the regular matrix a is lower-triangular (which makes the task much

easier than in the general case), and Choleski, which, given a square matrix a, computes two lower tri-

angular matrices @, and a such that a, X ay =a (this is called "Choleski factorization”).

procedure Linear_solver

in a: array /1..n, 1..n,) of REAL,

b: array /1..n] of REAL

{assume a is non-singular};

out 2: — array /1..n/ of REAL
{ensure a X z=}

implementation

variables a), cp: array /t..n, 1..n/ of RBAL,

y: array /1..n/ of REAL;

{given a is non-singular}

Choleski (2, a, ax%-);

{then a; X a; = and a, and ay are lower triangular, non-singular}

triangular-solver (ay, 0, y=);

{then a; X y =} and ap is lower-triangular, non-singular, and a, X @, = a}

triangular-solver (a2, y, 2—)

{then ap X t=yanda, X y=5and a, X a;,= a}

-+ Thus a, X ¢ X 2=b, givinga X z= db.

end procedure - - Linear_solver
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3.7, - LOOPS

3.7.1, - Overview

Our fourth and last basic structure, the loop, is an application to programming of the fundamental

technique of solving problems by approximation. Approximation is a very natural way to proceed when

one does not sce a direct way to solve a problem: make a guess; then look at the result; maybe you were

lucky enough to hit on a solution; if not, try to improve your current estimate, and repeat until you are

sulisfied with it. ,

Let us assume again that the problem to be solved is characterized by precondition Q and postcon-

dition R. Q is our hypothesis, or initial assumption, and A is our goal, describing the state that we hope

lo reach. We are looking for a statement $ such that the following is correct:

{given Q} S {then R}

In arder to find a solution S in the form of a loop, we necd five ingredients:

@ two conditions (boolean expressions), the invariant I and the exit condition FE

e two statements, the initialization Band the transition T;

© an integer expression, the variant V.

These elements must have the following three properties.

e1- The invariant J and exit condition E must provide a decomposition of the postcondition R, in

the sense that

Re=land E&

e2- The “initialization” statement, 8, must ensure, if executed in a state where the precondition Q

is satisfied, that the invariant J becomes true and the variant V (an integer expression involving

some objects of the program) becomes non-negative; in other words, the following should be correct:

{given Q} B {then J and (V > 0}}

e 3 - The “transition” statement, T, when executed in a state where the invariant J holds and the

variant V is non-negative but the exit condition E does not hold, should yield a state where J is

still satisfied (hence the name "invariant”), and V is still non-negative but has decreased (hence the

name “variant”), This property may be expressed by the fact that the following annotated program

fragment, which uses a snapshot for the initial value of V, is correct:

{given [and (not £) and (V> 0); Vo := V}

T

{then [and (Vy > V > 0}}

If we have found f, #, V, T and B with these properties, then we can construct a program solution

lo our problem, which will work in the following way (see figure 3.5): starting from a state where Q is

aitisfied. execute B, thus yielding a state where J is satisfied. Since R = [ and E, we may say that I is

in “approximation” of the postcondition R. If F also holds, then the initial "guess" was correct. If not,

the program will try to improve it by executing T; this, always performed under falsity of B, will not

invalidate f. The process will be repeated until & holds, thus A.
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The termination of this process is guaranteed by the properties of the variant V: since V is non-

negative after the execution of B, and every execution of T (if any at all) will decrease it if started in a

stite where £ is not satisfied, this cannot go on forever (remember that V is integer-valued and 7 leaves

it non-negative). There must be a time when H becomes true after a finite number, say n, of executions

of T. Note that 2 may be zero and is less than or equal to the value V has after the execution of B.

‘This initial value thus provides an upper bound on the efficiency of the algorithm used. For this reason,

when choosing among several possible variants, we will evidence the smallest one.

The process is very similar to that of computing an approximate solution to a numerical problem.

igure 3.5 is a symbolic illustration. In the "problem space", assertions are identified to subspaces (sets of

points which satisfy them). We start from subspace Q and want to reach &, which is part of the larger

subspace J; it is the part of J where E holds. B first takes us to some starting position in /. We will then

use T to get closer and closer to R, without ever leaving J (the “convergence” region). The variant V may

be thought of as the distance to R from any point in J.

Of course, the main difference with mathematical approximation methods is that in programming

loops must reach their limits. In mathematical analysis, they usually don’t: their variants take real,

rather than integer, values, and thus may become infinitely small. For the practical implementation of

numerical algorithms, a common practice which brings together the mathematical method and the compu-

tational rule is to take V = 4 , where d is a bound on the distance to the exact solution, and ¢, the

tolerance, a positive number (for any real number z, [2] denotes the largest integer smaller than or equal
to z)

3.7.2, - Notation

We now introduce a notation for the above process which includes all its ingredients’. We shall

write the loop as follows:
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{given Q}

from

B

keep

I

decrease

v

until

g

loop

T

end loop .

{then R}

Woe illustrate this notation by a few examples before discussing it in more detail.

procedure Search_file specification

in 2: T,-- Tis any type

f: file of T;

out isthere: BOOLEAN

{ensure (isthere <-> appears in {)}

implementation

var current: T;

from

open(f); isthere := false

keep

tsthere t3 true tf and only if an elemerit equal to 2 has been read

decrease

n-r

where n= number of elements tn f,

r= number of elements read in f

until isthere or eof ({} loop

read (f) current;

isthere := (current = 2)

end loop

{then

fisthere and (current = z}) or

((not tsthere) and f does not contain any element equal to z)}

end procedure - - Search_file
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procedure Search_ordere d_file specification

in 2: T,-- Tis any ordered type

f file of T

{assume / 1s sorted};

out isthere: BOOLEAN

{ensure tsthere <> .z appears in f}

implementation

variables current: T,

one_non_less: BOOLEAN;

{given f ts sorted}

from

open(f},
one_non_less := false

keep

one_non_less is true if and only if exactly one element has been read

which is greater than or equal to z

decrease

l-r+1

where l= number of elements of f less than z,

r= number of elements read tn f

- - Note that the variant of Search-file ts also correct here,

- ~ but this one gives some evidence of the effictency tmprovement

- - resulting from the use of the fact that f 1s sorted.

until eof(f) or one_non_less loop

read(f) current;

one_non_less -= (current > 2);

end loop ;

{then fone_non_less and the first element > x has been read) or

(not one_non_less) and f contains no element > 2)}

isthere -= one_non_lese and then (eurrent = 2)

end procedure - - Search_ordered_file
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procedure Smallest_integer_with_more_than_6_digtt_factorial

out n: INTEGER

{ensure n! > 10° and (m!< 10° for all min 0..n-1}}

implementation

var f: INTEGER;

from

n= O;f:=1

f=oaland (m!< 10° for all min 0..n-1}

decrease

maz (0, 10° - f)

until f > 10° loop

wenthif=f xn

end loop

{then f= n/and (m!< 10° for all min 0..n-1) and f > 10°}
end procedure - - Smailest_integer_with_more_than_6_digtt_factorial
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procedure Compute_ged specification

in a, 6: INTEGER

{assume a > 0 and 3 > 0};

‘ out g: INTEGER

{ensure g ts the greatest common divisor (ged) of a and 5}

implementation

variables z, y: INTEGER;

from

ti=ayyssb

keep .

ged (x,y) = ged (a,b)
decrease

maz (z, y)

until

z=y

loop

{given z # y and ged (z,y) = ged (a,b)}

if

t>y ~> emz-y{]

yor yom y-st

end if

{then 2 > Qand y> Gand ged (z,y) = ged (a,b)}

- - Note the tmportance of the assertion z # y

- - in the correctness of the if statement.

end loop

{then ged (x,y) = ged (a,b) and z = y}

-- Thus ged (¢,b)=r=y

gost

end procedure - - Compute_ged

3.7.3. - Discussion

With these examples in mind, we may ponder a little on the benefits and drawbacks of the notation

introduced above.

Tho reader will have noted the differences with the notations of common programming languages.

One minor point is the use of

until ezit loop action

Instend of Lhe more famnliar

while continuation loop action

as found in Algol, Pascal, PL/t ete. (the former is found, however in Bliss, Lis, and other languages). The

Iwo constructs are equivalent in principle, with continuation = not ezit_eondition. Choice between the

Iunis mostly a matter of taste. The while form makes it immediately clear that continuation will be the

preeonditton of action, we prefer the until form because tt emphasizes the exit condition which is true
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after excention of the loop, as part of the loop postcondition ezit_condition and invariant.S

More important is the explicit inclusion of the variant (decrease clause) and invariant (keep clause)

in the program text. This convention may seem @ bit puzzling at first sight, since it makes the notation
for loops longer, and puts expression of facts about the program on the same step as the actual instruc-
tions ("from B’, “loop T’) and test (until ezit_condition) which this program performs. ‘Yet inclusion of
these clauses is useful as a means to enhance clarity of programs. Clarity here is taken as including the

property that programs contain their own proof, so that their correctness (or lack thereof!) can be

chocked without having to build a complete argument from scratch.

Authough itis certainly possible to use a more traditional notation for loops and include the variant and invariant as

comments, we have found that making them @ compulsory component ‘of the notation for loops forces one to think

about the variant and invariant assoriated with any particular loop: this, in our experience, gives the program
mer a

hotter understanding of the loops he is writing, and enhances the readability of programs (the reader can easily deter-

inine for himself the validity of this claim by assessing whether the systematic use of this convention does or does not

improve the understandability of the programs in this book and make their correctness easier to check).

{1 ix more surprising that the “from B" clause is also novel if we compare the above notation with

existing programming languages. Every loop should have an initialization; the reason for this, as we

have seen, is that the initial truth of the invariant should be established before any evaiuation of the test

(E), lot alone execution of the loop body (7) may take place. It thus seems sensible to include the initiali-
uation as a syntactically required component of the loop construct. Indeed, omission of loop initialization

is a common programming mistake, which may be hard to detect because the invariant may happen every

now and thep to hold initially, just by accident.

The only cases for which explicit initialization is not needed are loops with true (the condition
which always holds) as invariant, usually not very interesting, and loops written at the beginning of the

hody of another loop, whose invariant implies theirs. We will meet such an example in the next section

(and omit the from clause). This is, however, a rather special case,

nf the reasons why lization has not become a syntactic part of while or until loops in programming

uges may be that the first exposure to loops of many people has been the indexed loop (for or DO}. studied in
ficit way, The other reason is that this syn-ation with itself, but ia an imnest Chapter. which carries its ini

extension is not strictly necessary since the initialization may always be written as an independent set of state
-

ts hefore the loop (using sequencing). But it seems better to include in the loop those statements which really be
-

«

'

'

ong tn it,

less Famitine with the repeat, _ constriet found in Pascal. C and other languages should not

Jee aniskal> sueh construets denote a loop whose hody "is always exeented at least onee. the test being per-

Parcel ot the end, as opposed to the while loop which performs it on entry. Our from.vuntil.loop... con

sictirt Tike a while loop in this respects the only difference with the while loop is that one writes the exit

oie ether than the eontintation condition:
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3.8. - ASSERTION-GUIDED PROGRAM CONSTRUCTION

3.8.1. - Overview

In the presentation of four basic control structures in the previous sections, an important part was

pluyed by the assertions (pre - and postcondition) associated with each kind of statement. Our motiva-

tion for this was to make sure that every programming construct (describing potential events) has a

mathematical explanation (in terms of properties). In an "annotated program”, the assertions are just as

important as the statements which they accompany and justify.

We may give an even more fundamental role to assertions, and consider program statements as

deduced, in a certain way, from their pre- and postconditions. This approach may be called assertion-

guided program construction; the idea is to try to build the program by working on the specification itself.

‘The important idea here is not that we start from the specification (after all, any program should be built

in arder bo fulfill some specification), but rather that we consider the specification as transformable

material of its own, and try to construct the program by first working on this material, transforming it in

various ways so as to obtain a form which will more easily yield a program solution.

Such an approach obviously implies that specifications should be expressed in a sufficiently formal

way, so that they can be manipulated systematically.

Rofore we describe some of the techniques which may be used to construct a program by working on

its specifying assertions, we should warn the reader about the limitations of this approach: what this sec-

tion introduces is not a set of recipes for constructing programs “automatically”. There is no miracle

powder to replace reflection and invention in designing programs. The concepts illustrated below are use-

ful as aids in understanding and explaining existing programs, and in guiding the search for new ones.

3.8.2. - Embedding

We shall concentrate on the systematic derivation of loop algorithms, since they require the most

invention on the part of the programmer.

When introducing loops, we defined the loop invariant as an assertion J such that the goal (postcon-

dition) R may be expressed as

Tand g

where Eis the exit condition. The invariant may thus be described as a "weakened version of the goal”: it

is weak cnough so that it will be easy enough to ensure it initially; but it is strong enough to yield the

goal when combined with teh exit condition. Loop construction strategies are thus strategies for weaken-

ing the conclusion in a fruitful way.

‘This process may be visualized in the following way (see figure 3.6). When looking for a solution to

uming problem, we are trying to find one or more objects satisfying the goal condition in a cer-

ution space”. A loop solution, using an invariant which is a weakened form of the goal, may be

the result of embedding the solution space (whose “characteristic function” is the goal) in a larger

ono, corresponding to the invariant.

Such an embedding has the property that it is easier to find a starting point in the larger space, but

ol course Where 19 no guarantee that we-will hit the actual solution space right away. The loop solution

uses transformation that, starting from an element in the larger space, will find a new one wl

to the solution space, Figure 3.6 shows a pictorial representation of this strategy.

seen



- 34 -

GP (set of elements satisfying
Generalized Postcondition)

satisfying original
postcondition)

GS ) (Generalized solution space)

Figure 3.6 : Embedding

Figure 3.6: Embedding

Lol & be the original solution space, P the set of elements satisfying the postcondition in S (i.e. the
set of solutions), GS the generalized solution space and GP the generalized postcondition (which will serve
as invariant), The program resulting from the embedding strategy will have the following form:

variable s: GS;

from

3 = "an element satisfying GP’

keep

GP

decrease ‘

“distance to S”

until sin S loop

bring s closer to S, preserving GP

end loop

{then GP and sin S} {i.e. P}

8 (original
solution

x (solution : element space)
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‘The remainder of this section will be devoted to the study of some variants of the embedding stra-

lesy We will focus on two of them:

@ constant relaxation;

e uncoupling.

3.8.3, - Constant relaxation: Non-ordered table searching

Our first example will illustrate the “constant relaxation” stralegy. Assume we have an array of cle-

ments of any type T, and an clement z of the same type, and we wank to determine whether z is equal to

uty of the clements in ¢ (an easy enough problem, but more difficult ones will come). The specifieation of

the corresponding procedure may be written:

Deciding that the result of the search will be a boolean variable isthere, we write down the postcon-

ditian as

isthere <=> (c= t/t] for some tin J..n)

(where @ <=> 6 means “either a of 6 are both true, or a and 5 are both false).

The specification of the procedure Find which we are trying to construct is thus as follows. The

dimension n of the array is assumed to be a constant, its value ts irrelevant.

procedure Find specification

in ts areay /t..n/ of T;

Zany

out isthere : BOOLEAN

{ensure tsthere <=> (z= t/i/ for some tin {..n}}

end procedure specification - - Find

The idea of assertion-guided program construction is that we look at the specification (the postcon-

dition) and see how it ean be refined to yield a solution (program). If we are looking for a loop solution,

the refinement will take the form of a weakening.

Here the postcondition is

isthere <=> (r= th/for sometin i.n) (PC)

We may note that the difficulty of ensuring the validity of PC stems from the presence of the interval J..n

_ If n was replaced with a smaller value, then the problem would be easier; in particular, if n was replaced

with 0, then PC would be trivially true by taking tsthere to be false. (note that the interval a.é is
empty if 6 < a).

We thus have our embedding, or weakening: introduce a fresh variable, say 7, which will take its

valnos in the interval 0..j, ie. is declared as

variable 7: 0..0

and rewrite the postcondition as .

(isthere => (c= thi/for some iin Lj) andj =n

whieh is certainly equivalent to PC. Now the first (boxed) part of this condition, say INV, has all the

qualifications of an invariant: it is easy to ensure initially (take false for tsthere and Q for J); it is a weak-

ened form of the postcondition PC, since it coincides with PC for j = n; and it is not too hard to maintain

it while bringing j @ little closer to n, as will be seen shortly. Thus we look for a solution of the form:



= 36 -

from

i

keep

INV

decrease

ny

until

jen

loop

“Get j closer to n, maintaining the validity of INV’

end loop

{then PC}

= 0; isthere = false {then INV}

The loop body is easy to obtain. It must be a statement. T such that the following is a correct anno-

Latew! program fragment:

{given INV and not E; Vo -= n-j}

T

{then INV and n-j < Vo}

whore E is the loop exit condition j = n. Since 7 is declared as ranging from 0 to n, the condition not E

is equivalent to 7 <n.

The simplest way to Get j closer to nis lo increase it by 1. Thus we are looking for a statement T’

suvh Chat the following is correct:

{given

fisthere <=> (z = ¢/i]/ for some iin 1..7))

and j <n}

= j+t; T!

{then

fisthere <> (z= t/i/ for some fin 1.3))}

‘The postcondition is very close to the precondition; more preciscly, the precondition implies that

after execution of the statement j s= j+J the following holds:

(isthere <=> (z= tfi] for some tin 1..j-1))}

xo that the specification for T" is:

{given (isthere <> (z = tfi] for some tin 1.5-1))}
rT

{then (isthere <> (z= ¢/i/ for some i in 1..j))}

The obvious solution is to take for T’ the following statement:

lsthere o= isthere or (t{j/ = z)

whiet is easily shown to satisfy this specification by applying the substitution rule (3.2.4).

We thus get a correct implementation of procedure Find:
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procedure Find (t, z, isthere~-) implementation

variable j : 0..n;

from

j= 0; isthere := false

keep

{fisthere <> (2 = tfi/ for some tin 1..3))}

decrease

ng
until

loop

+4;
isthere := tathere or (th] = 2)

end loop

{then isthere <=> (z= tfi/ for some iin 1..n)}

end procedure implementation Find

Tho reader is invited to investigate for himself how the obvious improvement (stop the loop if isthere

is fonnid to be true) may be carried out in the same rigorous framework.

The embedding method which we have evidenced on this example may be called constant relaxation:

it entails replacing @ constant of the postcondition (n in our example) by a variable, thus "relaxing" the

gonl and making it possible to get started by assigning an appropriate initial value (usually far away from

the fini one) to the variable.

‘This method is of very general applicability. In particular, it underlies the algorithms which may be

doserihed by "for" loops, as studied in the next chapter.

3.8.4. - Uncoupling: Searching sequentially an ordered table

Our second example is a variation of the first and will allow us to evidence another embedding stra-

tegy, which we call “uncoupling”. This time we assume that the array ¢ which we are searching for an

occurrence of z is initially sorted (and will remain so since it is an in parameter that cannot be changed).

‘This requirement implies that there is an order relation on the type T, written <; by saying that the

ray {is sorted, we mean that

th] < tfffor 1S kS IS

Ax before, we decide that the result of the search will be a boolean variable isthere and the postcon-

dition is the same as with the non-sorted array example. The specification of the new procedure, which we

call Search, is thus:

procedure Search specification

in 2: REAL, ¢: array (1..n} of REAL

Stiijforigks{assume ¢/h

out isthere: BOOLEAN

{ensure isthere <> z= t/i/ for some t in1..n}

end procedure specification - - Search
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Noto again that by specifying in z, t we require that 2 and ¢ be left unchanged by Search, which

takes care of some trivially wrong apparent solutions, like assigning the value of z to ¢[i} and the value
true io isthere. This also ensures that the precondition (¢ is sorted) will remain invariantly satisfied

throughout the program body.

low should we proceed? The previous solution is of course still applicable, but here we would like

to take advantage of the fact that the array is sorted.

One rather natural remark is that, when isthere is true, checking this fact is the same as looking for

the index ¢ which appears in the postcondition. If we know such an i in I..n, then tsthere is true; ¢ is

then such that z= ¢ fi.

So when ¢ exists, it gives a simple way of computing isthere (by just checking whether z = t/i/). Ib

he quite nice to be able to extend the definition of ¢ so that it always exists and isthere may be

computed in a simple way by just looking at this new 4. a

wou

If we use the precondition, ie. the fact that ¢ is sorted, and define ¢ as the largest index in I..n, if

any. such that tf] < z, then z belongs to ¢ if and only if i is defined and z = ¢/i/. Since the latter condi-

tion ix very simple to check, it is tempting to start from it when looking for an extended definition ft.

i as defined above does not exist only in the case when z is smaller than the minimum value of ¢,

ic, x< t/t} It is quite natural in this case to take 0 as the value for i. In this way ¢ is always defined;

its provise definition (which is equivatent to the previous one when i > 0) may be expressed as:

{8 € O.nand

(z > tk} for all kin 1..i) and

(2 < fk] for all kin t+ 4..n)}

{It is essential here to recall that any property of the form "p(z) holds for all z in £" is trivially true

whenever E is empty, regardless of what the property p(z) is, and Uthat the interval a..d is empty for

So the problem of writing Searck may be replaced by that of writing Searchindex with the following

procedure Searchindez specification

in 2: REAL, t: array /1..n/ of REAL)

{assume t/k/ < t/l/ for 1k S1< nh;

out + On

{ensure z > t/kj for all kin 1.4

and z < ¢/k/for all kin t+ f..n}

end procedure specification - - Searchindez

Indeed, once we know such a correct Searchindez, the implementation of Search may be simply writ-

fen as:

procedure Search (z, t, isthere ) implementation

variable i: 0..n;

Searchinder (2, t, i ) ;

tsthere == (t # 0) and then (¢/i} = x) }

end procedure Search

Note how careful we must be in expressing the postcondition of Searchindez: by not giving the right

interval, Ouun, for i, or writing < at one of the places, where < is required, etc., we would have obtained a
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specificalion which either does not always have a solution, or does not uniquely determine a solution.

‘This, of course, does not mean that the specification above is the only possible one; the reader is invited
to derive for himself the specification obtained from initially defining # as "the smallest index, if any, such
that 2 < efi)".

Ilow are we to build Searchindez? Looking at the postcondition, we see that it has the particular

form

pli) and g(t)

where

pli) is tk] < 2 for all kin 1.4

ali) iv tfk] > x for all kin i+.

‘The “uncoupling” strategy applies to postcondition of this general form (p(i) and q(i)). It is based
‘on the remark that the reason such a postcondition may be hard to ensure is that it is the same # Lhat

appears in both p and q. The uncoupling idea thus entails replacing ¢ with two variables, say i and j

("uncouple”) and looking for an algorithm which will, first, ensure separately the validity of p(é) and 9(j);

then, bring ¢ and j closer together while maintaining the validity of p(é) and q(j), until j becomes equal

tot.

In other words, the uncoupling strategy means that we rewrite the postcondition in the exactly
equivalent form

(eitfand ofl and (i = j)

and choose the first (boxed) part of this new postcondition as the invariant, the second part as the exit

condition, and the distance between i and 7 (defined in a suitable way) as the variant for a loop of the

following form:

from

jofestos F

keep

p (i)and ¢ (7)

decrease

distance (i,j)

until

te7

loop

bring i andj closer

end loop

if plin, Jo) is satisfied, the action “éring ¢ and j closer” conservesThis program 1s corre

picjand q{j), and distance (4,

Applying this strategy to our problem, we express the postconclition, using a second variable 3, also

of range O..n, a

p(i)and (3) and i =j

with
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pli) = (tik) <2 for all & in L..i)

(7) = (t{k] > 2 for all kin j+1.n)

Looking for a loop of type (3) above, we see that the initialization

tis tors =o

will bo correct by taking 0 for ig and n for jo, since p(0) and 9(n) are trivially true.

What remains now is to find a way to “bring ¢ and j closer" while maintaining the truth of p{i) and

(J) if il is satisfied and the exit condition i = j does not hold.

Since we start from i =0 and j =n and we want to “bring i andj closer” until 1 = j, we shall
include the property 0< i<j < nin the invariant, which will thus be:

p(ijand q G)and (0<i<F<n)

‘The most obvious way to shorten the interval is to increment é by 1, or alternatively decrement j

by {, and sce what must be done in order that the invariant still be true. Since the problem is symmetric

in ¢ and j (or, more precisely, in ¢ and j—1) and there is no clear reason at this point to upset this sym-

metry, we will consider these two actions on a par.

Assume p(i) and q(j) is true, and that the exit condition is not true, i.e. i<j. Under what condi-

lions may we execute i= 1+ rj =j-4and preserve the invariant?

Clearly, we may execute the first of these operations if and only if p(i+Z) 's true, and the second if

and only if 46-1) is true,

Consider first. Recalling that

pli) = (t{k] < 2 for all kin 1..i)

We seo thal

p(it1) = pli)and titt] <2

Note that this is only meaningful if t[¢+1] is defined, that is if: <n. Thus starting from a state

whore p(i) is satisfied, we see that we may perform the assignment ¢ = i+ 1 if and only if

i< nand then tfitt/<z

Similarly, by expressing g(j7—1) in terms of 9{j), we find that the condition for the second assignment

(j = J-8) to preserve the invariant is

> Oand then t/j/ > z

‘The extra conditions (1 <n and j > 0) are indispensable but it turns out that they are satisfied when the

loop body is executed: the invariant includes 0<i<j<n, and the negation of the exit condition is 1 < j, so

Unit their combination implies that both i+1 and j lie in the interval t..n. Thus we may use just

titip<e

and

tjp>2z

tis respective guards for the two statements. A tentative loop body is thus the following conditional state-

nent

~4t-

it

ittys2 > i=in]

tij> 2 +> fap

end if

We have almost found a solution, since we know that each branch of this conditional, executed

the condition that its guard is true as well as the invariant and that the exit condition is false, will

maintain the invariant and decrease the variant. But we have to be careful: as mentioned in section 3.5

when we introduced the conditional statement, a conditional is only correct if at least one of its guard is

fied whenever it is executed. Is it always the case that ¢/it+z/< z or t// > z when the loop body is

executed? The answer is yes: this property is implied by the fact that the array is sorted; since t <j in the

loop, the negation of the first guard, namely ¢/i+1/ > 2 implies th/ > z, namely the second. Thus the con-

utement is safe.ditional s

So wo have a simple and correct version of Searchindez:

procedure Searchindez (z, t, i) implementation

variable j: 0..n;

from

i= O;jien

keep

p(ijand gjjand OSt< jn

decrease

gee

until

loop

if

tfitt[ Sr 4 i= t+]

ti] >2 —> jj

end if

end loop

end procedure implementation - - Searchindez

Now we are in for a small surprise: the program which we have obtained is not exactly the way

sequential search is usually written! The reason is that we kept the symmetry between ¢ and j—I. If we

forart ahout this (esthetic) constraint. we may note that if the first guard is false, i.e. t/+1/ > z, then the

invariant will still be preserved if we immediately assign the value of ¢ to j. The loop body may thus be

replaced by:

if

titi] <2 > iit

ttt] > 2 a pi

end if
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(of course, we could have performed the symmetric change instead). Now we may dispense with variable

j allogether, by noting that loop termination occurs when either ¢ =n or tf+J/ > z, thus yielding the

following form, which is sequential search, written in the more usual fashion:

from t= 0

keep ... decrease ...

until t= nor else t/i+i/ > z loop

tea ttl

end loop

The reader is requested to complete the keep and decrease clauses of this loop.

3.9. Uncoupling revisited: binary search

The efficiency improvement which we obtained by removing the symmetry between + and j~1 was

marginal at best. There is a much more promising avenue for improving the efficiency of sorted table

searching based on the fact that t is an array, The basic property of arrays is “direct access": any element

may he accessed or modified directly (in constant time} if its index is known.

The idea here, which you will have recognized as as the principle leading to the well-known idea of

binary search, is to try to “bring ¢ andj closer" faster than just one step at a time. Before reading the

rest. of this section, the reader is urged to try to write a simple binary search program and make sure that

il is correct, For a start, you may take a look at the four programs in figure 3.7; it turns out that these

four programs are all wrong; you should convince yourself of this by finding, for each of them, a case for

which it fails to terminate, exceeds the array bounds, or yields a wrong answer.

The remark on the basic property of arrays can be interpreted in the framework of the previous dis-

cussion. Since the array is sorted, comparing z with any element whose index lies between ¢ and 7 in ¢

(nol just ¢{t+1} or ¢[f—-1]) makes it possible to discard a whole interval for the rest of the search. More

precisely, let m be such that

igmsj

Assume that ¢{m} is defined, ie. m € 1.n. Then if t{m] <2, we can infer that

tfk] < a for all kin t..m

that is, p(m) is true, In the other case, t(m] > z, we have that

t{k} > zfor all kin mn

or, to put this in “g" form:

tk} > efor all kin (m-L}+1..n

That is, g(m — 1) is satisfied.

Figure 3.7: Four programs for binary search

variable t, 7, m: INTEGER ;

from

tolj;jmn

until

t=y

loop

mai al
2

if

2S ifm) > jam]

t> tlm] —> t:=m

end if

end loop ;

tsthere = (z = tfi})

variable ¢, j, m: INTEGER ;
found : BOOLEAN ;

from

tol,;jr=n; found := false ;

until

t= jor found

loop

mew (Eta,
2

if

a<t/m) —-> j=m-1f}

z= th] —> found :=true []

a> t/m) — ic= mt

end if

end loop;

isthere := found

variable i,j, m: INTEGER ;

from

t= O;junn

until

+e

loop

tty
2

,

if

egitim] > j=mf]

z> tlm a1 +

end if

end loop;

isthere = 1 © In

and then (z= t/i}}

variable 1, 3, m: INTEGER ;

from

t= 0,7 = atl

until

t=j

loop '

m= fied,
{ 4

if

gs t{m]} —> fim q

a> tlm) > ic=mt+i

end if

end loop ;

tsthere = 4 © In

and then fz = ¢t/t/)
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‘The following class of algorithms will thus be a correct implementation of Searchindez:

variable m: Ln

from i:=O;j; =n

keep

pfiJand gjjand 0<igjgn
decrease

j-t

until

=e
loop

m i= "some value in L..n such thatt< m< yz";

if

ifm[ <2 ica m{]

im] > 2 > j=m-1

end if

end loop

An important detail should be noted here: we have specified Lhal m should be such that: << m < 3,

not ouly + <m <j as was previously suggested. This is necessary to ensure termination: if both actions

i= m and 7 := m — 1 are to decrcase the variant j—7, then m should be lessor Lhan or equal lo 7 and

strictly greater than ¢.

Note that the requirement i < m <j entails thal m indecd belongs to the interval f..n, sinee

041 <9 <2 is invariant.

Any policy for choosing m which mects this requirement is acceplabic. Two simple ones are, choos-

ing m= i+ land m =j respectively; both lead lo variants of the above sequential scarch algorithm. A

more balanced choice ig to take m as the average of f and 7; bo obtain a correct program, we should take

not et but a + so that it is guarantced that m > 17 (sce exercise 3.2 as to what

iti

2 )

We thus obtain the following program for Searchindez, a version of the "binary search" algorithm:

modifications will allow choosing m =
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variable m: 1..n;

from

t=O juan

keep p(t)

and gjjandQ<Si<ycn

decrease

get

until

je=t

loop

m= fat +1;

if

tim] << 2-> im f

tlm) >2->j:=m-1

end if

end loop

‘The advantage of this algorithm over sequential search, from the point of view of efficiency, comes

from the fact that the searching interval is approximately divided by two, rather than reduced by one, at

each pass through the loop! thus, the number of iterations will be bounded by logs n rather than a,

To verify that the loop is executed at most [toes n| times, we prove that liogs G- il is & variant.

Vor any real numbers a and 6, [toes(a)| < iogs(8)| ifa< = Hore, 7 — 1 is indeed at loast divided by
2 in bath possible cases in the loop, sinee whenever t <j {i and j being integers):

j-( = +

Kes ttt cist

(This is trivially seen by looking separately at the cases i + j odd and t + 7 even).

Some remarks

From the examples seen so far of assertion-guided program construction, the following points are

worl pondering

| e Several algorithms, quite different in their actual working, some sequential, some binary, were

derived in the same framework. Actually, it is only at the last step (choosing how to “bring t and j

closer") that different design choices lead to different computing methods,

lom of table searching, as will be scen below when we apply it to a completely different problem,

1

|

The heuristics used, "uncoupling", is very general.and quite independent from the particular prob-

array partitioning.
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« We have built all versions in such a way that we can be convinced they are correct, and know

exactly why they are. It may be noted that binary search, although quite simple in its principle, is

ot so easy to write down correctly; this has apparently been known for a long time, since Knuth, in

his well-known treatise in algorithmics [Knuth 73], felt it necessary to write: "Although the basic

iden of binary search is comparatively straightforward, the details can be somewhat tricky, and

many good programmers have done it wrong the first few times they tried". We now understand

thi the reason for this is all the delicate ponts in the analysis above, in particular the care which

iuust be exercised when writing < or <, when ensuring that j ~ i actually decreases every time

through the loop, when assigning an interval (0..n or 1..n) to each variable. Typical programming

errors, for this problem, such as writing a loop which will yield an incorrect result when z does not

tie between the minimum and maximum values of t, or will sometimes try to access an undefined

value such as t{0} or tin+!, or will not aiways terminate, may be traced to such oversights in the

anulysis, It is instructive in shis respect to look at the programs of figure 3.7 (did you comply with

nr request at the beginning of this section and try. honestly to come up with your own version?).
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3.10. - AN EXAMPLE: ARRAY PARTITIONING

We will end this discussion of assertion-guided program construction with a slightly more difficult

example, corresponding to a classical algorithm. We will show how the method can be applied to the

derivation of several variants of the same algorithm; the first variant is fairly simple but not very

cfficient; we will then improve the efficiency in two successive refinements, while relying on the assertion-

guided approach to check at every step that correctness is preserved.

3.10.1. Specification and usage

The problem we study is array partitioning; it arises in connection with sorting and so-called “order

statistics”. Let z be an element of a certain type and ¢ an array of the same type, with size n. Every ele-

ment of the array has a key. For simplicity, we shall abbreviate the key of element 1, normally written

key (tfi}), as key,(t) or just key, if there is no ambiguity as to what array is meant.

Keys are ordered, that is to say, we can compare keys of elements using an order relation written <

(less than or equal to; "greater than or equal to” is > and “less than” is <). We use the abbreviation

Revs s(t) S keve a(t)

to mean “all keys of elements in ¢ /a..b/ are smaller than or equal to all keys of elements in t /c..d/" (true if

either interval is empty). Similarly, key,4(¢) < & means “ali keys of elements in ¢ /a..b/ are less than or

equal to k" (true if a..b is empty). Again, we omit (¢) if the context makes it clear what array is meant.

‘The partitioning problem is to split the array in two parts, where the elements in the first part have

smalter or equal keys than the elements in the second part. The final state is described by figure 3.8.

elements with small keys elements with large keys

' a stl i

Figure 3.8: Final state of Partition

To reach this desired state, the partitioning algorithm will move around some elements and find an

index s such that, in the end, key; s(t) < keysa1.,(t)- The value of s will be computed by the program as

it reorganizes the array, since there is no way to know it in advance.

As it turns out, what will be required in most applications will be to partition some subarray of t,

not necessarily the whole of it, so that we will have a specification of the following form. We call the pro-

codure Partitiont, reserving the name Partition for a slightly modified form, to be introduced soon.

procedure Partition! specification

in a,b: Ln,

in out t: array /1..n/ of 7;

outs: 0.n

end procedure specification - - Partition!

‘The problem may be solved trivially, if we have an array sorting program at our disposal, by writing

Sort (t/a..bj/-—+);

Searchindez (k, t{a..b], 2 )

whore Searchindez as given above is modified to search for an element with given key k.

We do not consider this solution acceptable, however, since partitioning is an inherently simpler.

problem than sorting. In fact, one of the best known sorting algorithms, Quicksort, has the following

rocursive form (for sorting array ¢ between indices @ and 6):
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procedure Quicksort (a, b, t+) implementation

variable s: f..n;

if

b-a<0 —> skip J

b-a>O—>

Partition! (a, b,t-—+, 3—);

+ - Do in some order:

Quicksort (t(a..s—I]),

Quicksort (t[s+1,.6])

end if

end procedure implementation - - Quicksort

Another interesting application of Partition! is to compute an i-th smallest element of an array
without having to perform a complete sort!:

procedure Find_ith_smaller specification

in t:array /t.n/of T,

istin;

out z:T

{ensure z is an element of t with i-th smallest key}

implementation

variables tf /t:n] : T,

as: fon;

t;-- Copy array parameter to local array

ba

until

a=6b

loop

Partition! (a, b, tle, s-) ;

{then a<s<band key, .(t1) < keysrs o(tt)}

sci a=stif}

tof
end procedure - - Find_ith_smaller

We may now give the complete specification of Partition t:

of this procedure are far from trivial and the reader is invited to check its correctness. See
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procedure Partition! specification

in i, j: integer ;

in out f: array /1..n/ of ELEMENT ;

{assume j> 1; to fi.j c= thi}

out s: integer

{ensure ¢ /i..j] is a permutation of ty /i..jJ and i <3 <jand

heyso(t) S key.tby ss, 3(t)}
end procedure specification - - Partition!

Note that on procedure return ¢ should be such that ¢ < s <j, i.e, that none of the two slices is

empty. This is important in view of a requirement on Partition! that the careful reader will have noted

whon sceing the two applications mentioned (sorting and finding the +th element): in both cases, the pro-

grams would fail to terminate if Partitiont returned an empty slice. For procedure Find_ith_smaller, this

is readily seen by checking the variant (b-a); for Quicksort, this follows from the corresponding rule for

termination of recursive procedures, which will be studied in chapter 7.

In order to implement Partitiont, what is normally done is to choose a “pivot key” in the subarray

tf..j] and to use it as a separator between "small" and “large” elements; in other words, Partitiond is

implemented as:

choose indez p in i..j ;

pivot == key. ;

Partition (i, j, pivot, t, 3)

where the procedure Partition, which is really the one of interest here, is specified by:

procedure Partition specification

in ¢, j: integer ;

pivot : KEY;

in out ¢: array /1..n] of ELEMENT ;

{assume j >and

pivot = key, for some pint.g j to fig) = fad

out s: integer

{ensure ti. is @ permutation of to fi.j] and i< ¢ <j and

key; 5 < pivot and keys: , > pivot}

end procedure specification - - Partition

Note that the reason for taking as pivot the key of some element in ¢/i..7/ is to make sure that pivot

is not outside the range of keys in #/é..3/, in which case there could be no solution satisfying the require-

iacnt, mentioned above as essential, that none of the two slices must be empty (i < s <j).

3.10.2. Choosing an invariant .

Lot us first remark that if the only changes ever performed on the array are element swaps, of the

form

swap (u, v) for iS u,v <S5

then the property that t/t../ is a permutation of what tt was initially will remain true throughout the parti-

tioning process. We shall only use operations of this kind so that this part of the postcondition will hold.

‘Thus we won't consider it any more in the sequel.

A loop will clearly be needed for Partition. If we look at the rest of the posteondition, we notice

another example of coupling: the hard part comes from the fact that s appears in both operands of the

and. Why not try uncoupling again?
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The uncoupling heuristics prompts us-to associate two variables u and v to the out parameter 3, and

to include the following assertion in the loop invariant:

key, aa < pivot and keys) > pivot

In this formulation, we have chosen the bounds u-t and v+i rather than u and v to make initiali-

antion casy; indeed, the above assertion is trivially satisfied after the following initialization:

This invariant will coincide with the postcondition of the procedure if

v-us-fandi<uandv<j

and we take as value of s, to be returned by the procedure, the final value of v. It thus seems fit to add

the following constraints to the invariant:

vu>-Land(<uandv<j

‘The reason we had to choose < for the last two inequalities here, rather than < which would be more in

line with the postcondition of the procedure, is that that we want the invariant to be satisfied after the

initialization, when u = t and v = j. For the procedure body to be correct with respect to the specification,
however, we shall have to make sure that s receives a final value strictly in the interval i..j-1 (whereas if

the final value of vis assigned to s, the above constraints only guarantee that it belongs to t-1..j).

So we embark on the construction of the loop with the following tentative invariant, later referred

to as INV:

(INV) v-u>-1 andi<uandv<jand

key; v-1 S pivot and key,41,; > pivot

Since the invariant includes v-u > -{ and the exit condition will be v-u = -4, it is natural to use v-

u+I as variant. Note that this implies that the two cursors u and v will “cross over" just before loop ter-

mination. The loop will have the form:

from .

u

keep

v-u>-1 andi< wand v<jand

key, a-1 < pivot and keyy41 ; > pivot

decrease

vutl

until

wus -t

loop

BURN_CANDLE

end loop ;

The loop body BURN_CANDLE should be so designed as to maintain the invariant (if the exit con-

dition is not satisfied) and to decrease the variant, keeping it non-negative. In other words, using a

snapshot dg to record the value of the variant before an execution of BURN_CANDLE, BURN_CANDLE

should satisfy the following precondition-postcondition specification:

{given INV and v-utt > 0}

BURN_CANDLE

{then INV and v-u+1 > 0}

If we can invent a statement BURN_CANDLE which satisfies this specification, then the above loop

will result in a state in which the invariant INV and the exit condition v-u=-1 both bold. Their
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conjunction yields the following condition:

u=vtland é1<vand v <jand

key, »-1 < pivot and keys: j > pivot

If we take s = u, this almost yields the postcondition of the Partition procedure, with one small res-

triction, already mentioned: the actual postcondition requires i < s < 7 (because no slice should be

empty), whereas here we only have i-1< v <j. Given the second line of the above assertion, v = j may

only occur if all the elements of #/i..j] have key lesser than or equal to pivot. In this case, we may safely

take v-1 as the value assigned to s. Similarly, if » = i-J, ie. u = 4, then the pivot is a minimum key and

we may assign to s the value of i. Thus if the above loop is followed by

3 = maz (min (uv, j-1), 1)

then we shall have obtained a correct implementation of Partition provided BURN_CANDLE satisfies its

specification. So we now turn to the refinement of BURN_CANDLE.

3.10.3. The loop body

The name which we have chosen for the loop body is suggestive of the method used for Partition:

“burn the candle at both ends". In other words, BURN_CANDLE will contain two internal loops, say Lu

and Lv, one which will increment u, the other decrementing

(Lu) until ... loop u := u+1 end loop

(Lv) until ... loop v := v-1 end loop

We must now see if more statements are needed in BURN_CANDLE and replace the dots with

actual conditions. It is easy to find exit conditions which are such that JNV will be invariant for both

internal loops: just take conditions which will stop execution of either loop whenever the validity of INV

would be endangered. This yields:

(Lu) until u = v+J or else key, > pivot loop u = utt end loop

(Lu) until v = u-1 or else key, < pivot loop v := v-1 end loop

The or else connectives are necessary because of the conditions on u and v: in the last execution of

the outermost loop, v-+1'or u-J might run out of the interval i,j.

‘The above two loops maintain INV but are not suitable, if taken alone, as code for BURN_CANDLE

because they may fail to decrease the stated variant: if the exit condition v-u = -1 is not met but

key > pivot and key < pivot, then both internal loops will be equivalent to null statements, which in

plain English means that nothing will happen. And rightly so: it would be an error to either increase u or
decrease vin this case. BURN_CANDLE has found an inversion, and the thing to do is to remove it. The

following statement should thus be added after the two internal loops:

if

veut

{then u-u > Oand key, > pivot and key, < pivot}

swap (u, v) (]

vus-1 —> skip

end if

Apparently, this statement still does not ensure that the invariant decreases, since nothing happens

to vither wor v when the swap is executed. One possible solution is to add the statements

wis utd; vie wl

after swap (u, v) in the first branch of the if statement. Such an addition is permitted because it will not

invalidate INV; in particular, there is no danger that u and v might cross over “too far", i.e. that v-u+t
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might become negative. To see this, nole that if the following conditions are met

v-u > Oand key, > pivot and key, < pivot

then wand v cannot be cqual (the key corresponding to their common value would then be both lesser and

greater than ptvof}, so that in fact v-u > Oin this case, implying

(v-1) - (ut1) > +1

So we may insert statements for incrementing u and decrementing v into the first branch of the if

statement, after the swap. We choose not to do it, however, in order not to complicate the program: it is

nicer to keep the incrementing of u in just one place, the body of the Lu loop, and similarly the decre-

menting of vin just the body of the Lv loop. We thus tentatively refine BURN_CANDLE as:

{given INV and v-u+i > 6}

until u = v+/ or else key > pivot loop u -= utd end loop ;

until vy = u-1 or else key, < pivot loop v = v-1 end loop ;

if

vuxz-[

{then v-u > 0 and key, > pivot and key, < prvot}

swap (u, v) f]

vs -1 — skip

end if

{then INV and v-u+1> 0}

BURN_CANDLE as it stands now, with just the swap in the first branch of the if statement (and no

change to either u or »), clearly preserves the invariant INV. The reason it is also correct as a loop body,

with respect to termination of the toop, is, informally, that when the swap is executed the external loop is

not complete (v-u is not equal to -1 yet); so BURN_CANDLE will be executed one more time at least; next
time it is executed, the exit test for the first internal loop, Lu, namely

u= v+i or else key, > ptvot

must evaluate to false since u- vu > -£and an element of key less than pivot has been placed in position

u, so that the body of Lu will be executed at least once (and the body of Ly, too, unless u crosses v at the

end of Lu); thus the process won’t stop. Formally, to prove that BURN_CANDLE terminates, we note

that its variant is not the one proposed initially, namely v-u+, but

(v-ut+1) + nbine

where nbinu is the number of inversions in é/i..j/; an inversion is a pair of indexes a, 6 such that

1<cac 6<jand key > key,

Every execution of BURN_CANDLE decreases this variant, since whenever the exit condition is not

satisfied and both internal loops result in a null statement, BURN_CANDLE executes the statement

swap (u, v), which removes an inversion and thus decreases nbinu.

We have thus obtained now a correct version of Partition,
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procedure Partition specification -- Version I

in t, j: integer ;

pivot: KEY;

in out ¢ array [1..n] of ELEMENT ;

{assume j> and pivot = key for some p ins.j;
x s Pp

ta fii] = # fil}

out s: integer ;

{ensure ¢/i..j/ 19. a permutation of to fi..j/ and

i<s<jand

key, » < pivot and key,4; , > pivot}

variables u, v: integer ;

implementation

from

uistjocmy

keep

v-u>-fandi<uandu<jand

key, v1 < pivot and

keyya1 j > pivot

decrease

v-utl

until

v-u = -1

loop - - BURN_CANDLE

until u = v+1 or else hey > pivot loop u = uti end loop ;

until v = u-J or else key, < pivot loop v = v-1 end loop ;

if

yu x -l

{then v-u > @and key, > pivot and key, < pivot}

swap (u, v) []

vus-l —> skip

end if

end loop;

g = maz (min (v, j-1), s);

end procedure - - Partition, Version 1
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3.10.4, Improvements needed

‘The above procedure body has been obtained naturally by working from the assertions; we might

Just be satisfied with it and, in many cases, the best thing to do is to stop here and code the algorithm as

we have it now.

If, however, we are interested in getting the-most efficient (but still correct!) program, it is easy to
xc thal the above version is not optimal.

A minor remark is that, given the precondition of the procedure, the exit condition of the outermost

loop cannot be true the first time it is tested, so that this first test is redundant. In other words, this
outermost loop is the equivalent of a Pascal repeat...until loop (the various kinds of loops will be studied
in detail in the next Chapter), where the exit test is performed after the execution of the loop body rather

than before Following a C-like convention, we shall distinguish such a loop from the standard one by
just exchanging two clauses: we write

.loop...until...

instead of

--until.,.loop...

the other clauses (from, keep, decrease) being unchanged.? Thus we may write the body of Partition as
a loop...until... loop. This is a minor point, however. Two more serious complaints may be voiced against
the previous version;

- The test ou = -1, which is the exit condition of the outer loop, is also performed in each of the
internal loops. Except possibly in the last iteration, the value of this condition in the internal loops
will always false, so that the internal tests are wasteful. This is worrying because these internal

sis will, of course, be executed much more often than the outer test. If key comparisons are not
cularly expensive, the overhead due to the almost redundant internal tests may be estimated to

be around 10-20%.

he test in the if statement is again the same as the external loop exit condition. In fact, this
xtatement looks a little like a goto (out of the loop) in disguise.

Can we do anything about these problems?

3.10.5. Improving the internal loop exit conditions

Let us first concentrate on the first deficiency, which is the most serious. It would be nice if we coutd
just remove the tests on v-u from both internal loops. But would they terminate then? The answer with
BURN_CANDLE as it stands now is probably no: if we rewrite Lu, for example, so thal it reads

until key > pivot loop u := ut+f end loopn> P

then this loop will only terminate if there is an element at position u or to its right with key greater than
pivot. To ensure this, we must choose the pivot in a special way; but we may only do so under the
assumption that not all elements of the subarray have equal keys. Although such an assumption will be

required for the next improvement of the procedure’s efficiency, we prefer to avoid the need for it here.

What is much easier to ensure, however, is that there is an element at posilion u or to tls right with
key greater than or equal to pivot (and, similarly, an element at position v or to its left with key lesser

than or equal to pivot). Thus it seems interesting to see if we can remove the v-u tests from a slightly
dilferent version of BURN_CANDLE, where the tests on keys will stop the internal loops on equality as

Well, Here is this new version’

Note that in general the proof rules associated with a true loop,..until,,, loop are slightly diferent from
those asoriated with the loops which we write until. [equivalent to Paseal while loops). In particu-
lar, thes require (hat the invariant be true after each execution of the loop body, but not necessarily upon
Furry, The .toop...until... loops which we consider here, however, are just plain whilelike loops with the ex-
rar property that the exit condition is always false right after the initialization,
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until u = v+d or else key, > pivot loop u = u+J end loop ;

until v = uf or else key, < pivot loop v = v-i end loop ;

if

vu x -1 —> swap (u, vj; u = utd; maz (v-1, u-1) [}

vu=-1 —> skip

end if

‘This version is still correct as loop body, since it retains both the invariant INV and the variant v-

utd; for the latter, however, we had to make the decrease of vin the first branch of the if statement con-

ditional upon the fact that the two cursors do not cross over too far; the argument used | previously to
show that this could not happen does not hold any more with non-strict inequalities on keys

( key, S pivot and key, > pivot is not # contradiction). Alternatively, we could have let the cursors cross

‘over “one too far", i.e used v-u+2 as variant, vs > -2 as first clause of the invariant and and v-u < -1 as

loop exit condition.

‘The main difference between the above version and the previous one is that the new one may per-

form a few more swaps; these will only occur for elements whose key is equal to pivot, so that the loss may

he assumed not to be significant in practice (unless there is an significant amount of equal keys in the
uray

ea new version has a very interesting property in that it keeps invariant the following assertion:
there is at least one indez ain u.vtt A i.j such that key, > pivot and

there is at least one indez bin u-l..v 1 i.j such that key, < pivot

Note that this assertion is initially satisfied since the pivot is chosen as the key of an element in #..7. It is

ensy to see that the new version of BURN_CANDLE keeps it invariant,

‘The reason this property is interesting is that it makes the first part of the exit conditions for Lu

and Lv unnecessary, since it implies that both loops will encounter an element satisfying the other part of

Ucir exit conditions (key, > pivot and key, < pivot respectively) before they get a chance to make v-utt

negative. We may thus dispense with the extra tests and rewrite BURN_CANDLE as just:

utd end loop ;until key,, > pivot loop w

until key, S pivot loop v = v-t end loop ;

if

vu x -1 —> swap (u, v); u = utd, v= maz (v-1, u-t)

vu=-f —> skip

end if

We thus get our second version of Partition, It is interesting to note that in this version both u and

will lic in the interval é..j upon loop exit, so that the value assigned to » by the procedure may be just v,

whoreus the first version required a final correction maz (min (v, j-1), i. This property is readily derived

from the new invariant property emphasized above; it is equivalent to the fact that, in this version, the

hectine nf hath Lu and Lu will be excented at least once



- 56-

procedure Partition specification -- Verston 2

in +, j: integer ;

pivot : KEY;

in out ¢: array /f..n/ of ELEMENT ;

{assume j >i and

pivot = key, for some pint. ;

ty figf = t igh

out s: integer

{ensure t/t..j/ 13. 4 permutation of ig ft. j/ and

t<Is<jand

key,» < pivot and

Reyssi_; 2 pivot

variables u, v: integer ;

implementation

from

wrsisery

keep

vu>-fandi<uand v< sand

key, v1 S pivot and

keyuasj 2 pivotand

there ig at least one index ain u.vtl M t.7 such that key, > pivet and

there 1s at least one index b in u-L.u 1 if such that key, < ptvot

decrease

wat

loop - - BURN_CANDLE

until key, > pivot loop u = u+i end loop ;

until key, < ptvot loop v -= maz (v-1, u-1) end loop ;

if

vue -1 > swap (u, opus ute vt ff

vtu=-{ —> skip

end if

until

vu = -f

end loop ;

su;

end procedure - - Partition, Version 2

3.10.6. Getting rid of the internal if statement

L.ct us now deal with the problem of the internal if statement.

ali

2
last iteration is not complete (we don’t perform the swap last time through the loop). Some languages

olfer an “exit” construct which makes it possible to break a normal loop structure somewhere in the mid-

die, far example, in Ada, we would write:

What we have here is a loop belonging to the category of so-called "n + loops, meaning that the

“BT +

loop

bu.

wb.

when v-u = -1 exit ; .

swap (u, uv); ui= utd; u = maz (v-1, u-L) ;

end loop

The problem of "n + +" loops will be studied in the next chapter. Here, if we are concerned about

removing the conditional statement local to the loop body, there is a way to do it, but it will turn out

* that we need an extra hypothesis on the array and the pivot.

Virst, we would like to get rid again of the operations on u and v in the body of the conditional

statement. The reason we reintroduced them in the last version was our concern about termination: the

loops on u and v, with their exit conditions rewritten with non-strict inequalities (i.e. key > pivot and

key, < prvot respectively) would be equivalent to null statements after two elements whose key is equal to
pivot had been swapped.

It is cnough, however, that one of these loops should be non-null. So far, we have been very careful

lo keep the treatment of u and v completely symmetric; the only place where we had to breach this princi-

ple was in the last version, when we introduced a maz in the expression assigned to vin order to avoid v-

u+f becoming negative. Let us see what happens if we introduce some more dissymmetry by writing

BURN_CANDLE as:

until key, > pivot loop u := uti end loop ;

until key < pivot loop v = v-1 end loop ;

if

v-u#-1 —> swap (u, v) []

v-u=-1 —> skip

"end if

Note that the use of maz (v-1, u-1) is no longer necessary when assigning u-f to uv in the second internal

laop (key, > pivot precludes key, < pivot).

The only potential problem is termination of the loop on v. It is easy to see, for example, that this

loop may not terminate (and will try to access elements of the array outside the interval ¢..7) in the case

where all keys in the subarray are equal to pivot. This may not occur, however, if we add the following

assumption:

there is at least one indez q in t..j such that key, < pivot

If this assumptian is satisfied when Partition is called, then the following property will remain invari-

ant throughout:

there is at least one tndes ain u.uti M i. such that key > pivot and

there is at least one indez b in u-t..u M 1.7 such that key, < pivot

so that the new version of BURN_CANDLE will terminate. Note that the variant, as in section 2, involves

the number of inversions; here we have to use a slightly diferent definition: an inversion is a pair of

indexes a, 6 such that

i<a<b<jand key, > pivot and key, < pivot

ilow practical is the assumption that there ts at least one index g in t.7 such that key < pivot? To

he able to use it, we must rely on the hypothesis that, whatever method is used to find the pivot, it does

not relurn an element with maximum key; if, when trying to find such a pivot, it discovers that none
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cvists, Le. that all elements have equal keys, then the new version of Partition should not be called at all
{which is not a problem since, in this case, any value sin the interval ij-t may be returned to Quicksort
or Find tth_smaller). So, in practice, the extra assumption on the pivot means placing a small overhead on
the purt of the procedure that we have called Partitiont, which is responsible for finding a pivot. This
overhead will usually be acceptable unless there is a significant number of elements with equal keys in the
uray, in which case it is better to forget about it and be content with the last version we have obtained
fur Partition. {t should also be noted that this new requirement on the pivot slightly complicates the
tuathematical analysis of the algorithm in the average case.

In the sequel, we assume that the assumption on the pivot not being an clement with maximum key
muy be made and that BURN_CANDLE has consequently been rewritten as above. ‘To avoid any confu-
sion, we call Lu’ and Lv’ the new versions of the internal loops.

An execution of Partition will consist of a certain number of executions of its loop body, that is:

Lu’; Lu’, if v-u #-1 —> swap fu, v) [] uu=-1 — skip endif ;

Lu Luv if vue -1 —> swap (u, 0) J vw =-1 — skip endif ;

Lu’; Loy if v-u# -L —> awap fu, v) {] vu=-1 — skipendif ;

Note, however, that the last if statement is a null one (skip) because, on the last iteration, v-u has value
~t (this is the loop exit condition). So we can remove it.

Now let us see if we could add an instance of the conditional statement at the top of this execution
sequence, Since the condition v-u # -Z is initially satisfied, such an addition implies is that an extra
swap (1, 7) will be performed initially. If not immediately useful, such a swap is certainly harmless. So we
may insert an extra conditional swap at the top of the execution sequence; if we also remove the unneces-
sary one at the bottom, the execution sequence becomes:

ifv-u# -1 —* swap (u,v) [[uu=-1 —» skip end if ; Lu’; Lv’;

ifuuz-f —> swep (u, v} [] v-u=-f — skip end if ; Lu’; Lv’;

if uu #-1 —> swap (u, v) [] v-u=-1 —> skip end if ; Lu’; Lu’

The point of this seemingly strange game is that the new execution sequence corresponds to another loop,
which may be written:

from

usisvies

loop

if us -L > swap (u, v) [] vu=-1 — skip end if;

Lu’; be’

until

v-u= -1

end loop;

But now we notice that the body of this new loop begins with a conditional statement whose condi-
tional expression is the negation of the loop exit condition, which we know is not satisfied on loop entry;
the test in the if statement at the head of the loop is thus redundant. So swap (u, vu) may be executed
unconditionally, and the loop body becomes simply

swap (u, v); Lu’; Lv’

_ Wo thus get a final version of our Partition procedure; please note the new clause in the precondi-
tion, which restricts the applicability of this version. Also nate that, as with the previous version, the
invariant guarantees that v belongs to the interval 1.7 on loop exit, so that no correction is necessary in
(he assignment to 3.

procedure Partition specification - - Version $

in 4, j: integer ;

piwot : KEY ;

in out t: array /1..n] of ELEMENT ;

{assume j > tand

pivot = key, for some pint. and

pivot > key, for some qint.j;

ty fica = t fi D

out s: integer _

{ensure ¢/i..j/ 13 a permutation of ty /t..7/ and

i<a<jand

key, . < ptvot and

keyeat 2 pivot

variables u, uv: integer ;

implementation

from

umijuesj

keep

v-u > -Landi<uand v<jand

key, yi < pivot and key.4) ) > ptvotand

there is at least one indezainu.ott M ij such that key > pivot and

there is at least one index bin u-f..u M tj suea that key, < pivot

decrease

v-utt

loop - - BURN_CANDLE

swap (u, u) ;

until key, > pivot loop u = ut+t end loop ;

until key, < pivot loop vy := v-1 end loop ;

until

v-u = +f

end loop ;

gi=yu

end procedure - - Partition, Version $
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This is a first draft of chapter 6 of a book in preparation. The working tille of the book is AppliedProgramming Methodology.

The book follows the spirit of Méthodes de Programmation, which | co-authored with ClaudeHuucdoin (from Schlumberger); this text was published in 1978 by Eyrolles in Paris, The present work isnol, however, a translation of the former one; shorily after publication of the French book, we did con-sider Uranslating it into English, but for various reasons this project was delayed and it soon became clear(hit an entirely new design was needed. Claude did not wish to participate in such an endeavor; whatfollows is thus my sole responsibility.

The projected audience of the book includes practitioners (engineers, Programmers, ete.) who arelocking for a readable Survey on modern programming concepts, as well as students, for whom it isintended as a textbook to be used in connection with courses on programming methodology, programminglanguages, Programming techniques or software reliability.

The book uses several programming languages as a means to exemplify the Programming conceptsdiscussed and to deepen their analysis. The languages studied include Fortran, Pascal, Simula 67, Ada,Modula, Lisp and, to a lesser extent, PI/T, Cobol, Algol W, Smalltalk and APL.

The tentative plan of the book is as follows.

Chapter 1: The challenge of software engineering
A short introduction recalling the basic problems of software engineering, summarizing thecurrent state of the art, and describing the “two schools" of software engineering.

Chapter 2: The atructure and role of programming languages
A description of the structure of programming languages, introducing the basic issues inlanguage design and discussing the role of languages in programming.

Chapter 3: Control structures: Fundamentals
An introduction to the basic control structures of sequential programming, using from theoutset a systematic, semi-formal approach. Includes a discussion of specification-directed program con-struction.

Chapter 4: Control structures: Techniques
All elaboration on the concepts introduced in the previous chapter: variants of the basic pat-terns; control stuctures as implemented in various languages; technical problems associated with pro-cedures.

Chapter 5: Data structures and their description
An introduction to the practical use of abstract data structure descriptions. Emphasizeshierarchical definition of" types and reuse of Previously written descriptions (through mechanisms ofenrichment and restriction derived from those of Simula, Z and Clear). Offers three levels for the descrip-tion of data structures: implicit (ie. by one or more abstract data types), constructive, physical.

Chapter 6: Modularity (this chapter)

A discussion of some of-the main requirements for modular programming and of existing tech-niques,

Chapter 7: Recursion and Functional Programming
An introduction to the “other culture" of programming, with hints for the practitioner as tohow to use its concepts.

Inclusion of the next two chapters is still a matter of discussion.

Chapter 8: Some fundamental data structures
A systematic presentation of some of the most useful data structures, from specification toinplementation, the latter including coding examples in various programming languages.

Chapter 9: Some fundamental algorithms
A systematic presentation of some important algorithms, chosen both for their methodologicalinterest, clogance and practical usefulness.

-3-

NOTE ON CHAPTER 6

A first version of this chaptcr was prepared as the text of an invited ee ee oe

jati i Js Adaptation and generalization of this paper to the982 Conference of the Association of Simula Users. : ; a 0

a of the book have not been completed. Besides filling some of the “blank” sections, the next
version will contain the following corrections: .

e better balance between Simula and other languages, in particular Ada and Smalltalk;

e better distinction between type and object, on the one hand, and between algorithm and Pro-

cess, on the other hand (the wording of the present version docs not distinguish clearly enoug

between general categories and their instances);

e Conformance to the programming notation introduced in chapter 3; -

@ conformance to the conventions of the rest of the book (e.g. few references in text, bibliographic

notes at end of chapter, format of referenccs, etc.)

Note (January 1985): This text was essentially written in 1982-1983 and will be extensively

reworked.
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6.1. - INTRODUCTION: A MULTI-FACET DEFINITION

Among the buzzwords in software engineering, “modularity” is one of the most misused; as a catch-

phrase, it is probably as popular as “structured” or "reliable". The proponents of any specification, design

of programming method will always claim that it leads to “truly modular" systems; seldom, however, is

(here any convincing evidence supporting such a claim. As a matter of fact, there does not exist a simple,

widely accepted definition of what the concept of modularity meana with respect to programs. On the

other hand, anyone with some programming experience will have an intuitive feeling for what it means for

a program to be modular, and agree that this is an important quality which programs should indeed pos-

SESS.

‘The purpose of this chapter is to try to elucidate what modularity means as far as programming is

conecrned, why it is so important a property, and what can be done to promote it when designing and

building programs. This last point will take us into the study of several fruitful concepts.

Our first task will be to give a sufficiently precise definition of what modularity is. The general idea,

of course, is that a program is modular if it is made out of a number of elements, or modules, in such a

wily that each of them enjoys some internal homogeneity and conceptual autonomy, and the set of

their interrelationships is structurally coherent. This problem is not unlike those which are described

(if not solved) by general systems theory; some of the vocabulary which will be used reflects this similar-

ity.

The above characterization is, however, much too vague to be considered technically satisfactory; it

dacs nol offer much help in determining whether or not a given program is modular, or, even more funda-

mentally, whether or not a programming (or program design) method or language is an aid in the con-

struction of modular programs.

Ax it turns out, one of the reasons that there is not a single universally accepted definition of modu-

larity is that different viewpoints will lead to different, equally justifiable definitions. [t is not so much

that modularity means many things to many people, but rather that there are several inherently different

facets to it. In fact, we will not concentrate on a single definition; we will instead define modularity

through a set of ten requirements: five criteria and five principles. The “principles” are as important in

praclice as the criteria; the distinction stems from the fact that the latter may be logically deduced from

the former. On the other hand, even though the five criteria are not totally mutually independent, no one

follaws directly from the others. In our view, no understanding of modularity will be complete if it does

not. satisfy these ten requirements.

After discussing the criteria and principles, we will introduce five keywords, denoting technical con-

cepts which help in the practical realization of modularity. We will then study how these concepts are

compatible with traditional approaches to modular programming, based on the subprogram concept;

other techniques will be discussed, such as the Jackson and Warnier design methods, the coroutine concept

anc the use of abstract data types.

Several examples will be given of applications of these concepts, one of them describing an impor-

tant practical class of problems, the design of interactive menu-driven programs. We will conclude by

studying the relational structure of systems seen as networks of modules.

Although much of the discussion concentrates on what "modular" means for programs and how

modular programs may be achieved, it generalizes for the most part to modularity as applied to earlier

stages of the software life-cycle, so that one can also use part of it when studying modular specifications

and modular design documents.



6.2. FIVE CRITERIA

Our five criteria are properties which a method or la
should possess if it is to be considered an aid in the constructi

© modular decomposabili

.nguage for programming or program design
ion of modular programs. They are termed:

« modular composability;

# modular understandability;

© modular continuity;

‘« modular protection.

6.2.1. - Modular decomposability

‘The first criterion, decomposability, has to do with i
tion, 

; 
the construction of programs. A methodlanguage may be said to be modular with respect to this criterion if it helps in the dacoripesition alaProblem into several subproblems, whose solution may then be pursued separately. From the point ofview of systems theory, the problem is to help decompose systems into subsystems (Fig. 6.1).

Figure 6.1 - Decomposability

Iu the general case, the decomposition process
the development of new modules. Decomposability is th
design process,

be repetitive: each of the modules will give rise to
us the condition that must be met in a top-down

It should be noted that this requirement is essentia,“Pet 1 in view of one of the fundamentals conditions of‘mining-in-the-large": the ability to split a programming task between several persons, Of courseis also important in the case of single-person pro; as a basis for an ordorly appr
ingle- person ramming, as

a 
' 

prog Bs is Tor an ordorly approach to the

Example: The top-down program design method was «lesigned to mect this criterion.

Counter-example: Many modules require some kind of initialization, ic. a sct of stops to be takenars the module may perform its first uscful tasks. In some design methods, howover, it roqniredthat all such module initializations be concentrated ina common “initialization module”. Since a

ais

module's initialization is so closely related to the rest of the module, such a rule is clearly quite

antiemodular as far as decomposability is concerned.

6.2.2, - Modular composability

The second criterion, composability, is a mirror image of decomposability. A method or language

will be modular according to this criterion if it favors the production of software elements which may be

freely combined with each other to produce new programs, possibly in an environment which is quite

differont from the one in which they were initially developed (figure 6.2).

Figure 6.2 - Composability

‘The composability criterion corresponds to one of the most serious problems which confronts the

soflware industry: the need for reusable software. Because this problem has not been solved, people

now write similar programs or program elements over and over again; most of the time, they are not able

to use solutions which have already been devised, by others or even by themselves, to answer the same (or

almost the same) questions. Software engineering will not progress significantly unless we become able to

avoid this constant reinventing of the wheel. We must find a way to design pieces of software perform-

ing delinite tasks, which should be usable by any program requiring these tasks outside the initial context.

It is a pity that the fashion for top-down design (or, rather, for naive interpretations of this metho-

dology) has led many people to underestimate the importance of the reusability issue.

‘The criterion of composability reflects an old dream (which, perhaps, is more a program user's or
programming project manager’s dream than a programmer's one): that of having the software design pro-

cess look like a construction box activity, which would consist in combining existing standard elements.

Although such aa extreme view will probably remain unrealistic for a long time, much progress is indeed

possible towards composability (we will just mention here, without elaborating on it et all, ¢ ph

we (hink contains one of the keys to this evolution: Computer-Aided Software Design)

Example 1: Subprogram libraries are designed as sels of composable clements. Even though they

are under-used in practice, mathematical libraries (such as {MSL, NAG, LINPACK, EISPACK,

Harwell, lo name some of the best) represent the most advanced developments in this arca.

Example 2: Commands in the Unix operating system all operate on an input viewed as a sequential

haracter stream, and produce an output with the same standard structure. They arc thus designed
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so as to be composable; the operator denoted as | is used for the purpose of composition, so that

A|B represents a program which will take A’s input and have it processed by A, A’s output being

sent to B as input and processed by B.

Counter-example 1: Switch on your terminal, or pull out a card drawer, and have 2 look at some

of the programs you wrote last year.

Counter-example 2: One popular way to “extend” the facilities of languages like Fortran (which in
most cases means in effect to correct some of their most blatant deficiencies) is to use so-called

preprocessors which will accept an extended syntax as input and map them into the standard form

of the language, producing programs (e.g. Fortran ones} as output. Such software tools are usually

not composable with one another.

Counter-example 3: In the initial definition of Pascal, as well as in the proposed ISO level 0 stan-

dard, the bounds of an array must be compile-time constants; if they array is a procedure parame-

ter, the actual bounds must be declared in the procedure as constants all the same. This means that

a library procedure for summing two vectors with 103 elements may be written in the language; a

procedure for summing vectors with 104 elements may also be written, but it has to be a different

one. In practice, this precludes the use of these versions of Pascal to write reusable software involv-

ing arrays - and, in particular, numerical software. The problem is corrected through the notion of

conformant array (which does not lift the requirement for constant bounds, but allows the bounds

of an array parameter to a procedure to be specified by the calling programs only, as e.g. in For-

tran) in level | of the ISO standard. Adherence to this level is, however, not compulsory.

6.2.3. - Modular understandability

The third criterion, as well as the next one, is important with respect to the “maintenance” phase in

the software life-cycle, which many studies have estimated to account for 60 to 90% of software costs. A

program (or program specification, or program design) will be modular with respect to this criterion if the

text of each of its modules may be understood by a human reader all by itself, without making any refer-

ence to other modules, or by making reference to as few other modules as possible (figure 6.3).

Example: The method which at first sight seems the least. modular one of all, yielding only one-

module complete programs, satisfies this particular requirement. . . providing the resulting programs

are understandable at all.

Counter-example: If a set of modules has been so designed that its correct functioning depends on

hese modules being activated in a certain prescribed order, then they will not be individually under-

standable.

i

Figure 6.3 - Understandability

6.2.4. - Modular continuity

The fourth criterion corresponds to another characteristics of software projects, which, although
perhaps regrettable, is just about universal and must be dealt with openly: the fact that the requirement

spectication for the problem to be solved will always vary during the lifecycle of the project. A program-

ming method is modular with respect to the continuity criterion if a small change in a problem

specification results in a change of just one module, or few modules, in the program obtained from the

specification through the method.

The term “continuity” is drawn from an analogy with the notion of a continuous function in
mathemntical analysis; the “function” which should be “continuous” here (of course these words should not
he inken tno literally) is (see figure 6.4} the function:

Programming method: Specification —+ Program
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program

Programming Method

+

Specification

Continuity is one of the main benefits we may feel entitled to draw from a truly modular method.

‘The problem here is that whereas the notion of a “small change” has a fairly intuitive meaning with

spect to changing a program (there may even exist reasonable ways of measuring the size of a program

change), it is much more difficult to define for specifications. Worse yet, anyone who has had the oppor-

tunity to discuss the urgency of a change with a customer knows that programmers and program users

have very different perceptions of what "small" means in the context of changes to program specifications.

r

Example 1: Some programming projects enforce the rule that no numerical or textual constant

should ever be used in the statements of a program: all constants must be referred to through sy
m-

holie names, whose associated value only appears in @ constant definition clause (PARAMETER in

Fortran 77, constant in Pascal or Ada, = in Algol 68). Thus, if the value has to change, only the

definition is impacted. This is a very wise precaution as regards continuity.

Example 2: The Uniform Referent property: Let z be the name of an object, and ¢ the n
ame

of un attribute possessed by objects of the same type as 2. For example, z might be the name of a

hank account, and a the “current balance” attribute of bank accounts. Let ¢ be the type of z (“bank
account” in our example).

In programming terms, a may be represented by a field designator if objects of type t are

implemented as records (e.g. a bank account is represented by a record with fields such as account

holder's name, credit, debit, current balance, etc.); allernatively, @ may be associated with a
 pro-

cedure or function working on objects of type ¢ (if the credit and debit are stored for every account,

the balance may be computed as their difference whenever required, rather than stored per~

manently). Choosing between these two representations is a space-time tradcoll; the former 
econom-

izes on computation, the latter on storage.

In many languages, the notation used to refer to attribute a of object z will nul be the same

in both cases: access to a record field will be written 2.a (as in Pascal, Simula, PLL/I, Ada), or 2 of a

(as in Algol 68, Cobol), whereas function call will be written a(z). On the other hand, in Algol W,

the notation a(z) is used in both cases (in Simula, the notation z.a will also serve both purposes if

a, whether a variable or a function, is local to the class of which @ is an instance).

This property of languages such as Algol W (and Simula to a certain extent) is known as the

Uniform Referent property; the phrase means that there is » uniform way of referring to certain

elements, independently of their implementation,

“i

Clearly, a language possessing the uniform referent property will favor modular continuity,

dlace acreverssl of the initial implementation decision (using a fuaction rather.than « stored attri.
bute, or vice versa), which is quite possible in the lifetime of a project, will entail changes only in the

module(s) where the implementation of the objects at hand, such as z and its attributes, is described

- not in those where they are used. .

Counter-example 3: A method in which program designs are patterned after the physical

implementation of data, e.g, customer's addréss begins on byte 27 of customer record, or

printer interrupts are recorded at address 2351, will yield designs which are very sensitive to

slight changes in the environment.

Counterzexample 2: Languages such as Fortran or Pascal which, in contrast to Algol, Simula

or Ada, do not allow to declare arrays whose bounds will only be known at run-time, make

program evolution much harder. :

6.2.5. - Modular protection

‘The last criterion corresponds to another fundamental issue: errors, and, more precisely, propagation

of errors, A system is modular with respect to this criterion if the consequences of an error remain

confined to the module in which the error occurred, or this module and few others.

‘As far as programs are concerned, the kinds of errors which are of concern here are run-time errors,

og. crrors resulting from hardware failures, erroneous input, lack of needed resources (like exhaustion of

ilable storage). In a broader context, e.g. if we consider the modular structure of specifications as well

as program designs and programs, protection also implies that a logical error made in, say, one module of

a specification (stemming for example from an incorrect understanding of the problem to be solved), has
consequences in a small number of modules in the design document or eventual code

a

Example: A methodology which imposes that every module which contains input statements also

contains statements to check the conformity of input data and correct abnormal values is good for

modular protection.

Counter-example: Languages such as PL/I and Ada have the notion of “exceptions”, with special

statements to "raise” an exception and statements to “intercept” an exception; when an exception is

raised, control will be transferred to the intercepting statement, which may be anywhere in the pro-

gram. Unless used with a strict discipline, such facilities may lead to programs with bad modular

protection (which is of course better than no protection at all).
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6.3. - FIVE PRINCIPLES

From the above set of criteria, certain principles follow which must be observed to ensure proper

modularity. We shall study five of them:

« linguistic modular units;

fow interfaces;

small interfaces (weak coupling);

« explicit interfaces;

# privacy (information hiding).

All but the first have to do with the basic issue of intermodule communication.

6.3.1. - Linguistic Modular Units

‘The principle of linguistic modular units is fairly obvious but worth recalling anyhow.

Modules must correspond to syntactic units in the lan used.

‘The language mentioned here may be a programming language, a program design language, a specification

ge cle,bangs

What this precludes is the possibility of having the module structure described from the outside,

with no correspondence with the linguistic structure of the program (c.g. module X extends from lines 47

lo 23 of procedure P).

‘This principle clearly follows from the criteria of decomposability (if we want to separate tasks, then

every one must result in a clearly delimited syntactic unit), composability (how can we combine anything

cle than closed units?), and protection (we can hope to be able to control the scope of errors only if

modules are syntactically delimited).

6.3.2, - Few Interfaces

An important characteristics of the structure of a purportedly modular system is the number of

iutermodule relations, A relation may exist betwoen two modules in a variety of ways: they maybe be

procedures, one of which can call the other; they may access common information; ete. {see section 6.11

for a classification of these possible relations). ‘The "Vow Interfaces” principle limits the number of such

connections:

Every module should commu.

More precisely, if a system is composed of n modules, then the number of intermodule connections

siuuld remain much eloser lo Uhe minimum, n=l (see figure 6.5 (a)) Uhan to Ube maximum, n(n—1)/2 (see

figure 6.5 (¢)}.

=i

fa) (b) {c)

Figure 6.5 - Types of module interconnection structures

This principle follows in particular from the criteria of continuity and protection: if there are too

many relations between modules, then the effect of a change or of an error may propagate to a large

number of modules, It is also connected to the other criteria: composability (if we want a module to be

usable by itself in a new environment, then it should not depend on too many others), understandability

and decomposability,

lt should be noted that, whereas figure 6.5(a) shows a way to reach the minimum number of inter-

connections (n—1) through an extremely centralized structure (one "boss", everybody else talks to him and

to him only), there are also much more “libertarian” or “anarchistic” structures, like that of figure 6.5(b)

which is almost as good with respect to the Few Interfaces principles (n connections) but looks quite

liflerent in its organization (everybody talks to two immediate neighbors). Although the latter style of

design is sometimes viewed with suspicion, it may yield very interesting and solid results, as we shall sce

later.

6.3.3. - Small Interfaces (Weak Coupling)

‘The “Small Interfaces" or "Weak Coupling” principle (sce figure 6.6) relates to the size of intermo-

dule connections rather than to their number: :

If any two modules communicate at all, they should

exchange as little information as possible.

Using an expression from electrical engineering, what this principle suys is Uhat all channels must be

of limited bandwidth. ‘Chis requirement clearly stems, in particular, from the eriteria of continuity and



Figure 6.6 - Intermoduie communication

ably Ah oxtreme but all too frequent counter-example is a Fortran practice which some readers will prob.
ont pe hae the "Garbage Common Block”. Programmers who use this techsinos an very con-
rei took 2 the beginning i very program unit an identical, gigantic COMMON directive whichSts all significant data objects (variables, arrays), so that every unit ten seesuiis is Nery convenient: no need for declarations in a new unit, just copy the Garkoge oy, it And pre
gram debugging is so much of an excitement .. 

cal =lt should also be noted that the block structur ike*par he Saal Tbtertioes Principle: any block has access to all the objects belong to higher level
“one socks: including many which are of no interest to it; there does éxist » si justito such it Thus, the equivalent of the "garbage common block” may be found in Pascal oy Bea

Programming (too many variables declared at 
i 

i 
7

ra veranee 
lec at the outermost level), in C programming (too many “exter-

6.3.4. - Explicit Interfaces

With the fourth principle, we go one ste; i orci
. 

p further in enforcing a totalitarian regime 
i

os: 

i 

°

a modules: not only do we require that everyone talks with few others, and that ays one
intited Lo the exchange of a few words; we also impose that it must be held in public and loudly! °

Whenever two modules A and B communicate, this
fact must _be obvious from the text of both A an

Uichind this principle stand the eriteria of decomposabiliFe aiePorabl its bs coneaeed with others, any outside connection should be ae marked), contioultyrial other clement might be impacted by a change should be obvious) and anc ili

one nnilees anit ei for fain is
one understand A by itself if its behavior is influonced by B in the came Naty aay ow exe: Ha we shall see later, the principle of Explicit tnterfaces plays a very important part in the search
br adequate modular structures. One of the problems is that, whercas one of the most obvious kinds of
interinadule coupling is the classical 

icit ki
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modifies —

Figure 6.7: Data Sharing

Assume for example (figure 6.7) that module A modifies and module B uses the same data element
X; X may be a variable, an internal structure, a file, an attribute of an external device (e.g. a sensor),
ote, ne le to both modules through a sharing mechanism such as the Fortran COMMON, the Cobol
Data Division, or the block structure of Algol-like languages. A and B are in fact strongly coupled
through X even though there may be no apparent connection, such as procedure call, between them.

8.3.5. - Privacy (Information Hiding)

The Privacy principle, also known as Information Hiding, relies upon the assumption that there
ists for every module an official description of its purpose, which Is normally different from (and less
tailed than) the description of its function, i.e. of how the module may rely upon properties of another

module which are not part of such official description for this other modutel!),

This principle prohibits a module from relying on the way another module works internally. The
fundamental criterion here is continuity: if a module changes, then other modules may not be affected by
its changes if the interface remains the same. If the specification of interfaces is of a sufficiently high

c. describe function, not implementation, they will remain unaffected by technical changes.

For example, a procedure used for retrieving the attributes associated with a key in a table (c.g. in a
personnel file or the symbol table of a compiler) will internally be very different depending on the way the
table is stored (sequential array or file, hash table, binary or B-Tree, etc.). The document describing the
usage of this module should only contain information which describes the services it offers (storing an ele-
ment, searching for the element associated with a given key, asking for the current number of elements),
rather than details about the particular implementation techniques chosen. A module which uses it only
through these official properties, without relying on the implementation, will not suffer when the initial
itaplomentation choice is modified - © very common event in software projects.

‘The need for separating the description of function from that of realization and the principle of
information hiding which it implies are also related to decomposability, composability and undcrstanda-
bility: to separately develop the modules of a system, to combine various existing modules, or to under-
<tnnel individual modules, it is indispensable to know exactly what each of them may and may not expect

level,

from the others.

TTA ine the word “description” here, rather than "specification", to avoid ‘any confusion with the
“revifiewtion phase of the software life-cycle; indeed we feel the principle may be applied to the modularity of

documents as well: a complex specification should have modular structure. and it may be

¥ to distinguish between the ‘public” and “private” parts of every module in the specification.
eel noeessaty
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6.4, - FIVE KEYWORDS

We now come to more technical aspects of the modularity concept in programming. Our five key-

words describe features which are useful, if not necessary, in order to build truly modular programs. They

ares

synchronization;

e data transmission and sharing;

© genericit

© persistence;

* separate compilation.

The first three have to do with inter-module connections; the last two with the autonomous develop-

ment and behavior of each module.

6.4.1. - Synchronization

Our first keyword is relative to module connections occurring through transfer of control. An obvi-

ons way for two modules A and B to be related is when the execution of some program code belonging to

A depends on the execution of some other code from B.

‘The best-known example of such connection is subprogram call: execution of A is suspended; execu-

tion of B starts at the beginning of B, and proceeds until the end of B; then execution of A resumes when

it had stopped.

This is not, however, the only possible kind of contro! connection. The more general mechanism

may be called synchronization, Synchronization extends to its full scope in the case of parallel pro-

gramming, where more than one module may be active at any given instant. The study of synchroniza-

tion among parallel processes brings some interesting concepts back into the domain of sequential pro-

gramming as well, as we shall see in section 6.9.

6.4.2. - Data transmission and sharing

The other obvious facet of intermodule communication is through the exchange or sharing of data.

Tho delicate point regarding explicit transmission of data (as vin argument passing), in particular

with respect to the continuity and protection criteria, is to be able to assess precisely what may happen

to a datum which is passed through from one module to another or, more generally, what access rights are

od with a datum being transmitted. This problem has received a great deal of attention for

operating systems, In programming languages, the least which should be required is that the rights any

module has on arguments transmitted to it be defined precisely.

Communication of data between modules occurs not only through explicit transmission, but also

through sharing. Data sharing is allowed, for example, by the COMMON mechanism of Fortran and by

the block structure of Algol-like languages. This feature is both convenient and quite dangerous; as we

have seen, it tends to breach the Explicit Interfaces principle. Block structure, in particular, has been

often criticized because it provides unlimited upward visibility: a statement belonging to a block may

access and/or modify data belonging to any enclosing block. The basic elements of a remedy may be con-

tnined in Dijkstra’s notation [Dijkstra 76] which defines at block inception, for each imported or exported

cletnent, the rights that the new block may exert on this element.

{n any case, data sharing should be used with great caution, since it gives basically the same power

as data Leansmission, but in a much tess visible fashion.

aqty

6.4.3. - Genericity

‘To be completed. Examples from Ada and LPG (a language developed at IMAG, Grenoble_|

6.4.4. - Persistence

The data elements used by a program module are persistent if they retain their values from one

activation of the module to the next.

For example, the internal variables of a class object in Simula are persistent ("activation” as used in
the above definition here includes creation by the new construct, call of any of the procedures of the class

reintive lo the object, and re-activation by resume). Some entities may be explicitly designated as per-

sistent in languages such as Fortran 77 (SAVE) Algol 60 (OWN) and Algol 68 (heap). On the other hand,

no data clement of a Pascal procedure is persistent through the successive activations of this procedure;

the only way to have it retain its value into move its declaration outwards to the enclosing block, which

is obviously very harmful to modularity.

Allowing persistence of data local to a module is fundamental with respect to the construction of

modular programs. If we want modules to be truly autonomous and homogeneous entities, then they
should be allowed to "possess" and manage their own data. If this is not done, all the information which

is necessary to restart a module will have to be provided by the module which triggers the re-starting;

Unis means that information pertaining to one module will be disseminated among other modules, possibly

many of them (since the propagation of information may be carried quite far). Such a scheme obviously

breaks the Small Interfaces and Privacy principles.

Although the necessity for persistence of local data as an important asset for modularity clearly fol-

lows from the previous discussion, it is interesting to note that this idea contradicts some commonly found

ideas of programming methodology. For example, the methodology known as “structured /composite

design” [14], which has modularity as one of its central themes, advises against the use of persistent data.

although this approach may be in part justified by the technical difficulties encountered when dealing with

persistence in programming languages, we feel that is based on a partial and short-sighted view of modu-

larily, taking the procedure as the only possible kind of module; this view as we shall see in the next sec-

lion, encompasses only part of the problem.

What the persistence concept really contradicts is the usual notion of “pure procedure”, viewed as

an idealization of the subprogram and thus of the module. A pure procedure is a mechanism which per-
forms some computation which may entirely be specified in terms of the relation between input (argu-

ments communicated to the procedure) and output (results computed by the procedure and returned to

(ho calling programs). It is thus the programming equivalent of a mathematical function (except that one
may, without too much trouble, accept as pure procedures mechanisms which have not only in arguments

and out results, but also some in out arguments).

A pure procedure is thus like what some people view as the ideal subordinate: memoryless, history-

apable of performing a well-defined task whenever it is ofdered to do so and provided with the

isite information, and ready to disappear again once it has delivered the expected results. In con-

axt, a module with persistent data manages its own information and accumulates experience, a feature

which not all "bosses" are enthusiastic about. (The two approaches are not unlike what is known in social

science as "theory X" and “theory Y")

‘The necessity of persistence and the insufficiency of the pure procedure concept. are obvious even for

sery simple problems. The following two examples are typical:

@ write a module of some kind, which upon request will print an integer passed to it, in such a way

that two successive items are separated by a blank; there should thus be a way for the module to

remember whether it has already been requested to print an integer (so that a number is preceded

by a blank if and only if it is not the first one};

« write a "pseudo-random number gencrator”, the algorithm used by such tools generally a relies on

a sequence of the form ao = z, 4,4; = f(a,), where 2 is a “sed” provided initially be the requesting
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module, a, is returned as “pseudo-random” number at the i-th activation of the modulo, and fisa‘yi designed So as to provide as much apparent “randomness” as possible, if every activationol fe module is to return 
7 i i

ate a 
a new number aj, then the module should be able to retain the last com.

ft should be noted that expression of persiPersistence raises some problems as far as proj ity nsuages are concerned. One of them is the conflict between persistence and dynamic allocations histor’rally ti known as “the Algol 60 Dynamic OWN atray problem", since the initial Algol report allowedin i ie declaration of any object as persistent (OWN) and the Presence of array with adjustable boundsbe, the igen ot an Alga 50 array declared in a block # may involve variables, provided these variables are declared in a block enclosing B and have been assigned : isrexeeuted),Mn aray baving Adjustable bounds must clearly be reallocated every time B (which may be tence's executed; but then what dogs it mean for the array t i i

i 1 es it 
y to be persistent? Later versions of Alremoved this contradiction by forbidding adjustable OWN arrays. Descendents of Algol usually do ‘othave an OWN declaration; one of them, Simula includes persistence in a nice way through classes.

A problem which is intimately connected with persistence is that of initialization. If we have vari-ables which retain their values, then we must have a ibi
‘ 

Les, 

way of describing the value t! himodule to which they belong is first activated Note that naively writing nee lhave whew the

if first_eall then

initialize ; first_call := false

end if

does not provide a solution since first_call itself has to be a persistent variable.
Some languages provide syntacti jon of fi

| 
yntactic support, for the expression of initial 

ipersistent variable, we will write ee Ease
isa

SAVE X

DATA X [tof *

where zo is a constant. In Algol 68 we will write the initialization in the declaration statements, ¢. 8.

loc int X : = 29

, None of these solutions, however, is entirely satisfactory. The limitation to constants may be tricting: for example, one might want z to involve previously initialised elemeney ee= ©) -i4:= 2% or subprogram parameters. On the other hand, allowing ay to be any v voteopens dangerous possibilities: by destroying the traditional fence between the catirely oxnte eeedeclarations and the dynamic nature of expression evaluation, are may run into trouble; for naan ke yevaluation of 29 might entail side-effects (in Ada, where one may write X: integer eo ahs the‘ould hea call to a function which starts another task which communicate with the initial one 2)
In fact, a satisfactory solution to the problems raised by persistence and initialization implies goingbeyond the concept of procedure and ideri 

is wil

henaiae pt pI lure considering modules as processes. This will be studied in sections

res

8.45. - Separate compilation

‘The possibility to compile modules separately i i
mecha pi eparately is a necessity for any module structure provided by a

on "he eed for separate compilation is not, as often argued, motivated primarily by efficiency con-vee Th i : a ® contrario by the fact that, on many systems, separately compiled modules mayed after they have been assembled by a special system Program called a linker (or linkage

-19-

editor, or linking loader), which often takes as much time per module as the compiler. In fact, the main

irgimnent for separate compilation, even when it is not explicitly formulated, it information hiding:

sure a module has been compiled, then it becomes a closed object; its internal details are no longer easily

iweessible (Lo use a popular term, they have been “encapsulated”). Actually, it is only usable through

senw external description; such a description thus has to exist.

A related property of compiled code which also plays a role is the fact that it is not modifiable any

more, This helps in making a compiled module into "packed material", known only from its label.

Separate compilation is also important for decomposability (separate development of modules makes

it necessary to work as far as possible on each individual module, up to testing) and, obviously, composa-

bilily. Separate compilation is a natural extension of the "linguistic modular units” principle.

>From this discussion, it is interesting to note that compilation here is meaningful not only as code

production, but also (and perhaps more importantly) as a global operation on a program or program frag-

mont, which applies to it tools for verification (syntactic and semantic checking) and archival, Thus the

notion of separate compilation, replaced by “separate analysis and archival", may be transposed to such

inherently non-compilable objects as specifications or program designs; it is useful to constitute “librarics”

of. for instance, specification modules, each of which has been processed by a set of tools for consistency

checking and hiding of internal details.

Studying separate compilation not as a minor technical issue but as an essential requirement in the

broad context of information hiding, modular design, software reusability, program libraries and

programming-in-the-large has some interesting consequences. One of them has to do with the required

software tools. With the above approach, a traditional linker - which, essentially, takes as input “quasi-

object code" which still contains some symbolic elements corresponding to resolved external references,

and replaces these by the actual addresses of the referenced modules - is no longer sufficient; one will be

confronted with a variety of modules, subsystems and systems, each existing in several versions, and

perhaps being split into a description part and an implementation part, What will be needed, then,

ineludes:

ea “module interconnection language” which makes it possible to describe particular combina-

tions of modules;

© a set of tools for what is called “configuration management”, i.e. keeping track of the respec-

tive states of the various modules, subsystems and systems, and their interconnections,

Such tools are essential tn supporting a truly modular design methodology,

Separate compilation raises some non-trivial technical problems at the border between language and

compiler design. The most important issue is to make it compatible with strong typing, a fundamental

feature of modern languages. At the other extreme, in Fortran (a language for which separate compila-

tion was one of the most important design criteria}, the compiler stops at the module border: the compila-

tion unit is the Fortran subprogram (subroutine or function}; once a subprogram has been compiled and

stored in a library, the compiler is not required by the language definition to check the compatibility of

the formal argument list with the actual argument lists in calling programs; very few compilers will do it.

In the code generated for each module, all typing information has been fost. The linker, when combining

subprograms, cannot then perform any significant checking.

In a strongly typed language like Pascal, Simula or Algol 68, it is always possible to implement

separate compilation by doing no more than in Fortran; provided a procedure does not use any global

variable, it can be compiled separately. Such a simple scheme will not allow. however, for checking tyne

compatibility; ie. if we compile separately

procedure P (2, t) 22! t2,-.-, tm ta)

and procedure Q containing the call

P (ay ay, ..-5 Om;

we have no way, once P and Q have been compiled, to check that m = n and that every a, is of a type
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compatible with that of 2, What may be felt acceptable by Fortran programmers for the sake of

“clliviency” (?) should be rejected by users of languages which have been explicitly designed so that their
type systems allow for complete static verification of type compatibility. Accepting it would be accepting

that compatibility is checked for entities within a given module, but not for objects belonging to different

mevtules, which is all the more absurd that the most serious errors, and the ones which are the most
dilliealt to detect and correct, precisely occur at inter-module connections (this is one of the reasons which

mike “programming-in-the-large” so much harder than "programming-in-the-small").

An apparent solution is to modify the usual notion of compilation, so that the result of compiling a

mewlule will contain not only some object code but also an “interface symbol table" which carrics all
the information necessary to check the conformity of calls to the module. In our example, the interface

symbol table for P would contain, in an appropriately coded form, the list of argument types

tyltan ®. oy tas

With this technique, module linking has to be performed by a special tool which must know about
the structure of the interface symbol table, and hence about the type system of the programming

language used. Such a tool may thus not be a gencral-purpose linker; it has to be "language-oriented” - a
solution which raises some difficulties when one has to combine modules written in different languages, but
of course this requirement is not compatible with that of intermodule type checking.

Unfortunately, there is a major flaw in this approach. It may be viable for a language like Fortran
where the type system is essentially finite; in a language like Pascal, however, it cannot be applied to the
separate compilation of procedures because of the presence of constructed (user-defined) types. Assume

thal ¢, and ty above are constructed types, e.g.

t, = array (l..k] of (a, 6,

ty = record (m,, pi, ma. po,

Thus, if the argument list of P and the call to Pin Q are to make sense, then both P and @ must
have access to the above type definitions (and others, such as the definitions of types P, Ps, ...). They

must. also be able to access common constants such as & (and its value), the names a, }, ..., ete.

Nole that the definitions of these objects may not be part of the body of procedure P (or @), since
they are needed outside.

‘The consequence of this discussion is clear: Pascal does not allow for separate compilation of
procedures if static type checking is to be retained. the same is true of other languages of the same class

(rich type system, block structure) such as Algol W or Algol 68. Although many existing Pascal systems
purport to provide separate compilation, they all either do not perform inter-module type checking or
extend the language.

One should not draw the hasty conclusion that the static type checking and separate compilation

are incompatible for modern languages: the contradiction which we have analyzed is relative to pro
cedures only. What we must then deduce is that the procedure is not an adequate modular structure for
separate compilation in modern languages. .

Wo may note at this point that the impossibility would not have arisen if we had had our disposal
modules which contained not only one (or more) procedures, but also constant definitions, and type
declarations defined so as to be accessible from other modules. We shall, in fact, be looking for such kinds
of modules, containing other elements as well, such as variable declarations and even statements” But
Iet's aot anticipate... «

Pascal offers a language structure which satisfies these requirements and embodies all the neces:
ion (whereas the procedure does not because external information may be needed to understand
list): the Pascal concept of program. Unfortunately, there is no interconnection mechanism

between programs: 8 program may not call another one. There have been, however, implementations of

aararare ourdlicriin on Pentel lraral ane “arog! com ui
By lt og,

-2h-

6.5. - SIMPLE-MINDED APPROACHES: THE FIVE SINS OF THE PROCEDURE

‘The simplest way to decompose a program into modules is to use the ordinary concept of pro-
cedures, It means that the task to be performed is divided repetitively into subtasks, each of which will
correspond to @ program unit,

In fact, the term "module" is still considered by many people as a synonym for "procedure". "Modu-

lar programming”, in this context, simply means decomposing programs into as many short Procedures as
posible -- which may be better than no division at all, but docs not really further the aims of modularity
as we have analyzed them. Several books popularized this idea during the late sixties and seventies (sce

4); but even for more recent authors ((14]) the equation module = procedure still holds.

Procedures are of course one possible modular structure. There are, however, many problems with

Iuhing the procedure as the paramount type of module. We shall study five of them; some have already

Leen mentioned and will be only briefly reviewed, The Five Sins of the Procedure are:

«jack of control of data propagation;

«incompatibility with separate compilation in the presence of static

# Lype checking;

lack of flexibility of the argument mechanism;

unequal control relationship;

imbalance between process and data structures.

6.5.7. - Lack of control on data propagation

Whereas the direct interprocedural connections of “control” type, occurring through the procedure

call mechanism, are obvious and easy to spot, the various procedures in a system may also be indirectly
related via the data which they exchange or share. In many cascs, these connections will be too big
(violating the Small Interfaces principle), not as visible as the control connections (contrary to the Expli-
cit Interfaces principle) and hard to document properly, especially in the case of sharing (endangering the

observance of the Privacy principle).

6.8.8. - Incompatibility with separate compilation in the presence of static type checking

We have seen that the use of procedures as modules does not blend well with separate compilation if

complete, static type checking is also required.

On the other hand, separate compilation, at least if taken as the ability to separately analyze

modules and then make them into closed units, appears to be a fundamental component of any program-

ming language or methodology if it is to be applicable to anything else than toy problems, student exer-

vises and experiments.

6.5.9. - Lack of flexibility of the argument mechanism

Another serious flaw of procedures as modules is the bad performance of the argument passing

ineclaunism with respect to the continuity criterion. In 2 procedure cal!

P(b1, by * bn)

corresponding to the procedure heading

procedure P (in aj: ....a:

out a4):
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the argument fist a), ++ a, describes the interface between p and the calling program units. Now in theevolution of a system, it very commonly happens that a new use for an existing procedure requires newprocedure arguments or, to the opposite, makes some arguments meaningless. A typical example is thecase when p is an output statement. and some of the in parameters describe terminal characteristics; thenat some point comes a terminal with new options, such as the biti
it 

Possibility to chooseTor oul putting an element, ’ Debroea several coos
In such a case, a new argument will have to be added to p (i i

/ 

, 

v 

p (in other situations, a argument mighthave ta be removed); the body of p will be modified in order to take this parameter to deeount, Theproblem is that p's interface with the outside world will be changed; so every program unit which usesPp omust be updated, in order to include the right arguments in the call to p. The change will affectitself and the units which require the new facility -- and so far this is perfectly natural ~ , but also all neolay ie ritet units, which do not use the extension. This is unacceptable in a large system: as functionsare added or removed, existing code would have to be constanti if Witslogisally tuted

f

e

c
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ly updated even if it is logically unaffected

It should be noted that the presence of ke: i i
'yword arguments, with default values, ionly # partial solution to this question. a aMas revi

Same remedies to this problem have been studied in [2]. A ion implies goi

—_, 

[12]. A proper soluticn implies going beyond the

6.5.10. - Unequal control relationship

We have already remarked, when studying persistence (4.4), that the relationship from calling pro-m to called procedure was a very dissymmetric one, of the master-slave kind. A procedure is a perfeced servant, which does not exist except when it is required to execute its master's orders. In oursearch for ways of allowing the development of systems as sets of autonomous and coherent. Bec, ve mayye 'o find module types which lend themselves to relations more oriented toward the *sell'managetieat”state.

6.5.11. - Imbalance between process and data structures

A ventral duality in programming is that of Process vs. data, or algorithm vs. objects, Data process-ing (0 suggestive expression) consists in applying some algorithms to some objects; a data Processing sys-lem chn only be deeply understood through an analysis the structure of both process and data seructars\ representation of this situation may be constructed by associating with the system a graph (lig 68)which has the data elements as its nodes, and the data transformations as its vertices (a multi i h isetually needed in the general ease). 
suns

Building programs as systems of procedures is a serious break of the process/data duality, since pro-

cedures correspond exclusively to divisions of the process part of the system: such a modularization com-

pletely neglects the other half, As might be expected, the data half takes its revenge in the form of

insufficicnt coherence of the resulting modules: this is apparent in several of the problems which we have

encountered and discussed such as sneaky connections through data sharing.

More satisfactory modular policies will have to restore the balance and take into account the data

us well. We shall in fact see the usefulness of introducing data units for system modularization, along

with Lhe traditional “program units”, i.e. procedures.

A data unit is a module which is organized around a data structure, whereas a procedure is based

on a processing step. Because of the dual relationship of data and process, a data unit will contain, along

with the doseription of a data structure, the procedures which act upon it, in the same way as a pro-

cedure unit attaches to the description of a procedure that-of the data structures on which it operates.

‘The modularization choice which faces the designer is thus, at each step, whether to put the data into the

procedures or the procedure into the data.

For example two extreme policies for- the system of fig. 68 would be having six data units,

corresponding to di,dz,...dg or ten procedure units, corresponding to py,p2,...Pi. All kinds of intermediate

solutions are also possible.

It may seem at first sight that cach of these groupings will be just as artificial as the others. The

lirst extreme solution means that pz, for example, has to be split between d, and dy, or arbitrarily

attached to one of them; the other implies the converse situation for dy with respect to py and p3. But

nol all choices are equivalent with respect to modularity.

Although there is not absolute rule for decomposing along one line before the other, some scrious

arguments tend to favor the "modularize around-data” method at the outermost level of a system. The

usin criterion here is continuity. During the evolution of a software system, there is a very good chance.

that the tasks which are required from the system will change. A payroll processing system, for instance,

will be required to provide new outputs, eg., statistics, and the payroll computation will change due to

new rules, evolving legislation, ete. On the other hand, the objects which are manipulated by the system

ibly remain roughly the same, at least if viewed from a sufficient level of abstraction: c.g.

par roll system will always work on things like employee records, salary scales, social security files ete.

It 1s thus probably a better bet on the future to base the overall structure of the programm on the objects

than on the tasks.

‘This argument -- which lies at the basis of "object-oriented programming" -- plays an important role

in the rest of this discussion, Again. we should mention that it gontradicts simplistic presentations of the

top-down method. The usual description of top-down design gocs somewhat like the following: begin by
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dexeribing the overall purpose, or “top” of your system, e.g.,

compute monthly payroll

this gives "the first version of the system", unfortunately too abstract yet to be implementable. So it

must. be refined: the first refinement could lead to something like

-- compute monthly payroll:

input employee data ;

input monthly work data :

for each employee do

compute monthly pay ;

output payroll

You should then apply the same process to the stili unresolved pseudo-statements, like “imput

employee data”, etc. and proceed repetitively until you are only left with implementable statements.

The problem with this approach is that it docs not apply to rea! size programs. It is meaningless lo

talk about "the" purpose of a nontrivial program: real systems have no top in the above sense. Any

serious system fulfills a set of functions. An operating system, for example, answers requests from vari-

ous devices; pretending that "the" purpose of the system is described at the topmost level by

answer deutce request

and basing the development of the system on refinements of this “statement” will result in an entirely

artificial structure. The same is true of systems which superficially seem more single-goal-oriented, such

ax the above payroll processing program, or a classical scientific computation; when one looks more

closely and considers the full life cycle of any such program, it becomes clear that there are always several

variants of the program, which are closely related by the facilities they use but pursue different aims.

Among the many parameters which may characterize a system variant are, for instance, whether it is for

actual production or for program test, and whether it is interactive or batch-oriented.

Let us concentrate on this last criterion and consider a program which has both a batch and an

interactive form. The batch variaat will have as its "purpose"

solve a complete tnstance of the problem

which, according to the top-down design credo, could be initially refined into something like

read input values ;

compute results ;

output results

The interactive version, on the other hand, may be described as

process one transaction

which could be refined into

- 25 -

if new information provided by the user then

input information ;

store tt

else if request for information previously given then

retrieve requested information ;

output tt

else if request for result then

if necessary information available then

compute requested result ;

output it

else

ask for confirmation of the request ;

if yes then

obtain regutred information ;

compute requested result ;

output result

end if

end if

else ...

Thus at the outermost level there is apparently no relation whatsoever between these two programs;

hut in reality they are two facets of the same system, and their essential components will be the same.

What this discussion shows, in our opinion, is not that the top-down method is inadequate, but that

it ix an error to apply it to the process part only. The structure of a system should be analyzed in terms

of bath the objects it manipulates and the tasks (the plural being fundamental here) that it performs. At

every stop in the development of a system, the designer has the choice between refining data and refining

processes. This choice must be made consciously; choosing the former alternative first at the basic levels

of system development will, according to our experience, yield more coherent, solid and change-proof

designs,

It is interesting to note that Wirth's 1971 paper (16], the first description of the top-down method,

clearly stated that the refinement process should be applied to data as well as to algorithms. It does not
however mention that the designer must often choose between the former and the latter.

We shall show in sections 6.6 Lo 6.8 how these ideas can be applied. We will see in particular when

introducing “abstract data types” that a proper approach restores the process/data balance, which may

sce lo be destroyed by going too far in the modularize-around-data direction; indeed, a good way of

describing a data structure is to use as abstract description the properties of the set of functions which

mus he applied to it, so that the loop is closed and the process/data complementarity appears clearly

Aan.

Hefore we come to this, however, we must study a little more closely what “structuring around data"

aeans. We will first take as example a design method which is well-known in business data processing cir-

cles the “Jackson method", Although it has some obvious limitations, Jackson’s methed will help us

introduce some of the most fruitful concepts. hi
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8.6. - MODULARIZING ON THE BASIS OF THE PHYSICAL DATA STRUCTURE

The method developed by M. Jackson (7), (similar to the one preached by J.D. Warnier) has beenessentially used for business data processing applications

One of the basic ideas of the method is that the structure of a program should only depend upon the 
A 

8 
c

ire af °f the data it manipulates. In particular, the tasks to be carried out do not infuence che strucure: they only determine how it will be filled.

Since “data” is a somewhat overused term, it is necessary to say what it means in the particularrontext. Let P be a program using some input /, producing output O and having some internal data
Structure D (fg. 6.9). The word “data” is used in the literature to mean at least four things:
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: Figure 6.10 - BASIC JACKSON STRUCTURES
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The central idea in Jackson's method is that a program processing a file whose structure a ne

clements will have a corresponding structure, with scquerice corresponding to concatenation, cor nal1

to alternative, and loop to repetition.

FILE
Figure 6.9 - DATA MANIPULATION

“The data considered by Jackson are apparently those of the fourth category, input and outputfiles. The structure of such files will be described in Jackson's method by a tree using a combination of 

FILE_END

the base schemata of figure 6.10: for instance, an element type of A is the concatenation of one element of 
FILE HEADER FILE BODY 

~

pin A one of type A2, one of AB and one of A4; a B is cither a Bl, a Blors Bir Cc zero, one or 
=

inare ocenrrences of a C1. 

[_

RECORD *

fj
Figure 6.11 - A FILE STRUCTURE

. am of theFor example, a file having the structure given by figure 6.11 will be process¢d by a program of the

form:
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-- process_FILE:

process_FILE_HEADER ;

-- process FILE_BODY:

until file_end do

read record ;

+> process RECORD:

type_A: process_A,

type_B: process_B ;

end do

process_FILE_END

‘The study of the tasks to be performed will be carried out separately, resulting in a list of necessary
clomentary “actions”, These actions will then be spread out into the “holes” of the above program struc-
lure (process_A, process_B, etc.), to obtain a complex program.

‘The following example is taken, slightly simplificd, from Jackson's book. An input file of card
images is lo be analyzed. There are three card types, A,B and C (distinguished by a character in some
position of the card). The required analysis is as follows:

* count the cards preceding the first A (the resulting count will be held in variable initial);

© print the first A;

© print the last card, which is always the first C following the first A;

«count the "batches", whore a batch is cither a contiguous sequence of A cards of a conligu-
ous sequence of B cards, starting with the first A (this count will be held in variable batches).

© count the number of “batches” of B (this count will be held in variable Bbatches).

Ax implied by the method, only the structure of the data determines the structure of the program,
not the tasks to be carried out. 

:

It is very easy to draw the diagram corresponding to this structure (figure 6.12)

Figure 6.12 - A FILE STRUCTURE

‘The program operating on such data must then have an isomorphic structure:

process_FILE:

process_HEADER ,

process_BATCHES ;

process_END_OF_FILE
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where (he refinements of the statements are:

process_HEADER:

init HEADER :

until Ado

process_notA

end do

process_ BATCHES:

init_BATCHES ;

until not batch do

process_A_BATCH ;

a process_B_BATCH

end do

process_A_BATCH:

process_starting_A ;

until not Ado

process_batch_A

end do

process_B_BATCH:

process_starting_B ;

until not Bdo

process_batch_B

end do

process_END_OF_FILE:

process_C

‘The method then requires that we list the necessary "executable actions”. ‘To read the file, we will

need tests and actions. First we need to express the Uhree tests two distinguish between card types; they

may be refined as follows:

A: (type(card) = A)
B: (type(eard,

C: (type(eard,

type (eard) may be given for example by the first character of card.

‘The “actions” are of two different kinds: input-output and computation The first kind comprises the
cintements necessary to handle the input file ("open” and “read") and to print the special cards and the

requested counts; thus we find four kinds of inpul-output statements’

open

read (card)

print card

print counter

‘The computation statements are nceded to compute the various requested counts; for cach of these
connis, we need @ statement to initialize the corresponding counter and a statement to increase its

initial initiol + t

=0 batches := handler + 1

Bbatches := Bbatches + 1

initial

batches

Bbatches -= 0

What remains is then to “spread ont" these actions into the program structure by refining the

remaining pscudo-statements and tests, It is easy to oblain in this way the refinements of the yet under-

developed statements:
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intt HEADER:

open ;

initial = 0;

read card

procesg_not_A:

initial = initial + 1;

read card

intt_ BATCHES:

print card ;

batches :=

Bbatches := 0

process_starting_A:

batches := batches + 1;

read card

process_batch_A

read card

process_starting_B:

batches -= batches + 1;

Bhatches := Bhatches + 1;

read card

process_batch_B:

read card

process_C:

print card

By moving all these statements into the required position in the program structure, we get a solu-
tion bo our problem.

This example of the application of Jackson's method (we shall see another one in section 6.9) is quite

representative of the benefits and limitations of this method. The nice part is that the design process goes

very smoothly by just applying the basic recipe: use the data structure first. The "actions’ are quite easy

to map into the overall structure (with the partial exccption of the “read” operations, whose proper place-

ment requires some insight), .

On the other hand, some obvious criticisms may be voiced. The first ts that things may not go so

well when there is more than one data structure involved; in particular, “interesting” problems are those

in which the input and output structure are different! This case, called "structure clash”, is dealt with in

detail by Jackson, who suggests a coroutine-like solution schema.

Of more direct interest to us for this discussion is the study of the method with respect to continuity

ang protection. I[t is all very nice to base the program structure on the data structure, but it alsa means

(hat the data structure will be “wired” into the program structure, which will thus have to change jusl as

much as the structure of the data, in case the latter evolves. The problem, however, is that the way the

dita structure has been modeled here is so strictly fixed that it will be very dificult to change anything

withaut changing everything: consider for example what happens Lo the structure depicted in fig. 6.12 if

we clninge the speetfication just slightly: the header part now consists of cards which are not only not A

lit alse not B; the sequence of batches may begin with either an A-batch or a B-batch. Although this

new problem is very close to the inttial one, the structure will have to be completely reworked. The same

is true if we try to extend the program in order te cater to possible input errors (e.g., no A-card in the

lile}. Such disruptions of the program structure for conceptually small extensions are not acceptable in

=3i=

light of the requirements for modular design.

Those difficulties reflect two of the most serious limitations of Jackson's method:

e the restriction to tree-like structures for the modeling of data, which is too constraining in many

enses; for instance, even in simple problems, a general graph (e.g., a transtion table) may be necded;

¢ cven more importantly, the fact that the structure used is the external, physical one: figures 6.11

and 6.12 describe a file in a way which is very close to how it appears on a disk or deck or cards.

‘This is the main reason why the designs which are obtained by using the method are so sensitive to

surface changes in the appearance of the data.

Qne of the lessons which may thus be learned from Jackson's method is that data should be

deseribed by deep properties, not by physicai structure. This will be the topic of the next section.

Despite its limitations, Jackson’s method (which the above presentation described only in part) pro-

vides some important insights into the structure of programs. Some of its principles are worth pondering

over carefully; one of the most interesting oncs, although it seems at first sight paradoxical, is the idea

that (he actions required by the problem specification will be found in the contents of the program but

should exert no influence at all on its structure, which should be entirely determined by the structure of

the data, Data structures, however, should be described in a decper way than what we have seen so far.
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6.7. - ABSTRACT DATA TYPES AS A BASIS FOR MODULARIZATION

6.7.1. - Overview

SECTIONS 6.7.1 AND 6.7.2 WILL BE REPLACED BY REFERENCES TO CHAPTER 5, WIHCH

DESCRIBE ADTs IN A DEEPER & MORE COMPLETE FASHION]

if data structures are to be used as a basis for proper modularization, we must find a method to

deseribe them in a sufficiently abstract way.

How can we describe a data structure? Let us take the simple example of a “table” structure, used

lo store keys, which we will assume are just character strings (of type STRING), and to retrieve them.

Such a table is necessary in many applications, e.g- compiler writing ("symbol tables" will contain pro-

grim identifiers), business data processing, ete.

The most obvious way to describe such a structure is to use its implementation: the table might be

represented by an array of strings, a linked list, a file, etc. Such a method is clearly not acceptable for

our purpose since, as discussed above, it relies on properties of the structure which are far too superficial

and change-sensitive. The physical representation does not capture the true nature of the table; by look-

ing nt two different representations (e.g. array and linked list), one may get the impression that they

correspond to very different structures, whereas they serve the same purpose, namely representing the

table, On the other hand, one of them, eg. the array, can also be used for representing very different

gs (an array of strings could be the internal representation used by, say, a text editor for the part of a

loxt file which is accessible at any point in time).

What constitutes the true “nature” of the table structure is in fact its intended usage, that is, essen-

tially, the store and retrieve operations. It is these operations which make it possible to distinguish an

array (say) used for representing a table from an array used for something else, and, conversely, provide

the commonality between various representations of the same abstract structure.

Ry combining a modularize-around-data approach with a description of data structures based on

operations, we can (as announced at the end of 6.5.5] restore the process_data balance,

‘There remains, however, the problem of how to describe the operations which characterize 2 struc-

ture. We could use a description of the algorithms themselves, e.g. the procedures for “store” and

“retrieve” in the table example. This approach has taken in the systems implementation language BLISS

[17], where data structures are described by their access mechanisms, for instance, an In, nj triangular

malrix is characterized by the fact that the [t, j] element lies at relative address i +7. Such a solu-

tion, however, is again not acceptable for out purpose since, as when describing a structure by its actual

tomory layout, it relies on physical. superficial characteristics of the algorithms. In our example, there

‘re many possible different algorithms for table management (e.g. sequential storage and retrieval, hash-

coding, binary tree or Betree search and insertion, etc.). The procedures "store" and “retrieve” will be

externally very different depending on the particular policy chosen.

What we should do is to characterize the available operations not by their implementations but.

their abstract properties; for example, “store” and “retrieve” are characterized by the fact that, roughly

speaking, a string will be retrievable if and only if it has been previously stored into the table. This fun-

slauicatal property transcends all particular reproscatations.

It is useful here to be a little more formal. We will define classes of data structures having the same

ueneral properties as abstract data types. An abstract data type T is characterized by:

oa list of functions f, fo, °** fn, which correspond to operations available on objects of the class;

¢ 1 fist of predicates (or assertions) relative to f,, fo, °*~ fn» which give the abstract properties

of the operations.

Every f; has zero of more input domains, and one or more outpul domains:

Li Dy X Dig vs xD, — D,, x D, x x D,
i inst
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(p 20.9 >p), where at least one of the D, (1 <7 <q) is T (the type being defined), The following

oases arise:

«I T appears only in the right-hand side (that is, T is D, for one or more j such that

p+1<j <q), then f, corresponds to an operation which produces objects of type T, possibly

using objects of other types (D, for 1 <j <p); it is thus termed a creation function. If the left-

hind-side is empty (p = 0), then f; has no argument and corresponds to a constant function.

© T appears only on the left-hand side, then /; takes one or more objects of type T objects: it is

this called an access function. ;

» Finally, if T appears on both sides, then f;, among other things, takes objects of type T and

yields other objects of type 7: it is a modification function.

In our example case, we may describe the abstract data type table as in figure 6.13.

type TABLE:

FUNCTIONS

creation

create-empty: + TABLE

{a constant function which yields an (empty) table)

modification

insert: | STRING X TABLE — TABLE

(models the "store" operation. Note that,

functionally speaking, an insertion yields a new

object of type TABLE)

access

present: STRING x TABLE -» BOOLEAN

(should yield true if and only if the string

is in the table)

ASSERTIONS

for all s,s’: STRING; t: TABLE:

not present (s, create-empty)

{as its name suggests, an empty table has nothing

present in it)

present (s', insert(s, t)) = ((s’ = s) or present (0, t))

(when inserting a string into a table, the strings

present in the new table are the one just inserted

and those already present in the old table)

Figure 6.13 - Specification of string tables

This description captures the essential propertics of the table structure in a formal way, without

implying any particular implementation choice.

An implementation of an abstract data type T defined as above consists in a physical representa-

lion for objects of type T, and a set of procedures py ps, °** Px, Such that each p, has the same func-

tionality as f, and the assertions relative to the /; functions are satisfied between the input and output

arguments of the respective p; procedures. In our example, we need to choose a representation for table

(cg. array, etc.) and procedures corresponding to create-empty, insert and present.

What we can do with these elements with respect to modularity should now be clear: in a

modularise-around-data approach, they should not be scattered, but be grouped together into a single

tmodute, which will constitute the data unit we are looking for.
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An essential requirement of such a data unit is that it should be usable only through the official pro-

robures (ereate-empty, insert and present in our example}, not by the internal representation which will

have been chosen, Onty by observing this rule shall we be able to obey the principle of information hiding

an allow for continuity (if the implementation is changed, only the module implementing the abstract

Mata ivpe must be updated: other modules use it through the official interface consisting of the public pro-

cedures, which, although changed internally. will still be called in the same way),

6.7.2. - Data type refinement

\n extremely important requirement with regard to the criteria of composability and decomposabil-

ity is the ability to describe objects as refinements extensions or particularizations of others. This applics

lothita as well as to procedures.

such an approach may be applied in a way to abstract data lypes. We will use a “refine” relation:

fix said bo refine A if B posscsses all the functions of A, enjoying the same propertics. B may have

other functions and/or other assertions.

A simple example may be found in the case treated above. So fac. there is no obligation on any

TABLE implomentation to do anything when a request is made for insertion of an already present item,

an implomentation may ignore the request or do something clse which docs not change the further

behavior of the operation present. We now consider a new structure, COUNTED_TABLE, for which it

shoul be possible to know how many times a given ttem has been inserted.

Rather than redefining COUNTED_TABLE Srom scratch, we consider it to be a refinement of

TABLE, with a new function count, and new assortions. The definition is given in figure 6.14. Since

COUNTED_TABLE refines TABLE, everything which was oxpressed im figure 6.13 applics to

COUNTED_TABLE; only the new features have been added. Note that the last assertion expresses a

property of the TABLE function present which is only true of COUNTED_TABLE.

type COUNTED_TABLE refines TABLE

FUNCTIONS

access

count: STRING X COUNTED_TABLE — INTEGER

ASSERTIONS

for all s, @: STRING, T: COUNTED_TABLE

count (3, create-empty] = 0;

count (s*, insert (s, t}} =

if st = sthen count /s, t)+ f

else count (s, t) ;

present (3, t} = count (3, t) > 0}

Figure 6.14 - Specification of a counted table

6.7.3, - The Simula class

The Simula 67 language embodies a concept called “class”, a very interesting programming language
structure for the implementation of abstract data types.

A class is characterized by the following elements:

ea name;

© xoro or more arguments (similar to procedure argument):
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© two kinds of attributes: variables (or arrays), and procedures;

ea (possibly compound) statement.

The general syntactic structure of a class with name C is the following:

class C (argument list); argument types ;

begin

declarations of variables and arrays ;

declarations of procedures ;

statement ;

end

To apply a class for the implementation of an abstract data type, we will use the variables and

arrays for the physical representation of objects of the type and the procedures for the operations.

The statement represents actions to be taken when creating an object of the class. An object of the

class, say z, is declared by writing:

ref (C)z

and ix actually “created” at execution time by the statement:

z:- new C

{:- is used instead of := for assignment to class objects). The new construct allocates the storage Space

whieh is necessary for the attributes of z and executes the statement of the corresponding class definition.

Once z has been created in this way, it behaves as an object of the abstract data type associated
with G, It possesses attributes written 2.¢, where a is any of the variable or procedure names appearing

in the definition of C.

For example, we could implement our TABLE type in a straight forward {and inefficient) way by

using an array of strings, managed sequentially, as in figure 6.15.

A particular table ¢1 will then be declared by

ref (TABLE) il ;

To create it, one must execute

tf :-new TABLE

ti can then be used through the appropriate procedures, ¢.g.:

tLinsert (“KEY1");

tlinsert ('KEYWO");

if ti.present (“KEY2') then...
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class TABLE(n); integer n ;

begin

comment variables ;

text array strings (I:n) ;

integer top;

comment procedures ;

boolean procedure present/t); text ¢ ;

begin integer ¢; boolean isthere ;

isthere = falae; i c= 1;

while ¢ < top do

begin

isthere := (strings(t) = t) ;

tem it]

end search ;

present := tsthere

end present ;

procedure insert/t), text t ;

if not present/(t) then

begin

if top = n then error

else

begin

top := top + 1

strings (top) := t

end actual insertion

end insert ;

comment statement ;

top ‘= 0

end TABLE

Figure 6.15 - TABLE implementation in Simula

6.7.4. - Class prefixing and virtual procedures

Class B will inherit all the properties of a class A if its declaration is prefixed by the name of A:

Aclasa Bf...};...;

begin

attributes which objects of class B

have on top of those of class A;

statement

end 2

Bis called a subclass of A.

\ facility which is needed in connection with prefxing is virtual procedures. {fa function f in the

specification of A may only be refined at the B level, then in the corresponding Simula classes the name

af the procedure corresponding to f should appear in A, but the procedure implementation may only be

given. in B. The necessity for such a feature is particularly clear if we consider a class A with several

subclasses B, C, D, each of which may have further subclasses (figure 6.16).

Figure 6.16 - A class hierarchy

An operation may be defined at the A level, its implementation depending on whether and A object is a
B,a @ ora D (or even on whether it isan E, F, etc). We may, for instance have the following relations
in a graphics system:

class figure; ...

figure class plane-figure; ... ;

plane-figure class triangle; ... ;

plane-figure class circle; ... ;

plane-figure class rectangle; ... ;

rectangle clasa square; ... ;

Some operations, such as rotation, will have to be defined at the figure level; their implementation
can only be given if we know what kind of figure we have. such procedures will appear in a special vir-
tual paragraph in the parent class; their presence there means that subclasses are required to provide a
concrete implementation of the virtual procedures.

The example of figure 6.18!, corresponding to the refines relation seen above between TABLE and
COUNTED.TABLE, should by now be sufficiently clear. Figure 6.17 gives the structure; + indicates the
“actual” procedures, * the virtual ones.

"We trust the reader will pardon us for the conflicting uses of the word “figure” here.
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presentTM
TABLE Janet

x
count

COUNTED_TABLE } present"

fissene
IMPLENENTATION 1} coungt insert”

IMPLEMENTAT ION_2 j count?

Figure 6.17 - Hierarchical system of the “table” classes

_ begin end TABLE;
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class TABLE ;

virtual:

boolean procedure present ;

procedure insert ;

comment no aciual atiribute or statement at thts level ;

TABLE class COUNTED_TABLE ;

virtual:

integer procedure count ;

begin

boolean procedure present (t); text ¢ ;

present := (count (t) > 9)

end COUNTED_TABLE ;

COUNTED_TABLE class IMPLEMENTATION, ;

begin

physical representation of the counted table ...

integer procedure count (t); text t ;

begin ... actual implementation of count .... end count ;

procedure insert (t}; text t ;

begin ... actual implementation of insert ... end insert ;

end IMPLEMENTATION,

Figure 6,18 - Hierarchy of tables

Several romarks are in order here.

«|. The "modification" procedure insert does not recreate a new table, but modifies the existing

one.

2. All the procedures have an implicit argument of type TABLE: the class describes what opera-

lions may be applied to any table, so the corresponding argument need not be indicated within the

class. The following function of the abstract data type specification:

present: STRING X TABLE —* BOOLEAN

ix thus represented by a procedure with only one argument:

boolean procedure present (i}; text t

Indeed, the other argument appears in the calls through the dot notation; i.e. the function applica-

tion

present (s, tL)

becomes in Simula

tt. present (s)

e 3. As could be expected, we had to introduce a limitation on the possibilities offered by the

abstract specification: our "table", implemented with an array, may only contain up to n strings,

where n is the argument of the class.

¢4, There is no procedure corresponding to the creation function create_empty: creation is ensured

hy the new construct.

e5. There is no way in current standard Simula to distinguish between “public” attributes (the pro-

cedures insert and present) and internal, “private” ones (top and strings). So any calling module

may, for example, execute:

tl.top c= 7 * tl.top

which is, of course, contrary to the principle of information hiding, There is no way to enforce this

principle in Simula other than programming discipline. A simple language extension, allowing the
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module implementor to specify what is public and what is private (the so-called “hidden-protectedfeature") has been designed but is not provided by common Simula compilers.
OF course, on any leaf of a tree such as that of figure 6.17, there should not remain any virtual pro-cedure which does not have a matching actual procedure on the path from the root of the tree; such aprocedure would not be executable,

This prefixing mechanism is extremely elegant and powerful. It may be compared to the "variantrecord” mechanism of Pascal and Ada, with the important difference that the formes in closed (once a setof variants has been designed, no further extension of the record type is possible), whereas in Simula anyclass can always be extended by being used to prefix a new class,

One may point out two limitations of this mechanism:
«1. The specification of virtual procedures includes the type of their results for function procedures{c.g. present, count above), but not the type of their arguments, which will only be given in the sub-lass which actuatizes each procedure, This absence is motivated by the fact that such an argumenttype may depend on the entities defined onty in subclass, and thus not textually available in theparent class; it is, however, rather unpleasant for readability.

#2. Aclass may have at most one prefix, which restricts type networks to trees, It is as though themechanism allowed to define vector spaces and topological spaces, but not to combine them into theconcept of "topological vector space”. Technically, however, there exist ways to “cheat” with thislimitation,

6.7.5. - An example

We now present a slightly more ambitious example of the use of Simula classes as a module built“round the implementation of an abstract data type. This example does not use the concept of prefixing,‘The cxample of figure 6.20 is a class implementing the concept of complex number. It corresponds to theabstract data type definition of figure 6.19 (where some complex operations have been circled, e.g. +, =,ote. to avoid contusion with their real equivalents),

The basic idea behind the implementation is that, among the two main representations for complexnumbers (cartesian and polar), the proper one should be used for each operation. The benefit of thisapproach will be appreciated by trying to derive the formula for complex addition in polar representation,On the other hand, the necessary conversions are performed only when necessary; outside the class, if aProper discipline is followed (i.e. if the class objects are only accessed through the official procedures),which representation is available at aay given instant is irrelevant,
We have chosen to implement the operations (plus, minus, ete.) as modifying an element rather thancomputing a new one; that is, the call

21 plus (z)

will assign to 2f the value of 21+ 2 We could alternatively create # new element; procedure plus wouldthen become:

ref (COMPLEX) procedure plus (2); ref (COMPLEX) z;

begin ref (COMPLEX) C ;

C :- new COMPLEX ;

C.cartesian-assign (2 + 2.2, y + zy);
plus :- C

end plus

ane sintiarly for the other procedures. this is closer to the abstract data type specification but moreprolilic in storage,

‘The Simula class of figure 6.20 assumes the existence of a boolean hardware-dependent boolean pro-cedure may_divide (y, 2), which returns true if and only if the division of y by 2 may be carried out (i.e. bk!is not too small relative to jy), and of a variable pé initialized with an approximation of m (Simula has nosvmbolie constants).
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‘This cxample clearly shows one of the not so happy consequences of the ergiulrie/scound one
ive i i to any class instance, tere i1" polieys sl Simula class describes what may be done i e 1

a i i pa aa "Bere of type COMPLEX. This means that procedures like plus, minus, etc., whichplicit parameter, i Q : /

a fandin Etro elements ofthe class, must be dissymmetric; plus will be called by:
zi.plus (22)

or 22.plus (21)

If we want to be able to resort to the more reassuring form

tus (21, 22) / slew cafe

then we have wc delet plus outside the class COMPLEX, which of course is not compatible with modu
lapis

‘The Ada approach has “packages” which are poorer in structure than the Simula class. but do notwe Ada

rise the above problem (sce below 6.7.6).

type COMPLEX

FUNCTIONS

= 0: + COMPLEX
cart, pol: REAL X REAL —+ COMPLEX

real, imaginary: REAL — COMPLEX

nee (PLEX —» REAL1 ¥, p, 8: COMI >

i #, =: COMPLEX X COMPLEX — REAL
distance: COMPLEX X COMPLEX — REAL

feat

mmodifcn on /: COMPLEX x COMPLEX — REAL
"8: COMPLEX X INTEGER > COMPLEX

" "7 GOMPLEX — REAL -- conjugate

PERTIES

ars all z, 2: COMPLEX, a, b, r, t: REAL:
0 = cart (0,0) = polf0,t) ;

2 (cart (a,b) = a, y (cart (ab)) = 6;

p (pol (r,t)) = r, 8 (pol (r,t)) = ¢ mod 211 ; fe

real fa) = cart (2, 0} = pol (lal, if «> 0 then O else II) ;

imaginary (6) = cart (0,b) = pol (

As) = ValeP + ahs ale) #0 > Ole) = nreeg teh ;
2(2) = p(2)*cos ((z)); y(z) = p(z)*sin(8(z)) ;
= 2) = (x(z) = 2(2) and y(z) = y(2’))eee Yael dade 6(¢) med 211)

haan ike a,eee aN a(zyle) + y(2(e) ;
z— 2 = cart (2(2) — 2fz"ytel— v2)

2 a! = pol (of) * le!), Ole) + Oe);#0 => e/z'= patlte\at2 lz) - Oz") ;

2**n = pol(p(z)", 2 X A(z) ;

* VE = pol (" Ve{z), SEL)

2 | = cart (2(2),~ vle)) = pollal2), - O(2)

Figure 6.19 - Specification of the type COMPLEX
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class COMPLEX ;

begin

comment Representation invariants:

(cartesian => trep and yrep have the values of the cartesian
coordinates of the current complez,

as resulting from previous operations)

and (polar => rorep and thetarep have the values of the polar
coordinates of the current complez,

as resulting from previous operations,

rorep > 0,0 < thetarep *2* pi) ;

comment Internal (hidden) variables ;

real zrep, yrep, rorep, thetarep ;

boolean cartestan, polar ;

comment Internal (hidden) procedures ;

procedure make-cartesian ;

comment make cartesian form available ;

if not cartesian then

if not polar then error ("uninitialized complez") else
begin

zrep := rorep * cos (thetarep) ;

yrep = rorep * sin (thetarep} ;

cartesian := true

end cartesian ;

procedure make-polar ;

comment make polar form available ;

if not polar then

if not cartesian then error (“uninitialized complez’”} else
begin

rorep r= agrt (2**2 + y**Q) »

if may_divide (y,z) then theta := aretg (y/z)
else theta := sign(y) * (pi/2)

polar := true

end make-polar ;

comment The procedures which follow are public ;

comment Initialization procedures ;

procedure cartesian_asstgn (a,6); real a,b ;

begin

rrep := a; yrep i= b;

cartesian := true; polar := false

end cartestan-assign ;

Procedure polar_assign (r, t); real r, ¢ ; .

begin

rorep =r, thelarep -= modulo (t, 2*pi) ;

cartesian := falae; polar := true
end polar_assign ;
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procedure real_assign (a); real a ;

begin

zrep := a; rorep = abs(a) ;

yrep = 0;

thetarep := if a > Othen Qelse pi ;

cartesian == polar := true

end real_assign ;

procedure tmaginary_assign(b); real 4 ;

begin

yrep := b; rorep = abs(b) ;

zrep = 0;

thetarep := if 6 > O then pi/2 else -pi/2

polar := cartesian “= true

end tmaginary_asstgn ;

comment Access procedures ;

real procedure z;

begin

make_cartestan; = = grep

end cz;

real procedure y ;

begin

make_cartesian, y = yrep

end y;

real procedure re ;

begin

make_polar; ro := rorep

end ro;

real procedure theta ;

begin

make_polar; theta = thetarep

end theta ;

ref (COMPLEX) procedure copy ;

begin ref (COMPLEX) ¢ ;

¢ :- new complez ;

if cartesion then

c.cartestan_assign (z,y)

else if polar then

c.polar_assign (ro, theta)

else error ("uninitialized complez") ;

copy: c .

end copy; ~

comment Operations ;

procedure plus (2); ref (COMPLEX) z ;

cartestan_assign (z+ y.z, y + zy);

procedure minus (z); ref (COMPLEX) z ;

cartestan_assign (z - y.a, y - 2.y);

procedure times (z}; ref (COMPLEX) z ;

polar_assign (ro*z.ro, theta + z.theta) ;
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procedure divide/z); ref (COMPLEX) z ;

if not may_divide (ro, z.r0) then error
(impossible complez division")

else polar_assign (ro/z.ro, theta-z.theta) ;

procedure conjugate ;

if cartesian then cartesian_assign (-2, -y)
else if cartesian then polar_assign (- ro, ~ theta) ;

boolean procedure equal(s); ref (COMPLEX) z ;
if cartesian then

equal := (z= zz) and (y= zy)

else if polar then

equal ro) and (theta = z.theta)
else error ("uninitialized eomple2") ;

boolean procedure not equal(z); ref (COMPLEX) 2

not equal = not equal (2) ;

Procedure power (n); integer n;

polar_assign (ro **n, n*theta)

procedure power (n); integer n;

polar_assign (ro**n, n*theta)

Procedure root (n); integer n ;

polar_assign (ro**(1/n), thete/n)

real procedure distance(s); ref (COMPLEX) z ;
begin ref (complex) C ;

C = copy ;

D.minus (z) ;

distance := C.ro

end distance ;

end COMPLEX ;

Figure 6.20: A Simula class for complex numbers

6.7.6. - The Ada package facility

{Po be completed. Will describe Ada packages and show thal they are more general in nature thanSimula classes, since they may be used to gather virtually any set of objects, but are static in nature anddo not lend themselves to object-oriented design. Emphasis will be put on genericity |
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8.8. - MENU-DRIVEN INTERACTIVE PROGRAMS: A CASE STUDY IN MODULAR
DESIGN,

6.8.1, - Full-screen interactive applications

We shall illustrate some of the concepts introduced above by an example which is quite representa-

live of an important class of problems, and yields an elegant modular solution based on modularizing-

around-data: menu-driven interactive systems, ~

In such systems, any user, working at a terminal, sees at every step a certain full-screen "menu", i.e.

a sot of questions; the answers he provides to these questions will either trigger an error message if they

are incorrect, or cause the program to take some actions (such as updating a data base) and proceed to

some other step in the dialog, displaying the appropriate menu.

‘An execution of such a system may thus be described as a traversal of a transition graph associated

with the system. Such a graph depicts the system with nodes, or atate, and labeled vertices, or transi-

tions. An example graph, an for imaginary (and simplistic) flight reservation system, is pictured on figure

6.22.

enquiry

on seat

availabilit

change

of

reservation

reservation

Figure 6.22 - An interactive system

hall assume for the sequel that one of the answers provided by the use

vation of what he wants to do next, i.e. what transition should be taken; we will call such an indication

an oxit label and assume that possible exit labels are expressed by integers between O and some value

m1. Quite frequently, the exit Inbel is determined by hitting one among m special function keys on

the keyboard. The labels of the graph vertices on figure 6.22 correspond to such exil choices.

We should point out that such a transition graph is often quite complicated and intricate, and there

is no obvious way to “structure” it (there have been some altempts, however -- see e.g. (82). In particu

lar
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* there is often a possibility to “qui
on figure 6.22); this facility, which i
nesting convention (figure 8.23(b)).

at any time during the dialo,
b ; 

5

8 almost indispensable from the ween steer, fey (abel 0the users’ standpoint, breaks all

© there is often a “help” facility which sus;
menu {from which it is sometimes possible to

even though one may have

that users will demand a direct
6.22(c)), in order to avoid the n
direct transition from cancellatio:

pends the current execution to display an explanation

is not unusual

ructure (figure

i time (see the

Figure 6.23 - Examples of state graph sub-structures

Our purpose in this section is to try to design a jeneral framework for such an interactive systel

nm ign a ge ic interacti system,

6.8.2. - A first attempt

I‘i et us try to write a program for a schema of
ion, We just forget anything we may have heard a

anu let ourselves be guided by our intuition. Quite
ertnin number of blocks, or paragraphs, P,P, --
sraph; the &th paragraph has the form:

the above type, without any attempt at sophisticasbout "structured Programming” in its vulgar-sense,
aturally, we shail get a program which is made af 2Py, each corresponding to a state in the above
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P, (program for state i):

output screen for state i;

repeat

read user's answers and his exit choice C for the nezt step ;

if error in answer then

output message

end if

until

no error in answer

end repeat ;

record answer ;

case Cin

Go: goto Py;

C;: goto Py.)

C1: BOtO Pits m1)

end case ;

whore t(i,k) is the state to be entered when leaving state i with exit label k, and m is the number of pos-

sible exit labels after each step.

6.8.3, - A hierarchically procedural solution

What is bad with the above scheme? An obvious defect is that it will result in programs with an

intrieate branching structure, belonging to the well-known “bowl of spaghetti” type; remember that the

xinte graph may be very complicated. Probably even more serious is the bad performance that such a

program will have with respect to the “continuity” criterion: among the requirements changes which are

most likely to occur during the development of an interactive system of the kind we are interested in are

changes in the structure of the state diagram; e.g. users will request that it become possible to go directly

from state A to state C using a certain function key, whereas it was originally planned that one should

Lo through state B. So the above design is unsatisfactory not only because it uses goto statements

. more importantly, because it has “wired” the structure of the dialog into that of the program, so that

any change in the former will imply rewriting the latter.

a result of this remark, any technique for “structuring” programs by eliminating goto statements

ing them with equivalent loops is bound to have no more than a superficial effect on the quality

of the program above, A similar comment may be applied to the use of exceptions (as in Ada, PL/I,

CLU), which are provided by some languages especially designed for the construction of the interactive

programs, such as PLAIN {14}; such constructs seem here only marginally preferable to ordinary jumps.

‘The limitations of any a posteriori attempt to improve the structure of the above program are

further evidenced by the fact that this structure reproduces that of the underlying transition graph which,

ax we have scen, is in many practical cases inherently intricate.

‘A much better solution is to completely disconnect the description of what happens at every step,

Le the operations performed while ina given state, from the description of the overall structure of the

dialog, be. he traversal of the graph. In other words, we will replace the constants ¢(i,k) above by calls

ain explicit function

TRANSITION (i,k)

which will be used to specify the transition diagram associated with any particular interactive applica-

finn.

Using this idea, we get a simpler version of our program schema, based on nine program units on

Urce levels of abstraction (figure 6.24): level 3 is that of a general system for executing interactive appli-

culions: lovel 2 is that of the individual applications; level 1 is that of the individual states in an



application.

= Level

‘SCHEDULE 3

[ExEcuTEy] I INITIAL | [FINAL] [rransition | 2

QUESTION | [MESSAGE RECORD | 1

Figure 6.24 - A hierarchical procedural solution

SCHEDULE only defines the traversal of the transition graph; it knows nothing about the particular

sercens of a given application, and should be identical for all applications":

SCHEDULE:

var current: STATE, nest: CHOICE ;

current := INITIAL

repeat

EXECUTE (current, nezt -) ;

current := TRANSITION (current, nezt)

until

FINAL (current)

end repeat

Any application is described by a TRANSITION function associated with its graph, by a particular

state called INITIAL which is the first slate to be entered when starting the execution, and by a predicate

on states, FINAL, indicating whether execution should cease in a given state. Procedure EXECUTE is

refined below; it has two arguments, a state current and a choice nezt; nezt is a result computed by the

proce

the user for the next step, i.c. the exit label.

Note that from a practical point of view TRANSITION may be implemented either as a function

subprogram or by @ two-dimensional array, the latter technique leads to a “table-driven” program which

will he more easily adaptable and is strongly recommended here. It is widely used in some application

areas such as business data processing

("decision tables"), compiler writing, real-time programming.

EXECUTE does what is required in a given state: ask the right question, check the answer, perform

the necessary actions and return thie exit label C:

"\ evelanmtton mark following and actual procedures argument. as in nazt +, serves in our notation as &
ronieer tht (his wrgument is of out mode, i. computed by the procedure.

cedure which outputs the ques

@. CHECK (9, a) returns true if and only if @ is a correct answer for the que

RECORD (s, a) proc

nswer 2 is assumed to include the exit label, wrilien exit_label (a)

ure (this property is denoted by the mark «in the notation above), indicating the choice made by ”
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EXECUTE (in #: STATE, out e CHOICE):

var a: ANSWER, correct: BOOLEAN ;

begin

repeat

QUESTION (3, @ —));

correct := CHECK (s, a) ;

if not correct then

MESSAGE (s, a)

until correct ;

end repeat ;

RECORD (s, 2) ;

¢ := ezitlabel (a)

end EXECUTE

The specification of the yet unwritten procedures is the following. QUESTION (s, a=) is a pro-

ion associated with state s and reads Lhe user's answer which it returns in

ion asked in state s; if so,

answer a; if not, MESSAGE (s, a) outpuls the relevant error message. An
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6.9. - GOING MODULAR: THE LAW OF INVERSION

Is this new solution satisfactory? At first sight it may seem so; but if we look at it more carefully

from the standpoint of modularity, we will soon discover that it is in fact unacceptable.

The problem here is (among others) continuity, and the keyword is data transmission. Let us recap-

i/ujate the functionalities of the procedures and function which are application-specific:

EXECUTE (in s: STATE; out : CHOICE)

QUESTION (in s: STATE; out a: ANSWER)

function CHECK (in s: STATE; a: ANSWER): BOOLEAN

MESSAGE (in s: STATE, a: ANSWER)

RECORD (in s: STATE, a: ANSWER)

This will make them long and complicated (note in particular that all but EXECUTE have a

second-level discrimination on a), but it is not the worst: much more annoying with respect to modularity

is the fact that all these procedures and functions will know about one complex interactive application.
‘Thus, if we change one transition, or add a state (e.g. a "help"), we must change all the procedures
involved. This is not acceptable in view of continuity and information hiding. Altogether, there is far too

much data transmission in this program: variable current (alias s) is passed from SCHEDULE (level 3) to
all procedures and functions on level 2 and on to those on level 3. This is contrary to everything we have

seen,

‘The situation is in fact even worse than one might think, since there is another argument to all pro-

cedures, which has remained implicit so far, namely the particular interactive application which we are

implementing (0 that MESSAGE for example, has a three-level discrimination structure: on application,
state and answer). If we are thinking of "cataloging" procedures SCHEDULE, EXECUTE, QUESTION,
ote., as general-purpose tools in a library, then they should all know about all interactive applications

which use them, and all the states of every such application! This of course would be impossible to imple-

ment and we must look for another modular structure. 5

The fact that the state (current, s) lies at the basis of the problem should alert us: maybe we have

decomposed along the wrong line and we should try the "modularize-around-data” path, We may apply
here a "law" of modularity, which we call the “law of inversion",

If you pass too much data in your procedures,

then put your procedures into your data.

Here an obvious candidate for a "data unit" based on an abstract data type is the state. We will

thus introduce a class STATE (from now on we use the Simula notation, which is of sufficiently high level

we of the term “inversion” is not the same as in the expression “program inversion” introduced by

Jackson In [lackson 78},

4
oi tes

to describe both the abstract data types which we need and their implementation).

Among the attributes of a state are:

‘@ the four procedures of level 4 in figure 6.24, which in the general class STATE can only remain vir
-

Vaal

© {he procedure EXECUTE, as seen above, but without the state parameter.

We assume that the user's answer is described by an object of class ANSWER, which has the integer

“uxii-label” as one of its attributes, We thus get the class of figure 6.25.

clase STATE ;

virtual: procedure QUESTION ;

boolean procedure CHECK ;

procedure MESSAGE ;

procedure RECORD ;

begin

procedure EXECUTE(c); integer ¢; name ¢ ;

begin

ref (ANSWER) ¢; boolean correct ;

correct -= false ;

while not correct do

begin

QUESTION (a) ;

correct := CHECK (a) ;

if not correct then

MESSAGE (a)

end checking ;

RECORD (a) ;

¢ i= aerit-choice

end EXECUTE

end STATE

Figure 6.25 - Making the state a class

Vo describe a particular state of a particular application, we must refine this class by giving 
the

pirtivutar realiaation of the above procedures, e.g.

STATE clase ENQUIRY_ON_FLIGHTS ;

begin .

° procedure QUESTION (a); ref (ANSWER) a; begin :.. end QUESTION ;
boolean procedure CHECK (a); ref (ANSWER) a; begin ... end CHECK ;

procedure MESSAGE (a); ref (ANSWER) a; begin ... end MESSAGE ; .

procedure RECORD (a); ref (ANSWER) 2; begin ... end RECORD :

end

Proceeding to the next level, we now have all the elements to describe any complete interactiv
e sys~

lem, which we will call an “application”. Rather than writing a main program, we will again introduce an

shatract data type, represented by a class, which will allow us to solve the problem of having a single sys

tom for describing, building and executing many applications

‘An application is described by the remaining elements at levels 2 and 3 of figure 6.24: the TRANSI-

TION function which describes the state graph, the INITIAL state, the predicate allowing to determi
ne

whether or not a state is FINAL, and the SCHEDULE procedure.
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To simplify matters and avoid leaving major choices to the designer of each application, we take the
following implementation decisions:

e the TRANSITION function will be represented by an array, with n rows and m columns;

en (the number of states) and m (the number of possible exit labels) will be the parameters of the
class;

* since TRANSITION is represented by an array, every application will have to number its states
from 1 to n; we need an array ASSOCIATED_STATE to find the state associated with a given
number (but not the reverse: class STATE does not have a "state number" attribute: this would
hind a state to a particular application, which we do not want);

® to avoid a virtual boolean procedure FINAL, we take the general convention that a transition to
state number 0 denotes system termination, “normal” states being numbered 1! to n. We could also
systematically take a certain value, e.g. 1, as the number of the initial state, but this would be too
constraining for system evolution and we prefer to leave INITIAL_NUMBER, the number of the ini-
tial state, as an explicit attribute.

We thus get the class of figure 6.26.

class INTERACTIVE_APPLICATION (n, m); integer n, m ;

begin

ref (STATE) array TRANSITION (1:n, 0:m-1) ;

ref (STATE) array ASSOCIATED_STATE (1:n);
integer INITIAL_NUMBER ;

procedure SCHEDULE ;

begin integer current_number; comment OS current_number <n ;
current_number = INITIAL_NUMBER ;

while current_number /= 0 do

begin ref (STATE) current ;

integer nezt; comment 0 < nett < m-1 E

current = ASSOCIATED STATE (current_number) ;
current. EXECUTE (nest) ;

current_number := TRANSITION (current_number, neat)
end Loop

end SCHEDULE

end INTERACTIVE_APPLICATION

Figure 6.26 - Application as a class

In this framework, building an application consists in first constructing its various states as
refinements of the STATE class; note that they may be designed independently of each other, or taken
from previous applications. Then the application itself is constructed as an object of class
INTERACTIVE_APPLICATION; this is done simply by assigning a number to each state (i.e. filling the
attay ASSOCIATED_STATE), constructing the state graph (by filling TRANSITION) and choosing the
iniial state,

During system evolution, it will then be quite easy to add a new transition, add a new state, delete a
slate and the associated transitions, change the actions performed in a given state, ete.

As a final remark, note that we have written SCHEDULE not as “the” body of
INTERACTIVE_APPLICATION but as Just one procedure of the class. In fact, we can imagine situa-
lions where one wants to do something else with an application than executing it; if we plan to build a
serrous systems for the development of interactive menu-driven applications, we will soon discover many
other facilities which have to be associated with an application, for instance:

- §3 -

e procedures to build and modify an application: add a state, add a heey delete a a

e procedures to simulate an application, e.g. in batch mode, or in interactive but line-oriented mode

on a terminal which does not provide full-screen facilities;

¢ procedures to store a complete application, in an appropriately coded form, into @ file (or more

generally into a data base of interactive applications), and to retrieve it.

All this can be done in the above framework by adding new procedures to the class

INTERACTIVE_APPLICATION in a progressive way, without having to ey Ly a atareae

iui tched is thus very open to evolution. isexisting uses of the class. The system we have sketche Op . TI

er eauivetirandd on the objecte of our problem (state, transition graph, application), not on the
apparent "purpose" of the system, which would have closed it with respect to evolution:

Real systems have no top.
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6.10. - THE PROCESS APPROACH AND COROUTINES

‘fier this review of one of the most interesting approaches to modularity, object-oriented design, welun to another useful direction: the process concept. We will concentrate on one of its variants, corou."ines. which provides and answer to one of the main objections to subprograms: their lack of autonomy.
Coroutines are the transposition to sequential programming of the concept of process as it is knownin the progeamming of applications involving parallelism, e.g. operating systems or real-time programs. Aprocess which manages, say, a printer, has much more conceptual autonomy than a classical subroutine; itcommunicates with other processes only through well-defined parts and functions to a large extent as anindependent entity which is entirely responsible for what happens to the printer but knows very little, forinstance, about the way the CPU, the files or the terminals ace managed, The reason for this situation isnot that real-time programmers take special courses in modular design, but that the inherent difficulty ofparallel programming is such that one may simply not indulge in careless design and uncontrolled inter-process communication if one hopes to be able to construct any system at all.

A coroutine is best understood as a Process; the only difference between coroutines and Parallel pro-cess is that the scheduling of the former will be sequential. In both cases, we have an autonomous entity,which will go through a “birth” and “life” of its own, terminated in some cases by a “death”; manyProcesses oF coroutines, however, are conceptually infinite. Our printer manager, for example, could havethe following rough structure:

initialization ;

while true do

get a file to be printed ;

print it

end while

Instead of being “called” by a master program, a coroutine will usually be activated by anothercoroutine; this means that the coroutine’s execution starts again, not from scratch as in the case of a sub-program (which always resumes execution at its textual beginning), but at the point where its executionstopped last. This execution will be suspended (but not abandoned) whenever the coroutine itselfactivates another one.

Note that technically this implies that a coroutine must retain the value of all its internal elements(.c. variables, parameters, execution counter, ete.) when its execution is suspended. This is the exactopposite of the notion of “pure procedure” which is often pinpointed as the idealization of the subprogram,concept, but is quite in line with the keyword of section 6.4.4: persistence.

With the activation mechanism, one is able to construct a system as @ set of coroutines which areon a par with each other, rather than under a master-slave relationship. This mechanism may, of course,te combined with more hierarchical ones.

Again, we will use Simula as a notational vehicle here; it was the first important general purposejnnguage to include a coroutine facility. Coroutines in Simula are represented by class instances; activa-lion is represented by the resume statement:

- resume coroutine

The reader may have noted that the activation mechanism as described above must be comple-mented with a special mechanism for starting a coroutine: upon initialization, one may not “activatesomething which does not yet exist. In Simula, this is performed via the new instruction which ercates anew class instance. ‘This, however, is not enough: after it has been initialized, a coroutine must not yetbegin its activity proper (it should only do so when it gets activated by a resume statement); it shouldfirst. relinquish control to whoever started it. This is done via a special parameterless instruction:

detach

Thus, a system built as a set of cooperating coroutines will have the following form:
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begi aee clase Cy; begin ... end Cy; ret (C)) coroutine 5
class Cy; begin ... end C33 ref (C2) coroutines ;

Clase Gj begin .. end C,j ref (C,) coroutiney ;

coroutine, - new Cy;

coroutine, :- new C, ;

resume C;
end System of coroutines

Note that since in Simula a class is not an object, but a pattern for a set of objects, each coroutine

ix represented by two things: a class C, and an object coroutine; of type ref (C,).

Each of the classes will have the following general form:

class C; comment pattern for coroutine; ;

begin

initialization part ;

detach ;

comment below, the “active life” of the coroutine ;

+ actions .

resume coroutine;,

* actions

resume coroutine

end

Often, the coroutine’s “active life", indicated by a large bracket above, will have the form of a loop:

while cond do

begin

actions ;

resume somebody

end Loop

cond will sometimes be the constant true: there may be potentially infinite coroutines in a program
which itself terminates; coroutines will simply stop being activated at a certain time. sant ota

We now study an example of modular design using these concepts. This example is a variant ol

‘ i in (Jackson 78|.problem studied by Jackson in [. : / /

juckson’s problom is as follows. A well-known proof in modern mathematics was devised by Cantor
' how that the set of rationals is enumerable. Cantor used an explicit enumeration of rationals, 1fo show tt

trated in figure 6.27.
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— a Sew SMie pon 3003...
3 4

2‘

—

Figure 6.27 - Cantor's table

The problem is to write in the order of t
100 diagonals;

I/1 1/2 2/1 8/1 2/2 --- 1/99 1/100 2/99 3/98 --- 99/2 L00/1

Jackson uses this problem as an exam le applicati i
licat 

" "

todeled by a Jackson diagram (figure 6.28). iain fhe tablets Bee eesequence of 50 zigzags where every zigzag is an
of rationals, which are easy to compute becau:
a+6 is the same.

his enumeration the rational numbers appearing on the first

is indeed nicely
the part of the table to be printed may be described as a
up 2g followed by a down zag. Zigs and zags are sequences
se for all rationals a/b on a given zig or-zag.the value of

RATIONAL* RATIONAL* |

Figure 6.28 - A model of Cantor's table of rationals

The solution is thus:
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ENUMERATION:

for i: 1...100 (2) do ZIGZAG(i)

with

. ZIGZAG (k):

ZIG (k};

ZAG fk+1)

and

ZIG (m):

axmb=1;

while e > Odo

print_rational (a,b) ;

a:= a-1;6 = b+1

end while

ZAG (m):

a=1biem;

while 6 > 0do

print_rational (a,b) ;

ac atl; b= bt

end while

This is a very nicely structured program (figure 6.29). Consider now variants of the problem where

we ask to print the first 100,000 elements of the enumeration, or all the elements up to the first are a/b
such that a5 + 67 > 10, or any other criterion. The above solution does not generalize easily: this is

because the actual termination may occur either in a zig or in a zag, and we have no easy way of telling

in advance which.

What we are looking for is a properly structured solution (avoiding GOTOs to a common code for

termination), with no inelegant duplication of code; we are also preoccupied with the continuity criterion,

so we would like the solutions to the variants of the problem (including the initia] one) to differ only

slightly, since they are the same except for the termination condition.

ENUMERATION

ZIGZAG

ZG Zac

Figure 6.29 - Program structure for Jackaon’s solution

To meet this requirement, we will replace the previous hierarchical structure by a coroutine struc-

ture (figure 6.30). Arrows correspond to resume activations between instances of the classes shown; con-

lninment stands for blocks embedding; the names of class instances are in parenthesis,



~ §9-

begin

class zigzag; begin ... see below... end; ref (zigzag) zz ;

class zig (m); integer m; begin ... see below... end zig ;

class zag (m); integer m; begin .. see below ... end zag ;

class control: begin ... see below ... end ;

ref (zigzag) zz; ref (control) ct ,

ref (rational) current: current :- new rational ;

2z c+ new zgzag; ct :- new control ;

resume ct

end enumeration

Figure 6.31 - Main program for coroutine solution

Class control (more precisely, tts instance ef} is in charge of controlling the continuation of the whole

process (figure 6.32).

class control ;

begin integer ¢ ;

detach ;

. “ for 1 := {step f until 100 000 do
Figure 6.30 - Program structure for a coroutine solution begin

1. ; resume zz ;
oF convenience, we use a class to describe rationals: 

current.print

. end active hye of control
class rational ;

begin «

integer numerator, denominator ;

end control ;

procedure print ; : Figure 6.32 - Clasa Contral

begin ... statements for printing the rational
numerator/denominator ...

end print ; 
Note that for other variants of the prograrn it suffices to replace the for loop by something else (e.g.procedure assign (a b); integer (a B= the Simula equivalent of repeat ... until (current numerator)’ + (current.denominator)’ > 10"),

. y uy ° A . “ . . . : . .
begin numerator := a; denominator -= 6 end anita The rest of the solution is independent of the stopping criterion. Traversal of the Cantor table is

end rational performed by instance zz of class zigzag (figure 6.33).

The main program is given in figure 6.31
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class zigzag ;

begin

ref (zig); ref (zag) za ;

integer i ;

detach; i= 0;

while true do

begin

comment up one diagonal:

f= id; i = new zig (i);

while not zi.ouer do resume ai ;

comment down one diagonal: .
fom i¢4; 20 = new zag (i) ;

while not za.over do resume za

end (infinite) active life of zigzag

end zigzag ;

Figure 6.33 - clase zigzag

‘The boolean variable over will be present in classes zig and zag. and will be set to true in these
classes when and only when the corresponding diagonal traversal has been completed. Note that this

ble is superfluous: we know that zi and za must be resumed exactly ¢ times each so that the while
loaps could be transformed into for loops. The principie of information hiding tells us, however, that it is
better nat to let zigzag rely explicitly on this property.

An up diagonal will be traversed by repeated resumptions of instance zi of class zag (figure 6.34).
class zig (m); integer m ;

begin integer a, 6; boolean over ;

ars m; b:= J; over

detach ;

while a > Odo

begin

current.assign (a,b) ;

resume ct ;

ams a-t; b= bt

end active life of zig;

over := true

end zig

Figure 6.34 - zig

Finally zag is the exact symmetric of zig (figure 6.35).
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class zag (m); integer m ;

boolean over ;begin integer a, 0
; b= m; over == false ;ed;

detach ;

while § > 0 do

begin

current.assign (a,8) ;

resume ct ;

a moti; b= bl

end life of zag ;

over := true

end zag

Figure 6.35 - 209

This solution deserves a few comments.

First one might argue that classes zig and 2ag should be declared within zigzag, giving the structure

of figure 6.36.

CANTOR

Figure 6.36 - A variant of the previous structure

‘The kinds of relationships which Simula allows us to combine may be both “egalitarian” (resume)

and hierarchic (static: block embedding and class prefixing, dynamic: procedure call}; this gives much (too

nich?) freedom to the designer.

ote also an instance of a well-known deficiency of Simula with respect to information hiding:

classes 2ig and zag, a public variable, over, is on the same footing as @ and 6 which are only locally

‘The need for the "hidden/protected” feature is clear here.

in
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We also notice here what is probably the most serious problem with the Simula coroutine facility:
the lack of provision for transmission of information. [t is well-known in parallel programming that two
kinds of interaction occur between processes: synchronization and communication. There exist

mechanisms (e.g. semaphores) for synchronizing two processes, ie. making sure they rcach compatible
states al a certain time, and others (e.g. parameter transmission in procedure calls) for making them

exchange information. Any complete mechanism should, however, cater to both needs.

Ilcre, tl is clear that the resume mechanism only provides for the sequential equivalent of synchron-
ization. Communication has to occur by other means: in our example, information is transmitted Uhrough
the global variable current. This method is, of course, unsatisfactory with respect to our modularity cri-
teria and principles. What would be needed would be for the resume statement to be able to send infor
iuition from the activating to the activated process, as one does with parameters in procedure calls. The
reason why this is not possible in a simple way, however, is thal whereas a call statement has a syntactic
mitch in the program (the subprogram heading with the list of formal arguments), there cannot be any
such thing in resume statements; indeed. by the very definition of this mechanism, exceution may con-
tinne ab any statement in the resumed coroutine, so that there is no simple way to dovise a language con-
struct to express how information could be transmitted upon coroutine activation.

A partial solution to this problem may be found in a descendant of Simula, Smalltalk, whose classes
communicate by structured messages: More complete answers are given by Elewitt’s ACTOR mechanism,
also based on message passing, and by Hare's notation for Communicating Sequential Processes, known
us CSP, which will be studied in the next section.
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611. - ABSTRACT DATA TYPES WITH A SCENARIO

This section [Lo be completed] will show how the ideas of modules built around a data structure, on

the one hand, and of modules associated with processes, on the other hand, may be combined by consider-

in objock with ils associated history or, equivalently, a process together with the object(s} it is respon-

sthte for.

\ simple example will be that of a table whose life includes two phases: in the first one, both inscr-

inns cand searches are allowed, after a certain signal has been sent (triggering penhags an internal rcor-

wtnisation of the physical representation), only scarches will be permitted (figure 6.37).

Figure 6.37 - THE LIFECYCLE OF A TABLE MANAGEMENT SYSTEM

The use of Actors & CSP to model such uses will be demonstrated.
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6.12, - THE STRUCTURE OF INTERMODULE RELATIONS

models6.12.1. - Possible relations
4 . 

os (METAPHOR)
This chapter has explored several kinds of module structure. < Taalandes

From the systems viewpoint, it is important to note that the main issue in designing for modularity

may not be what the various modules are, but how they are interconnected. In the course of this chapter,
we have encountered several kinds of intermodular relations; it is interesting as a conclusion to recap complements «|
(hem and try to study them more systematically. (METONIMY)

Figure 6.39 gives some of the most useful intermodule connection mechanisms. As one goes down the complements
picture, one encounters first more abstract, conceptual relations, then more concrete, technical ones, as

found in programming languages. Every relation, described by an arrow from left to right (where A —>

8 means A is connected to B by relation r) is accompanied by the inverse relation, labeling a right-to-left gencralizes =
Arrow,

A models (or specifies, or abstracta, or describes) B, and B inetances (or implements, or real- specializes

izes) A if A contains a description of what 8 does, or viewed the other way around, B is one way to do

what is prescribed by A. Conceptually, then, A gives the same information as B, or less, but is at a

higher level of abstraction. For example, the user's manual for a machine models this machine; or, the uses

abstract data type TABLE (fig. 6.13) is a model implemented by the Simula class TABLE (figure 6.15).
Nimilarly, a Simula class C is used to model all instances of this class (objects of type ref (C)). is used by

A complements B (the relation is symmetric) if A and B cooperate toward the realization of some
higher-order aim. For example, workers of the same grade in a company "complement" each other; the
same is true of procedures present and insert in the class TABLE (fig. 6.13), of the various subprograms in contains
a library or of composable Unix programs. In fact, this relationship is closely connected to the composa-
bility criterion. 

belongs to

Note that the models and complements relation corresponds to two well-known figures of rhetor-

ies metaphor (denoting a concept by a corresponding concept at another level of abstraction), and calls ~
metonimy (using a neighboring concept).

is called by

creates sn

bes is created by

activates

<
activates

shares information with

shares information with

sends information to.

receives information from

Figune 6. 34: akeume dude sudarh'ows
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.\ generalizes (or extends} B, and B specializes A, if anything which is described by B is also
deserihed by A (but some things may be described by A which are not described by B). The
generalizes/specializes relation lies at the basis of the Linnaean classification of plants and is, in fact,
un important component of the scientific method. The prefixing mechanism of Simula (A class .., A
begin # end) is an elegant programming language implementation of the same concept which, unfor-
(utetely, was not carried through to later languages embodying the concept of abstract data type imple-
twentation, with the notable exception of Smalltalk. A different application of this relation is provided by
the cencept of generic instantiation in Ada.

‘A uses B, and B is used by A, if A refers to B by its name. This occurs in Algol-like languages
through the rules of block structure, extended in Pascal and Simula by special facilities which make it
possible to "peep" into the names of entities local to an object (with in Pascal, inspect in Simula). It is
ouly in Ada, however, that this concept takes its full meaning with respect to intermodular communica-
lien. thanks to the use clause, which allows explicit appropriation of a set of external names,

The contains/belongs to relation corresponds to textual inclusion in block-sbructured languages

The calis/is called by relation is the standard boss-to-subordinate, officer-to-private etc. relation;
in common programming languages, it is represented by the caller-subprogram relation.

The creates/is created by relation exists in languages which provide for dynamically allocated
olsjects (Pascal, Algol 68, Simula, etc.).

The symmetric relation activates corresponds to the coroutine or process activation mechanism
(resume in Simula).

The relation shares information with, also symmctric, corresponds to data sharing by any
mechanism, e.g. COMMON (Fortran) or block structure (Algol, Simula, etc ),

The relation sends information to/receives information from is included in the calls/is called
by relation for common programming languages; not so in CSP or Ada, for example, where it also has cle-
ments in common with the activates rclation.

6.12.2. - Properties of the relations

The various relations are of course not unconnected to each other. In fact, a system such as a pro-
xramming or specification language is characterized in part by the set-theorctical properties which it
assigns to these relations; for example, the last remark could be written more formally as

« (1} sends information to U receives information from C calls U ts called by

(in Algol, Pascal, Simula, ete.)

© (2) sends information to U receives information from C calls U ts called by U activates
(in CSP or Ada)

The following properties are also of interest. Operator « will denote relational composition; for any rela-
tion r, we note r~! the inverse relation re ro!) = role rp = identity) and r* the transitive reflexive closure
of r(r* = identity Ur Ur? U rt U +++, where r"=rerere un times ). We use the relation samescope
defined as

samescope = contains » contains —!

= contains « belongs to

«(3) uses C belongs to * U samescope

{in Algol 60)

© (4) uses C belongs to * U samescope J contains o users

(in Ada)

(5) calls U creates U activates C uses

{in all common languages).

(6) shares information with C belongs to * U samescope

{in Algol 60, Pascal, Simula, PL/I, Ada, ete., excluding external files).
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Ete, It would be worthwhile to explore further this “relational algebra” for important programming
\

tinguages,

6.12.3. - Intermodule relations in Fortran

6.12.4, - Intermodule relations in Pascal

6.12.5. - Intermodule relations in Simula 67

Figure 6.40 gives a representation of the allowable relational structure of modular facilities in

Simula 67. Only the “direct” sense of the relation (from left to right on figure 6.39) is pictures. Because of
prapertivs (2) and (6) above, relations “sends information to" and “shares information with” have not been

drawn explicitly.

Connections on this graph indicate possible relationships: A —> B means “an A may be connected
rr

ly rand r’ toa 8B". For instance one sees from the graph that a procedure may create and activate a

cormitine

‘The richness of this graph, which one may inlerpret as reflecting the power of the language or its

complexity, is in itself interesting.

6.12.6. - Intermodule relations in Ada

' soe; The Software Knowledge Fase, B. Mever. VCSH technical report, January 1985.
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particular case where the set of strings may change as the search proceeds.

A well-known algorithm by Aho and Corasick applies. to the simpler case when the set of strings is
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1. INTRODUCTION

The problem of searching a text for all occurrences of one or more strings (hereafter called search
strings) has been well researched. Several algorithms have been published (3, 1,2] .

This paper considers a variant of the problem which, to our knowledge, has not been addressed by
previous publications: the case when the set of search strings may change as the search proceeds, In fact,
in the practical application that led to this work, the search strings are found in the text itself as it is
being searched.

In the next section, we describe that application, an interactive book indexing program. In section
3, we give the algorithm by Aho and Corasick which serves as a basis for our solution. Section 4 shows
why this algorithm does not readily apply to the incremental case. A solution is proposed in section 5; its
correctness is proved in section 6 and its efficiency analyzed in section 7.

2. AN INDEX PROGRAM

We first present the conerete occasion for which we developed the algorithm below. Of course, there
may be other applications of incremental string searching.

‘The occasion is a program for making book indexes. An index is a sorted list of all the “interesting”
words which appear in a text, each word being accompanied by a sorted list of the pages where it occurs,

As anyone who has tried knows, preparing indexes is a tedious and error-prone task, and it is
natural to look for computerized aids. Much of the work (searching for interesting words in the text, sort-
ing the lists) can indeed be done automatically; but one critical step requires human intervention: deciding
which words are “interesting” and which are not. We call the person who will make this decision the
indezer; the best indexer is usually the author.

The best place to look for “interesting” words is of course the text itscif, which we assume to be
available as a computer file. Our indexing program thus has a phase called the collector which presents
the indexer with the text and asks him to select words for indexing.

The collector is an interactive program. It displays the text one screen at a time; each word appear-
ing on a screen belongs to one of the following three categories:

© “rejected” words, which the indexer has already designated as not interesting;

© “retained” words, which the indexer has designated as interesting (these words appear underlined
on the screen as the collector is being executed)

© “undecided” words, whose fate has not yet been sealed (these appear highlighted).

Thus whenever a screenfull of text is displayed, the indexer must choose to either reject or retain
each “undecided” word on the screen. This decision process is the essential object of the collector.

From the program point of view, then, what the collector must do is to search each successive por-
tion of text for occurrences of words belonging to the union of the “rejected” and “retained” sets. Both
these sets change as new words are being classified by the indexer: thus the string searching method must
allow for incremental construction of the set of search strings.

3. A NON-INCREMENTAL ALGORITHM

A very efficient algorithm by Aho and Corasick [1] applies to the case when there is more than one
search string. The principle of this algorithm is that one first builds a "transition diagram” from the set
of search strings, and then traverses the text using this diagram as a guide. Thus in the standard algo-
rithm all search strings must be known at the outset.

Since our algorithin is based on a modification of Aho and Corasick’s, we shall first present the key
aspects of theirs. Our presentation is slightly different from the one in their original paper; it is close to
the one we gave in [4]. 

i

3.1. Data Structures

Aho and Corasick’s algorithm uses three data structures as internal representation of a search string
set: a tree T, called “goto function” in [Ij (it is in fact a trie); an “output table” O; and a “failure func-
tion” F. Together, these three structures constitute what may be termed the "transition diagram” associ-
ated with the search string set. We describe them in turn.

3.1.1. The Tree

The branches of the tree Tare labeled by characters. Tree Tis associated in a natural way with
the set of search strings: for example, the search string set {A, CAN, AN} may yield the tree of Fig. 1.

Cc A N
0 23-4

Figure 1: A String Matching Tree

An important property of this tree is that each node has an associated character string. For exam-
ple, in the above tree, node 0 is associated with the empty string, node 3 with string CA, etc. From now

on, we will not make the distinction between a node and the associated string; for example, we

say that string AN is a suffix of node 4 (that is, of the associated string CAN), or that string CAT does
not appear in the above tree (that is, no node of the tree is associated with this string).

If CCis the character set and the nodes are numbered from 0 to N, i.e. we define

type NODE = 0..N;

then the tree may be represented as a two-dimensional array

T : array [NODE, CC] of NODE;

where the child of node n through branch labeled c is T' /n, ¢/. By convention, the root is numbered 0 and
T /n, ¢] is 0 if there is no branch leading from node n with label ¢. We will not distinguish between the
tree and the associated array; note that in practice the array will usually be sparse, requiring a suitable

implementation (hashed, linked ete,). =

3.1.2, The Output Table

For any node n, the output set of n, written O /nj, is the set of suffixes of n which are search strings
(we shall carefully distinguish between the suffixes of a string, which include the string itself,‘and its
Proper suffixes, which do not), On Fig. 2 below, corresponding to the search string set {A, CAN, AN},
the output sets (some of which are empty) have been written next to the corresponding modes.

3.1.3. The Failure Function

The failure function F is defined on all nodes except the root. For such a node n, F /n) is the longest
Proper suffix of n that appears in tree T. F /nj may be node 0, the root (i.e. the empty string), It is impor-
tant to note that the inverse of F is a tree spanning 7, with node 0 as its root.

The dashed lines on Fig, 2 represent the failure function for the search string set {A, CAN, AN}.
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Figure 2: A Completed Transition Diagram

3.2. The String Searching Algorithm

Assuming a transition diagram consisting of the above three data structures has been constructed,
the string searching algorithm is a simple traversal of the text, guided by the transition diagram:

procedure Recognize (text : in STRING)

_ 77 Search text for strings represented by T, O and F.

n: NODE ;

begin

n=0; --~ Start at the root

for ¢in tezt loop -- Examine nezt character

while n # Qand T /n, c]/ = O loop - - Find worthy successor node

n= F fn]

end while ;

n= T fn, ¢];

Report all strings in O {n] as oceurring at this point of the tezt

end for

end procedure Recognize

This algorithm clearly makes one T transition per character of the text. It is proved in [1] that the
number of F transitions is at most 4 the length of the text. Thus the time complexity of the searching
algorithm is O (0.

3.3. Constructing the Transition Diagram

To execute the above algorithm, the three data structures T, O and F must have been built from
the search string set §. This is done in two steps:

Build_tree ; Butld_failure

The first step builds T and initializes O; the second builds F and completes O.

We describe these two steps below. We assume that the data structures T, Oand F are global to all
the procedures given and have been properly dimensioned {an upper bound for Nis lsum, the sum of the
lengths of the scarch strings) and initialized {all values of T and F to zero, all values of O to the empty
set).

3.4. Constructing the Tree

The first step may be done as follows:

procedure Build_tree ;

last = 0; -- Number of the last entered node

for sin Sloop - - enter search string ¢ into tree

Enter_in_tree (3);

end for

end procedure Butld_tree

where Enter_in_tree (local to Butld_tree) is given below.

procedure Enter_in_tree (3 : in STRING) ;

~- Enter new search string s into tree T.

n,n’: NODE;

begin

ni= 0; ~-- Start at root

for cin sloop -- Ezamine nezt character

n’:= T fn, ef;

lfn’=Othen ~-- Create new node

last := last+1 jn’ := last ;

Enter_child (n, n’, c)

end if ;

no=n!

end for ;

Enter_output (n, s)

end procedure Enter_in_tree

The auxiliary procedures Enter_ehild and Enter_output cach consist of a simple assignment; the only

reason for pulling them out of the body of Enter_in_tree is to ease adaptation to the "incremental" case

later,

procedure Enter_child (n, n’: in NODE ; ¢ :in CHARACTER) ;

- + Add to the tree a branch from nto n’ labeled ec.

begin

T [n, ef can’

end procedure Enter_child ;

procedure Enter_output (n:in NODE; 5 :in STRING};

- - Define the output set of n as consisting of the sole string 3.

begin

O In] = {3}

end procedure Enter_output



3.8. Constructing the Failure Function

For any node n other than the toot, let Ips (n) be the longest proper suffix of n which appears in the
tree, To complete the transition diagram, procedure Build_failure must set F {nj to Ips (n) for every non-
root node n, and complete O /n accordingly.

___ To do this, the Build_failure algorithm uses a loop that considers all nodes of Tin order of increas-ing length of the associated strings (i.e. first the root, then its children, then their children etc.).

procedure Build_failure ;

Precondition : T is a tree associated with the given string set

Postcondition : For all nodes i # 0, F |i] = tps (i)

~ + Build the failure function F corresponding to T.

begin

for nin NODE in order of increasing length loop - - Compute F for the children of n

- = loop invariant 2,

~~ For any child é of a node previously considered, F i! = Ips (i)

--end invariant

for cin CC euch that T /n, ¢/# Oloop

Complete failure (n, ¢); ~~ Compute F [T (n, e/]

end for

end for

end procedure Build_failure

with Complete_failure defined as:

procedure Complete failure (n :in NODE ; ¢ :in CHARACTER) ;

~~ Precondition ; For any i x 0 which is either n or a shorter node, F [il = lps (i)

++ Compute F [T fn, elf.

n’,m, m’: NODE ;

begin

n= T fn, ef; moan;

repeat :
m := F (mj

-- loop invariant

-- mis a proper suffiz of n,

+> and for any proper suffiz p of n longer than m in the tree, T [p, ¢/ = 0

-- end invariant

until m= Oor T /m, ¢/ #0

end repeat ;

T [m, ¢] ;

m';

Wi

F jn}

O [n} = O fn’) UO [m']

end procedure Complete_failure
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(Note that the invariant of a repeat...until loop is written at the end of the loop body since it may not

be satisfied until after the first iteration).

The correctness of Build_failure will follow from the loop invariant of that procedure since any node
but the root is a child of another.

To show that this invariant is indeed preserved by the loop body, assume that n 0 and that
F (i) = Ips (i) for all nodes § considered before n. We have to show that for any child n’of n, say n’=
T [n, ¢}, execution of Complete_failure (n, ¢) results in F [n’] = Ips (n’).

_ Using the notation zy for the concatenation of z and y (where zis a string and y is a string or a sin-
gle character), we have n’= ne. Thus the longest proper suffix of n’ in the tree is either m’= me, where m
is the longest proper suffix of nin the tree such that 7’ /m, ¢/ is not 0, or 0 if there is no such m.

Now the list of all proper suffixes of n which appear in the tree is precisely, in order of decreasing
length, the list of nodes examined successively by Complete_failure, namely F /nj, F [F (njj, F [F [F [{n}}),

etc. This is a direct consequence of the inductive assumption: since n is not the root, nis the child of a
previously considered node; thus F/nj is the longest proper suffix of nin T.

It is essential for this correctness argument that the set of nodes be explored in order of increasing

length. This can be ensured in three different ways:

© The above Build_tree algorithm may be modified so that the number assigned to any node is

smaller than the number assigned to nodes on the following level in the tree. To do this, Build_tree

should consider successive character positions in all search strings rather than successive search

strings (that is, the order of the embedded loops in Build_tree should be reversed). Then the loop in
Build_failure will just consider nodes in order from 0 to N. This is the solution presented in {4] .

© Another solution is to add a topological sort step between Build_tree and Build_failure which will

re-number the nodes according to the rule stated above.

© The solution given in {1] uses a FIFO queue of nodes in Build failure to make sure that nodes are

processed in order of increasing levels, without imposing a special node numbering.

3.6. Efficiency

It is shown in {1] that construction of the complete transition diagram, as given above, takes no

inore than O(/sum) time and space, where /sum is the sum of the lengths of the search strings.

4. THE PROBLEM WITH INCREMENTAL CONSTRUCTION

Let us now assume that instead of being all known beforehand, the search strings become available

as the search proceeds.

There is no particular problem with the construction of the tree; we can execute Enter_intree (3) as

each new string comes along. The real difficulty is associated with the failure function (and with the asso-
ciated “completion” of the output table), .

From a practical point of view, it should be noted that the failure function is only useful when some
search strings may be proper suffixes of others. Referring to the book indexing application mentioned in

section 2, this will not occur if all index entrics correspond to words, always enclosed in delimiters in the

loxt. If such is the case, the Build_tree procedure as given above is sufficient, and one may apply Aho and

Corasick’s method without a failure function. In many cases, however, one needs to have phrases as wel!

single words in index entries, so that a search string may be the proper suffix of another; for exampic

n index to the present paper might include entries for both strings suffiz and proper suffiz. If such is the

case, one must find a way to build the F function incrementally, as new scarch strings are entered into T.

Now when a new node n’= T /n, ¢/ is entered, one must compute F /n’j; this in itself raises no

dilliculty since the longest proper suffix of n’ in the tree must be of the form T /m, ef for some proper

sullix m of n, and we may assume inductively as before that all proper suffixes of n are accessible through

F. Rut this is not the whole story: when adding n’ we may also have to update the failure value of exist-
ing nodes,
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Fig. 3 itlustrates the problem. The dotted lines represent the current velues of the failure function.
Assume we initially had the two search strings A and GAN and we add AN, corresponding to the transi-

tion represented by the double arrow. Then F 4] must be updated to point to the new node 5.
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Figure 3: Node Insertion

The next section presents a solution to this problem.

6. THE INCREMENTAL ALGORITHM

When a new node n’= T /n, ¢/ is entered, the value of F /z'/ must be changed for some existing node

z’if and only if n’is the longest proper suffix of the string associated with 2’. This may only be the case

if z’= T /z, ¢] for a node zsuch that n € F* /2/, where * denotes (non-reflexive) transitive closure.

Thus to be able to find all the nodes whose F value needs to be updated, we must keep a record IF

of the inverse function of F, Note that F is single-valued but JF may be multi-valued. As indicated in sec-

tion 3.1.3, IF isa tree.

If we have access to JF, then to enter a new search string we use the procedure Enter_

given in section 3.4. We only need to change procedures Enter_output and Enter_child. Both now have a

slightly different specification and become recursive, as follows. We assume that JF, as the other data

structures, is properly initialized: IF /n should be initially empty for all nodes n.

procedure Enter_output (n :in NODE ; s :in STRING) ;

= + Add 8 to the output set of any node which has n as a suffiz.

tree as

begin

O [nj = O fn] U {3};

for z in IF [nj loop Enter_output (z, s) end for ;

erid procedure Enter_output ;

procedure Enter_child (n, n’:in NODE ; ¢ :in CHARACTER) ;

= + Add branch from n to n’ labeled ¢ ;

«= update failure and inverse functions to account for the insertion of n’,

begin

T fn, ¢] +

Complete_failure (n, ¢); - - Compute F [n']

IF [F [n'l] == IF [F [n'l] U {ns ~ Update IF for m'=F [n')

Complete_inverse (n, n’, ¢) ~~ Compute IF [n'] and change to n’ the corresponding values of F

end procedure Enter_child

-8-

Procedure Complete_failure is as before {section 3.5). Procedure Compléte_inverse finds all nodes
which will "fail to” a new node and is defined as follows:

Procedure Complete_inverse (y, n’: in NODE ; ¢:in CHARACTER) ;

+ - Recursive Precondition : n’ is a suffi of ye
++ and T (fn, ¢] = 0 for any proper suffiz fn of y in the tree (where n'= ne)

+> Record n’ as new failure value for all 2 such that ye = Ips (2')

2, 2': NODE;

begin

for zin IF [y] loop

~- {y= Ips (z}}

if T fz, ¢] # Othen

z's= Tz, ¢]; ~~ {ye is a proper suffiz of 2’; thus 30 isn}

- + Remove previous failure value of z’ ; install new one.

IF |F [o'l] = IF [F [z'}]— {2}; -- Set difference

P (2!) = n'y IF [n'] == IF [n'} U {29 ;

~~ Try recursively with nodes having z as proper suffiz

Complete_inverse (z, n’, ¢) ;

end if .

end for

end procedure Complete_inverse

6. CORRECTNESS

To prove the correctness of the above incremental algorithm, we first note that termination of the
two recursive calls follows from the fact that JF is a tree, and that the changes brought to T and O when
a new search string is inserted are the same ones that Aho and Corasick's algorithm would have per-
formed. Thus we concentrate on the partial correctness of the modifications to F and IF.

It suffices to prove that an execution of Enter_in_tree as given above leaves the following two pro-
pertics of the transition diagram invariant:

e(INV) IF is the inverse of F.

*(SUFF) For any node z # 0, F /2/= lps (z) (that is, F /z/ is the longest proper suffix of z in the
tree).

Property (INV) is trivially invariant since any modification to Fin Enter_in.tree is accompanied by
the corresponding modification to IF and conversely.

To show that property (SUFF) is invariant, we study in what way function ‘ps changes when n’= T
/n, ¢]is inserted and check that F follows suit. There may be two reasons for change:

e 1- The definition of tps has to be extended for n’ in accordance with (SUFF); the call to
Complete_failure takes care of this case.

2. The value of Ips /y'J for some previously cxisting nodes y’ may now become n’. These nodes are
those which have n’ i.e, ne, as a proper suffix, and have no longer proper suffix in the tree.

Assuming inductively that (SUFF) was satisfied before the insertion, any such y’ is of the form ane
(see Fig. 4), such that no node of the form Bne, where f is a proper suffix of a, exists in the trce.

Thus y'= T fy, ¢, where y= an, As expressed by the "recursive precondition” to procedure
Complete_inverse, the required y nodes are exactly those which are considered {in order of increasing
length) by the successive recursive calls to that procedure, starting with y =n.



Figure 4: Strings and Suffixes

7. EFFICIENCY

The recognition algorithm (procedure Recognize) is not affected by the modification; nor is the per-
formance of the part of the algorithm which builds the tree, We must consider the impact of the
modification on the building of the failure and output functions.

Regarding space efficiency, since we must store IF /n for every node n (presumably as a linked list),
the space requirement for the representation of the-failure function is doubled, remaining O (lsum).

Regarding time, we first notice that for each search string the operations performed by
Gomplete_feilure are & subset of those performed in the original algorithm; thore may be fewer operations
because some proper suffixes may not have been entered yet. Thus the total time for this procedure will be
Olteum). For a given search string set, the operations performed by Enter_output (adding elements to the
output sets) are also the same in the incremental algorithm as in the original, although the former may do
them in a different order and will follow inverse F chains.

‘The case of Complete_inverse is more delicate since this procedure may follow void chains which the
direet algorithm would never have explored, When inserting n’= T /n, c/, the maximum number of nodes
which may be searched in this fashion is the number of elements in the set IF* fa). Thus the maximum
number of extra operations is K* Y) deseendanta(n), where K is the size of the character set CC and

a eNODE

descendants (n) is the number of proper descendants of node nin the IF tree.

It is easily proved that, for any tree with Af nodes and height , J deseendants(n) <M *h.
eN00E

Here F has the same nodes as 7, thus M< lsum, and A <imoe, where mas is the maximum search string
length.

Thus the overall complexity of the algorithm is now © (K * Imaz * lum), which is identical to the
original O (lsum) if we consider K and Imaz az constants. In normal practical cases; the constant factors
(o apply are much smaller than the above analysis would seem to imply.

Acknowledgement: We are grateful to Man-Tak Shing and Don Brady for usoful comments and for
pointing out errors in a previous version of this paper.
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1, INTRODUCTION

Studies have repeatedly shown that

management problems are one of the

primary sources of delays and failures in

large software projects (see e.g. [5]).

If bad management is due to bad

Managers, one can hardly expect that

advances in software engineering will

alleviate the problem. But bad manage-

ment, or rather bad organization, often

has another cause: the sheer difficulty of

mastering the various aspects of a pro-

ject, and in particular of controlling

change. Project managers and project

members alike have trouble keeping

track of what is going on. As the project

develops, its “entropy” increases and it
becomes increasingly difficult to main-

tain a clear picture of the state of its

various components. Here good tools

can play a major role.

The effort reported in this paper

aims at providing a unified base of sup-

porting tools for various aspects of

software development. To this end, we

introduce the notion of a software

knowledge base, that is to say a repo-

sitory of all useful project information.

The software knowledge base is

used by managers and programmers to

keep track of all interesting properties

of the software components and their

relationships. The software components,

as defined here, include all the relevant

project elements: program modules, data

definitions, requirements, user manuals

and other documentation, specifications,

design documents, test data, test results,

schedules, tasks, personnel-data, budgets

etc. The relations between these com-

ponents may be of diverse kinds: we

may want to record the fact that a cer-

tain module of the design implements a

certain module of the specification, that

a certain program module uses a certain

data «efinition module, that a certain

lask is assigned to a certain person, ete.

We use the expression “software

knowledge base", or SKE, to denote the

compendium of information associated

with a software project. The system

used to record, access and manipulate

this information, as described in this

paper, is called the SKB system when-

ever there might be a confusion.

Several aspects of the SKB system

are present in previous project manage-

ment systems. The ISDOS system [84] is

a set of project documentation tools,

which make it possible to record project

information as relations between entities

of various predefined kinds; these ideas

“ were further developed in the SREM sys-
tem [3] written at TRW, which particu-
larly emphasized the notion of traceabil-
ity (i.e. ability to locate over the whole
data base the consequences of a change

made to some element). Simpler yet

very useful tools for configuration

management and version control are

gaining acceptance: Make (15| and SCCS

(32] on Unix, DEC’s CMS, Softool’s
CCC, the “System Version Control”
component of Gandalf [20], Adéle (14],

RCS, ete. The idea of collecting all use-

ful project documents in a single data-

base is expounded in the Stoneman

report [10], and used in a current TRW
development, the "Software Master

Database” {6]. The use of relations in
software environments is advocated’ in

[11], which relies on general (nary) rela-
tional databases; [26] shows that binary

relations may be applied to various

aspects of programming. The SKB pro-

ject builds on all these ideas but

emphasizes some original, and in our

view essential, design criteria, which we

shall now describe.



2. DESIGN CRITERIA

2.1. Simplicity

The SKB system should be easy to

learn and use. Managers and program-

mers have enough to do already; they

should not be required to go through an

extensive training period before they can

effectively use the SKB system.

A necessary condition for ease of

learning and use is to base the whole

system on a simple and uniform concep-

tual framework.

2.2. Method-, language- and

system- independence

The SKB system is a set of tools,

not an integrated methodology.

Although its consistent use naturally

leads to some sound methodological

practices, it should be viewed as a way

of helping project managers and

developers, not as a disruption of

current development practices.

Thus the SKB system should not

conceptually imply the use of any par-

ticular methodology, programming

language, computer or operating system.

It should blend well with other software

engineering tools.

We will refer to this criterion as

the “independence” criterion (as a short-

hand for method-, language- and

system-independence).

2.3. Adaptability

Not only should the system be

compatible with existing methods or

languages: it should be able to provide

efficient support for specific methods or

languages in use in, say, a company.

Thus the natural counterpart of

independence is the ability to

parameterize.

2.4, Whole life-cycle coverage

The SKB system should provide

benefits across the entire life-cycle of a

software project. Although this criterion

may restrict the power of SKB tools as

applied to a specific life-cycle stage, it is

essential in view of the fact that non-

trivial projects usually have a long his-

tory. A system that would only apply

to, say, the initial phases of specification

and design, would stand little chance of

playing a significant role: so much of the

software process is evolution, refinement

and extension of systems occurring after

the first "cycle" has been completed.

2.5. Support for system semantics

Many of the systems quoted in sec-

tion 1 have little, if any, notion of what

the objects being manipulated really

"are". Most configuration management

systems, for example, focus on just one

attribute of objects, their time stamp,

and know of just one relation, the

dependency relation (there is usually

also the notion of a “permission” attri-

bute in the systems which support pro-

tection). These systems are not

equipped to deal with other properties

of the objects such as the "A is an imple-

mentation of B” relation quoted above.

On the other hand, some of the

more complex systems do know about

“types” of objects (e.g. specification, test

data set, ete.), but then they violate the

independence criterion since these types

are defined once and for all. The prob-
lem is thus to be able to record semantic

properties of software objects while

retaining flexibility.

2.6. Formal analysis

The design of the SKB system was

based on a systematic analysis of the

properties of software project elements;

some elements of this analysis are given

below (section 5), in the form of a

review of software relations and their

abstract properties (constraints).

This approach contrasts with most

published work on software engincering

tools: although the necessity for a sys-

tematic requirements analysis is one of

the tenets of software engineering, it

seems to have seldom been applied, let

alone in a formal way, to software

engineering tools and environments. The

formal specifications we know in this

field are a postertort exercises applied to

existing designs, e.g. [18], which describes

some aspects of ISDOS, and [12] which

describes the system version control

component of Gandalf. The analysis

outlined in section 5 is not a complete

specification of the SKB system, but

provides a sound (we hope) theoretical

basis for the system.

2.7, Object-independence

A software knowledge base is a

model of a certain set of software

objects and their relations. The model is

conceptually and physically distinct

from the objects themselves; this is in

contrast with systems that essentially

add project and configuration manage-

ment information to the object represen-

tations (usually files on a conventional

host system). In our approach, the SKB

is a separate entity; objects are modeled

by SKB elements, called “atoms” below. *

Thus a reference to the object

modeled by an SKB atom (e.g. the file

containing a program or other software

object) will merely be considered as one

of the attributes of the atom (the notion

of attribute is made more precise

below).

Such an approach has advantages

and drawbacks. The advantages are

simplicity and portability; the SKB sys-

tem can be built on top of any operat~

ing system without undue modification

to this operating system. The approach

also makes it possible to keep the model

(the SKB) on one computer and the

objects themselves on another if it is

deemed preferable to separate the

development machine from the manage-

ment machine.

On the other hand, the approach

taken makes it impossible to ensure con-

sistency: one cannot prevent users from

modifying the objects without making

the corresponding changes in the model.

However, regardless of the decision

taken, it is hard to ensure consistency

anyhow unless one is to build a manage-

ment system that replicates most of the

functions of an operating system. For

example, if one wants to guarantee that

the management system knows about all

changes brought to the objects, then the

management system should include such

utilities as text editors and the like. We

did not want to follow this path.

Thus we prefer to stick to the more

modest goal of providing a set of

management tools on top of an existing

operating system, with an open architec-

ture which makes it possible to combine

these tools with other software tools. It

is the responsibility of the project

members to maintain an accurate SKB

about the project. In other words, we

accept the possibility that the SKB sys-

tem may be fooled, as @ price to pay for

the simplicity, flexibility and indepen-

dence (in the above sense) of that sys-

tem.

Obviously, efforts should be made

to improve the consistency of the SKBs.

In particular, specific interfaces may be

built between the SKB system and the

host system so that information may be

entered automatically into the SKB, as

a result of operations performed in the

host system (e.g. a compilation or an

editing session).

Our approach thus fellows the

example set by the Make system [15],

which achieves simplicity by relying on

dependency information provided expli-

citly by programmers; this system hav-

ing proved to be useful, efficient and

easy to use, other researchers have been

able to come up with tools [35] that

automatically feed dependency informa-

tion into Make for specific cases (source

programs in ©, Pascal, Fortran, Lex and

Yacc in the reference cited).



3. THEORETICAL BASIS

The notion of software knowledge

base is based on a small number of con-

cepts: atoms, attributes, relations, con-

straints and actions.

3.1. Atoma

The objects in the knowledge base,

associated with physical objects of the

software project, are called atoms. As

implied by the "“object-independence”

criterion discussed above, the atoms

have no immediate connection with the

objects they represent; they are mean-

ingful for the SKB operations only, and

their properties are only defined through

their attributes, relations with other

atoms, and constraints on these rela-

tions.

3.2. Attributes

Atoms may have attributes. Attri-

butes are user-definable, although some

predefined attributes are available. The

value of an attribute may only belong

to one of a small number of predefined

types such as Integer, String, Time, File.

The values of the last type are are refer-

ences to files supported by the operating

system (in a non-standard system that

does not have files, we may have to

replace this by a more general notion of

object").

Typical predefined atom attributes

are lime_of_last_change, yielding values

of type Time; atom_type, yielding values

of type String (some possible types for

atoms are predefined, e.g. “procedure”,

“requirement”, “test data”, etc., but new

ones may freely be added); and represen-

tation, yielding values of type File.

Attributes may not be of complex

types; in particular, they cannot yield

atoms. For anything but simple proper-

ties of atoms, relations should be used

instead (see below).

3.3. Relations

The heart of an SKB consists of a

series of facts about the software pro-

ject, expressed as links between atoms.

Each of these links expresses the fact

that a certain relation holds between

two atoms @ and 6, Examples (compic-

menting those in the introduction) are

"a is defined in 6" (where @ is a pro-

cedure and 4 a package in Ada}, "ais a

member of 6" (where ais a person and 6

@ project), “a is the formal expression of

6" (where ais a module in @ specification

and 6 a paragraph of the requirements

document). More examples will be

found in section 5.

The SKB system only uses binary

relations; the reason is that binary rela-

tions are mathematically simple, have

nice properties, and provide an intui-

tively appealing way to describe struc-

tural properties of systems. From the

theoretical standpoint, any system that

can be described using general relations

(as eg. with a relational data base

management system) can be described

with binary relations [8], and algorithms

have been proposed to efficiently

translate a binary schema into a more

efficient n-ary one [31].

In practice, we have indeed found

binary relations to be adequate for

modeling properties of software objects.

This is illustrated by the analysis in sec-

tion 5 - where it will be seen that we did

find one case where a ternary relation

seems necessary.

3.4. Constraints,

Attributes and relations constitute

by themselves an empty shell; they

describe the structural connections

between software objects (the “syntax”

of the project), but not their deeper pro-

perties (the “semantics"), The latter may

be expressed by defining constraints, or

conditions on the relations and attri-

butes, which must be satisfied for the

SKB to be in a consistent state. A sim-

ple and important example of constraint

is the “dependency” constraint main-

tained by tools such as Make, which

expresses that the value of the

time_of_last_change attribute should be

greater (i.e. more recent) for every atom

than for every atom to which it is con-

nected by any relation that may be

characterized as a “dependency” rela-

tion. But many other useful constraints

may be defined on software systems;

some will be given below.

Constraints will be expressed as

mathematical relational predicates

involving relations, attributes and

atoms. The abstract formalism used to

construct and manipulate a software

knowledge base is called the Calculus of

Relations, Attributes and Constraints

(CRAC).

3.5. Actions

An action is associated with a con-

straint and specifies steps to be taken

when the constraint is violated by cer-

tain objects, following manipulations of

the SKB. Actions are not strictly part of

the SKB system since they may involve

commands to the operating system; the

SKB system provides the interface, and

ways to pass attributes of the atoms

Specific

Interface

Procedure

(e.g. file names) to the host system.

4. STRUCTURE OF THE SYS-

TEM

The structure of the SKB system

follows from the design criteria of sec-

tion 2 and the theoretical basis

described in section 3. It is represented

in figure 1.

The kernel of the SKB system pro-

vides the basic mechanisms for creating,

accessing and updating the SKB entities:

atoms, attributes, relations and con-

straints.

In connection with constraints, we

introduce the concept of daemon, A

daemon is a mechanism associated with

a constraint, which monitors the SKB in

order to detect possible violations of the

constraint as the information in the

SKB is being updated (i.e. links between

atoms are modified, new atoms are

entered, attributes are changed, etc.).

When it finds that such a violation has

been made, the daemon will report the

inconsistency and trigger the action

associated with the constraint, if there

is one.

Designer's

Library

CRAC Interface

Operating

Constraints

Actions

Design

Figure 1: Structure of the SKB System



Daemons raise an interesting imple-

mentation problem: in a large SKB

involving many atoms, attributes and

relations, it is essential to find ways to

avoid searching the whole structure

(mathematically, a multigraph) for the

consequences of a simple change. Work

on related topics has been done previ-

ously in connection with artificial intelli-

gence {25] and interactive graphics [17].

The SKB kernel is accessible

through a set of primitives, the “CRAC

primitives", which implement the cal-

culus of relations and constraints, i.e. all

the useful operations on the knowledge

base. These operations are made avail-

able through a uniform interface, the

"“CRAC interface"; the idea here is that

the SKB functions (like those of any

good data base management system, or

more generally of any good software

engineering tool) should be equally

accessible to interactive users, non-

interactive users, and other programs}.

Thus the CRAC interface does not

favor any of these types of access.

Several higher-level interfaces should be

provided; figure 1 lists three:

© the procedure library, which

makes CRAC primitives usable

from programs (e.g. other software

tools), written in ordinary pro-

gramming languages;

« the CRAC language, which makes

it possible to express CRAC mani-

pulations in an appropriate nota-

tion;

1 This is an implementation of what may be

called "Strachey's principle" from the quotation of

Christopher Strachey in Scott's preface to [33]:

“decide what you are going to say before you de-

cide how you are going to say it",

e the Designer’s Sketchpad, a

graphical interface to the calculus,

allowing for interactive description

of the atoms and relations with a

graphical display and a mouse.

The aim here is to avoid the gap

between high-level design decisions,

which are often best expressed in

pictures, and the rest of the

software development process,

Finally, figure 1 includes a set of

“CRAC Libraries", each of which pro-

vides a set of predefined relations, attri-

butes and constraints corresponding to

an important aspect of software

engineering. Examples are project.

management (scheduling, _ personnel

management ete.); design (a library

might provide support for a specific

PDL); implementation (an Ada library

manager would fit here); and testing.

This last point is particularly important

in our view and we see test management

as one of the main benefits of the SKB

system: although there is an extensive

literature on program testing, very little

seems to have been published on the

management of the testing process: how

to keep track of test data sets for each

module, record test results, etc.

5. A TAXONOMY OF
SOFTWARE RELATIONS AND

CONSTRAINTS

5.1, Overview

The fact that useful relations exist

among components of software systems

has been pojnted out by many authors.

For example, Parnas {30| describes the

“uses” and “invokes” relations among

modules; systematic methodologies for

software design have introduced the

“abstraction” relation between a

specification (e.g. an abstract data type)

and an implementation [21]; the “isa”

relation [9] is used in AI systems; the

development of software development

environments has recently led several

researchers to consider using relational

databases to keep track of the relations

between the various objects needed in a

software project (11,24); at the program

level, control and data dependencies

play in important role in studies about

code generation and optimization in

compilers [2], program vectorization
(23, 22] , static analysis [16].

Despite this frequent use of rela-

tions for software-related issues, there

have been very few systematic studies of

these relations; most works dealing with

relations just assume that they are

there, and go on using them or discuss-

ing ways to compute or implement them

(an exception is [26] which introduces

some program-level relations and studies

their properties).

The absence of a precise definition

of software relations and their formal

properties is regrettable, since relations

are not just vague connections between

objects, nor just “tables” as in simplistic
presentations of the relational database

theory, but useful mathematical objects

with interesting properties. We fecl that

a systematic study of software relations

is essential to advances in software

configuration management. We have

started such a study [28]; some elements

from that study will now be reported.

The aim of this section is to present

some interesting relations and the asso-

ciated constraints, giving support to our

decision to base the design of the SKB

system on binary relations.

Of course, the relations presented

here are only some of the important

relations that occur in software; the

SKB system is an open systerm and the

user may introduce any relations and

attributes Lhat may be needed for a par-

ticular application, together with the

associated constraints. The normal way

to do this is to define CRAC "libraries";

the relations and constraints presented

below would normally be part of some

basic, predefined libraries.

5.2. Basic Atom Types

As mentioned above, SKB atoms

are not strictly typed; they simply have

"atom type” as one of their attributes.
Examples of’ atom types are "Require.

ment", "Specification", "Design", “Pro-
gram", "Test_data", "Variable", "State-

ment", "Module", "Project", "Milestone",

"Staff member", "Unit cost", etc. In the
spirit of the theory of abstract data

types, these types are only “defined”

through the relations which may hold

between the corresponding atoms and

the associated constraints.

In the analysis that follows, we

shall be talking about types of software
objects and relations between these

objects. For the SKB project, this

analysis is only interesting insofar as

these properties of objects can be

modeled by properties of the

corresponding atoms.

5.3. Relations between atoms of

different types

© acontains 6

This relation holds if and only if the

object represented by b is a constituent

of a. Typically, a will be a system,

described at a certain level of abstrac-

tion (specification, design, code, docu-
mentation etc.) and 6 will be a com-

ponent (module, chapter etc.) of that

description. We call part_of the inverse

relation contains—',

® a models 6

This relations holds if and only if @

includes a description of what 5 does,

that is to say if b is one way to do what

is prescribed by a. We call instances the

inverse relation.

Examples: the user manual for a

machine models that machine; an

abstract data type description of a type

models an implementation of that type

as a class in Simula or Smalltalk, a

package in Ada ete.



5.4, Relations between atoms of the

same type

¢@ acomplements b

This relation holds if and only if a and 6

cooperate towards the achievement of

some higher aim. For example, various

procedures in the implementation of the

same data type (class, package) comple-

ment each other; so do various subrou-

tines in a numerical library, or Unix

programs commonly used in a “pipe”

fashion, e.g. for text processing the pro-

grams refer, tbl, eqn, troff.

Constraints: complements is a symmetric

relation;

part_of ; contains C complements

In this notation, the semicolon denotes

the composition of relations:
part_of ; contains is the relation which

holds between any two elements @ and

c if and only if, for some 6, @ is

part_of 6 and 6 contains c, Also, if r

and s are two relations, then r C s (r

is a subset of s) means that any pair of

elements connected by r is also con-

nected by s. The appendix describes

these and other notations.

¢ aspecializes 6

This relation holds if and only if any-

thing which is described by a is also

described by b (but some things may be

described by 6 which are not described

by a). The inverse relation, spectal-

izes~!, may be written generalizes.

Examples: In other branches of science,

the Linnsean classification of living

beings is based upon this relation. In

software, a particular elegant implemen-

tation of this relation is the prefixing

mechanism of Simula and Smalltalk: if ¢

is a class whose declaration is prefixed

by the name of 6, then any property

which has been given in the declaration

of b applies ipso facto to all objects of

class 6, but this does not prevent the

declaration of a to add any further pro-

perties which may be needed; the

mechanism can be iterated. A similar

- 10-

mechanism exists in the Z ‘specification

language [1].

Constraints: “linear” or “hierarchical”

inheritance, as in Simula and Smalltalk,

means that the relation is a forest. In

Smalltalk, the introduction of the

“metaclass" Class makes it a tree. "Mul-

tiple inheritance" would mean that a

dag is acceptable.

An interesting variant of this relation

occurs-in many practical cases; it may

be written @ specializes b except for ¢

(e.g, bats have all the properties of

mammals except that they can fly). This

seems very useful to model many aspects

of software, e.g. Fortran 77 is “upward-

compatible" with Fortran 66 (except for

a few "minor" details), version 4.2 of the

XXX operating system is almost compa-

tible with version, say, 7, etc. This rela-

tion is also important in connection

with modular, reusable system
specifications [29]. It is a ternary rela-

tion.

ea refers_to 6

This relation holds if and only if a refers

to 6 by its name. It can happen in a

variety of ways: a and 4 can be objects

of the same type (i.e. procedures, where

a calls 6) but this is not necessary. In

programming languages, a module can

refer_to objects belonging to other

modules (e.g. variables, etc.) either

through the mechanism of block struc-

ture or sharing of data, or by special

facilities which enable a module to

“peep” into the names of entities belong-

ing to another (inspect in Simula, use

in Ada). We call is_referred_by the

inverse relation,

eaneeds 6

This relation holds if and only if a can-

not be understood (or, if a program ele-

ment, executed) without 6.

Constraint: we venture the following

rule:

needs C is_referred_by*; refers_to *

meaning that a possibly needs 6 if and

only if some module c (which could be a

itself) refers to both a and 6 directly or

indirectly (the asterisk and plus sign

denote transitive closures; see the

appendix).

© adeclared_in 6

This relation holds in block-structured

languages iff a is declared inside 6.

Constraint: declared_in C part_of

© ashares_information_with 6

This symmetric relation holds if and

only if a and 6 may access some com-

mon information. In block-structured

languages such as Algol 60 and Pascal,

this is done through the block structure

mechanism, as defined by the following

constraint (valid for these languages):

shares_information_with C

declared_in * ; has_declaration *

where has_declaration is the inverse of

declared_in.

5.5. Relations between program

modules

The following relations apply to

modules of programs (procedures,

classes, packages etc.).

eacalls 6

This is the standard relation

between procedures, which holds if and

only if a may call b.

© acreates 5

This relation holds if and only if @ may

create b. It exists in a language or sys-

tems where processes can start other

processes (e.g. Ada tasks, Unix processes,

PL/I tasks, Simula classes), The same

relation also applies to the case where 6

is a data structure in languages where

data can be allocated dynamically (e.g.

new in Pascal).

e a activates b

This relation holds in systems support-

ing coroutines (e.g. Simula) or parallel

processes (Ada) if and only if if a may

re-start a suspended execution of 6.

-li-

« asends_information_to 6

This relation holds if and only if a may

pass information to 6. Let

receives_information_from be the inverse

relation. The following constraint holds

for common programming languages:

sends_information_to

U receives_information_from C

calls U ts_called_by

However, this is not the case in CSP, for

example, where information may also be

passed through the “rendez-vous”

mechanism; thus in these systems:

sends_information_to

U receives_information_from C

calls U ts_called_by U activates

More Constraints

Many features of programming

languages may be characterized as pro-

perties of the above relations. For exam-

ple, defining

same_scope =

declared_in ; has_declaration

then in block-structured languages such

as Algol 60:

refers_to ©

declared_in * U same_scope

but in Ada:

refers_to ©

declared_in * U same_scope U

(declared_in ; refers_to)

In all common languages, we have

calls U creates U activates C

uses

ete.

5.6. Time and system consistency

For the purpose of this study, only

one property of the basic type Time

matters: the fact that it is totally

ordered by a relation which we call

before. The inverse relation is predict-

ably called after.

As mentioned in section 3.2, we

define lime_of_last_change as an attri-

bute rather than a relation. This is



merely for convenience; mathematically,

an attribute is a (possibly partial) func-

tion, thus a special case of a relation

anyway. Let changed_at be the inverse

of time_of_last_change.

Part of the problem of

configuration management is due to the

.fact that no element in a system should

be younger than any element which

depends on it. This is expressed by the

following constraint, which we may call

the fundamental law of system con-

sistency:

changed_at ; depends_on ;

time_of_last_change C after

where relation depends_on is defined as:

depends_on =

contains J instances U gen-

eralizes U refers_to U needs

5.7. Relations between program ele

ments

Our last set of relations will con-

tain relations between objects of a pro-

gram. These relations play an essential

role in static program analysis, whether

it is for compiler optimization, super-

computer programming [7,23], or pro-

gram debugging.

e a follows 6

This relation holds if and only if ais a

statement whose execution may be

immediately followed by that of state-

ment 6. It describes the flow of control.

®@ a accesses 6

This relation holds if and only if ais a

statement or a program module, 6 is a

-

-

-

a aceeeacs
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‘

-~ 12.

‘ I

modifica aceenes ©

~

~~ Ae

program object (variable, etc.), and the

value of 6 is needed for the execution of

a. For example, if @ is an assignment

statement, it accesses the objects on

the right-hand side.

ea modifies 6

This relation holds if and only if ais a

statement or a program module, 6 is a

program object. (variable, etc.), and the

value of 4 may be modified during the

execution of a. For example, if a is an

assignment statement, it modifies the

variable on the left-hand side.

¢ a needs_value_of 6

This relation holds if and only if a and 6

are objects of a program (e.g. variables},

and the value of a may be modified by a

computation which uses the value of 6.

The following constraint may be

called the fundamental law of static

analysis:

needs_value_of C

(modifies “' ; (follows ; modifies)
M accesses)* ;

modifies? ; accesses

To understand this constraint, it

may be useful to look at figure 2, where

t and 7 are statements, and a, 6, ¢ are

program objects, and to note that the

solution of

d=r vu (t;d)

d=rU (t;1) U ftstsr) U

(trtet;pu..

d=t*yr

~

~
~

madifics * N

zero oF more times

Figure 3: The Static Anslyals Conotraing

= 3c

6. STATE OF THE SYSTEM

After the initial specification and design phase, the SKB project currently (June

1985) pursues the following tasks:

e The ORAC calculus has been defined precisely [13] and is being further refined

to include diverse kinds of object manipulation and user queries.

e A prototype has been implemented in Prolog [27]; an alternative approach,

using the relational data base management system Ingres, is pursued con-

currently. An experimental graphical interface (the “designer's sketchpad” men-

tioned in section 4) is also being implemented.

e The study of useful software relations outlined in section 5 of this paper is being

further refined.

e Two unrelated software projects, one at UC Santa Barbara and one in industry,

have been the object of an in-depth analysis [19] with two complementary aims:

to assess practitioners’ needs from their current practices, and to evaluate the

CRAC as a modeling tool.

¢ Finally, efficient multigraph algorithms for the incremental monitoring of con-

straints have been investigated [13].
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APPENDIX

RELATIONS

Let X and Y be two sets. The set of

binary relations (or just relations)

between X and Y, denoted X+4 Y, is

defined as the powerset (set of subsets)

of the cartesian product X x Y:

Xo Y=P(X x Y)

In other words, a relation r between X

and Y, ie. an element of X+> Y, is a

set of pairs

{ [Ep 9yl, Eg Yel, --}

with 2 € Xand y, € Y for all ¢.

As 4& notational convention, the

sets of interest. (those between which

relations are defined) will have names

beginning with upper-case letters, e.g. X,

Specification, etc. Names of set ele

ments and those of relations will be

written in lower-case, e.g. 2, r, part_of.

To express that a certain pair of ele

ments z € X, y € Y belongs to a relation

r, Le. that

fy yf E r
it is often convenient to use an infix

notation, as in

z uses y

(where z and y might be program

modules), rather than

{x, yf € uses.

We will use the convention that the

name of 2 relation, written in boldface

as in this example, may be used as an

infix operator.

Since any relation in X¥ <> Yis a

subset of X x Y, we can talk about the

intersection of two relations, denoted r

NM 8, and their union, denoted r Us.

We may also express that a relation is

included in (is a subset of) another, by

writing r © 3.

The inverse of relation r€ Y¥++ Y

is the relation r-! in Y¥ ++ Xsuch that

yr lop or y

The domain of r€ X ++ Y, written

domain (r), is the subset of X containing

all elements z for which zr y holds for

some y © ¥. The range of r, written

range (r), is domain (r “4.

The composition of two relations r

EX++ Yand s€ Yes Z, written s «

r,is that relation in X <—+ Z which holds

between elements z and zif and only if

zryand ysz forsome y€ Y

The order of the arguments to the com-

position operator is traditional in

mathematics and has some justification;

to many people, however, it is less

confusing to write the relations in the

order in which they are “applied”; thus

rather than the dot notation we use the

semi-colon notation, with r ; ¢ being

defined as ¢ @ r (the use of the semi-

colon is justified by the close connection

which exists between statement sequenc-

ing in programs and composition of rela-

tions; see reference [4].

For any set X, the identity relation

on X, denoted id (X), or just id when

there is no ambiguity, is the “diagonal”

relation which holds only between each

element and itself. We call null the

empty relation.

Let r€ X++ X (source and target

set identical]. The successive powers of

rare defined as follows:

ro sid

rlor;rtl {i> 0)

A relation r € X ++ X has a tran-

sitive closure, denoted r * , and a
reflexive transitive closure, denoted r *,

defined as follows:

rtor U id urd W pa

resid U rt



- 18+

A relation r € X ++ Xis:

«Transitive if r® © r(or equivalently r+ = r)

« Reflexive if id C r

© Symmetric ifr“! =r

© Antisymmetric ifr Mr! C id

Functional iff r“4;r C id (note that this characterizes partial functions)

Total ifftd Cor; rf

A (partial) order is a transitive, antisymmetric and reflexive relation. Such an
order relation is total if and only ifr U r4=X x X.

A dag (directed acyclic graph) is a relation r such that r* is a partial order. A
dag is rooted if and only if, for any y € X, the set of z€ Xsuch that zr* yis finite; a
root is then an clement of X - domain (r “! ). It is easily shown that in a rooted dag,
for any y € X, there is at least one root zsuch that zr* ye

A forest is a rooted dag r such that r ~“ is functional (note that r represents the
relation between parent and child). It is easily shown that a non-empty forest has at
least one root. A tree is a forest with at most one root.
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Bertrand Meyer

ABSTRACT

We sketch the principles of a method and notation for use by software designers to describe the

functional characteristics of systems being planned or developed. The method is implicit since

entities are described by their properties only; it is object-oriented since the descriptions

emphasize classes of system objects over functions; it is modular since it provides ways to

describe complex systems in a piecewise fashion; it is iterative since it encourages the stepwise

refinement of system descriptions; it is formal while retaining some of the advantages of non-

formal specification methods
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M: A SYSTEM DESCRIPTION METHOD

Bertrand Meyer

1- PURPOSE, SCOPE, CRITERIA

It is well-known in the software engineering community that the initial phases of the

software lifecycle - specification and global design - are the crucial ones. They condition the

smooth proceeding of the remaining phases and the quality of the eventua! product.

In other engineering disciplines, a number of methods, notations and tools are available to

support the corresponding phases. Design decisions can be ezpressed, discussed, evaluated and

recorded using various mathematical techniques. No such widely accepted set of techniques

exists in software engineering; this paper is an attempt to fill this gap.

The proposed approach comprises three components: a method, a notation and a set of

tools. The method is called M. The associated notation is called LM. We shall outline the

required computerized tools (TM), which have not been implemented.

We will first list the objectives and criteria that led to the design of M.

1.1 - Implicitnessa

In our view, the single most important feature of specifications is that they describe

objects implicitly, not explicitly; in other words, a specification should state properties of

objects, but not give a way to construct these objects, even an abstract construction, using

mathematical concepts. This may also be expressed by saying that the role of a specification is

to say what objects have, not what they are.

As an example of this distinction, consider first the following Pascal record type definition,

@ programming variant of the cartesian product of sets as known in mathematics:

type POINT =

record

zt, y, 2: real;

speed : VECTOR

end

Then consider the following characterization of POINT by four functions:

z,y,2: POINT —> REAL

speed: POINT —» VECTOR

These two ways of defining POINT may at first sight seem equivalent. The first, however.

is explicit, whereas the second is implicit. This is because the first completely freezes the type

POINT, defined as being “equal” to something; only with the second is it possible to add later a

new property of POINTs, say a mass, without changing the initial definition:

mass : POINT —> REAL

. Although the difference between adding a new definition and changing an existing one may

at first sight seem minor, the picture changes when viewed from a software engineering

perspective. An essential issue in the management of software projects is how to avoid the

constant un-shelving and redesign of previously baselined elements. It is thus much preferable to
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be able to work by addition rather than modification, leaving existing elements untouchedwhenever possible.

one is exploring issues and trying out different approaches. To make this possible, however,specifications must be written with the expectation that new elements will be added later. Oneshould thus avoid premature freezing, and leave the descriptions as open as possible. It isessential to have a specification method that supports this process,
4m fact, the conclusion of the specification step can be taken to be that time when one decides to freezeall the objects involved by equating them with the cartesian product of their attributes as defined so far,Then implicit definitions can be transformed (manually ot automatically) into explicit ones similar inspirit to the above Pascal type definition. This will elaborated further in section 7 when we discuss howto use an M description ax a basis for system implementation,

1.2 - Object-orientedness

Software systems may be described as devices that perform certain operations on certainobjects. The description of a system may be structured around the objects or around theoperations.

Using the objects (or rather the object types) as the basis for the description is preferablefrom a software engineering point of view, The reason is that, if one consider the whole lifecycleof a system, repeated changes will occur, so that many a system bears little resemblance at anygiven time to what it was a few months or years before, Practical experience shows,that in this constant evolution (which is the rule, rather than the exception, for most realsystems), the basic objects manipulated by the system tend to remain more stable than theoperations performed on them.

however,

It is thus essential to recognize and specify early the essential categories of objects thatoccur in the system. In M, this is done by listing the sorts of the s:specification. The rest of the specification is concerned with expressing properties of these sorts

A sort may be understood as Just a set in the ordinary mathematical sense.

1.3 - Syntax and Semantics

‘The description of the relational structure of a system, i.e. what objects are connected towhat other objects and what operations apply to what objects, may be called the syntax of thesystem. Its semantics, on the other hand, is the description of the Properties of the objects andthe operations.

Describing semantics is a much more difficult task than describing syntax if one is toremain at the specification level. Many of the specification systems that have been successful inindustry are mostly good at describing the syntax, and their attempts at including the semanticscither use natural language or resort to an operational approach (that is to say,algorithms rather than abstract properties), thus departing from the true realm of speciFormal specification techniques, on the other hand, make it possible to describeSemantics while remaining at the specification level, but they require much effort.
The method used in M is to divide the description of a system into several parts("paragraphs” in the associated notation). The first stages are concerned with syntax, the laterones add semantics. The specification task is Progressive; by writing the first, syntacticalParagraphs, one may already gain some benefit from the method and associated tools. Toobtain a more complete description, semantic Properties will be grafted onto the basic st.

describe

em.

a Purpose, scope, criteria / 5

1.4~ Modular features

One of the main reasons why formal specifications have not been ore widely used vn

i ul i ke the specification task more manageable,inion) the lack of tools and techniques to ma! fi ‘ na
aietiaee ae features for two key aspects of modularity [{12|: decomposability and

composability. :

Decomposability is concerned with techniques for dividing a large system into sever
; nit e fea

i i (p t), and for postponing the description of somesimpler ones (the “top-down” component), an he puonyel some feature te

initis sential aspects. A realistic speciforder to concentrate initially on the essen Rene eee eo

is ach to specification; it should alide support for such a stepwise approac! ; : 5

deder guionats be iterative, This is essential to help specifiers master the overwhelming amoun
of detail that confronts thern at the early stages of a project. sos use

i ili i isting pi f specifications when writing aability is the ability to combine existing pieces of ) B

one like “auteenat aspect). This property is particularly important in connection rae
one of the essential issues of software engincering, reusability, which is just as relevant for

ificati he lifecycle.specification as for other phases of /

° Features of the M method and the associated notation have thus been devised to slow for
jodular descriptions of systems. A system description may include an interface paraarap Y a

describes the connection of the current specification with others, existing or yet to be written.

1.5 - Mathematical basis

The basic modeling tools used in the description of systems are the simple eae

notions of sets and functions. Finctions may be either total or partial; partial functions play

an important role in connection with error situations.

1.6 - Errors and exceptional cases

The issue of how to deal with erroneous and exceptional cases plagues enaie Sa

Much of the complexity in requirements, specifications and design documents results from the

need to account for various kinds of abnormal conditions (illegal inputs, etc.). :

M offers no magic cure to this problem but emphasizes the rieed to a eee

istinct. The aim is aot to shun away from the ininormal and erroneous cases distinct. >

necessity of dealing with the latter, but to keep the former simple and manageable.

i i i he mathematical concept of partial function.1 with exceptional cases, M relies on tl n ; P "

An ernie paragraph provides a way to enlarge the domains of partial functions once a first
version of the specification has been written.

1.7 - Tools

i i i ly achieve its full potential if it isrehensive specification method such as M may onl chi i

aia good aoa computerized tools. The tools envisioned here are essentially
Banger and configuration tools, used to keep track of the various specifications alrea y
wr i i se reviofication databases to retrieve pii der development. Examples are speci d sto eatieve, previcts

terete (uy bgrtgpda Tilt to oct lle Hants faye Capon win
aditore to help in writing specifications; analyzers to check for consistency and other properties,
both intra- and inter-systems; provers.
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2 - INFLUENCES

Many of the features of the M method may be found in previous work. We list the
conscious influences below, and confess without any shame to having stolen many ideas from
other efforts. We do hope, however, that the whole is a little more than the sum of its parts,!

© The most direct influence was that of the Z specification language in its various
incarnations ((1] being the last known one}, with its emphasis on using simple mathematical
concepts to model programming concepts and, in the later versions, facilities for modular system
descriptions (chapters, classes). In a sense, M is nothing more than a restricted version of Z.
Another work based on the same premisses is that of Sufrin (18, 19, t4].

* Another important source of fundamental insights was the work on VDM, particularly
the presentation of the "rigorous approach" in {9}, although some of the features of M (for
example the emphasis on implicitness) depart significantly from VDM.

e The work on abstract data types was clearly a milestone in specification. To a certain
extent, M is an attempt to make abstract data type techniques available to practitioners.

¢ M has many points in common with formal specification methods such as Special [16],
FDM [10], Affirm{15]. The main difference is that the emphasis in M has been more on
expressive features (facilitating descriptions) than on proofs. Also, we have aimed at a
compromise between formality and usability, by permitting the users of the method to gain
some benefits from a specification even if it has not been completed down to the last quantifier,
Finally, M differs from Special and FDM in that no predefined notion of state is used; the
mathematical basis is elementary set theory. A set representing possible states may be
introduced explicitly if needed (as in the example below}, but it is then treated just as any other
set.

* Among formal methods, Clear [4,6] stands apart with Z because of its emphasis on
modular, composable specifications. Also along with Z, Clear is also particularly interesting in
that it has been formally defined (in at least two diferent ways (5, 17}), a task that has yet to be
undertaken for M.

« We have also drawn some lessons from less formal but industrially successful methods. In
particular, systems such as ISDOS [20] and SREM [2| emphasize the use of specifications in
project management, as repositories of essential information,-and the role of tools.

¢ Many ideas come from programming languages. The syntax of the notation associated
with M, called LM, follows the Algol-Pascal-Ada line. More importantly, modular features have
been strongly influenced by programming languages; the description of objects was influenced by
Simula and Smalltalk, the import-export clauses are not far in spirit from what may be found in
Alphard, CLU, Modula or Ada. The idea of describing a system by successive "paragraphs" that
yield successive approximations was conceived as 2 generalization of the Ada device of writing a
package in two parts: a “specification” and a body.

' After presenting talks on this method, we heard comments such as “this is just VDM". "this is just Al-
phard", ete. Since more than one other method was involved, however, the validity of these comments is trivial-
ly disproved by reductio ad absurdum, following from the symmetry and transitivity of the “ts jus" relation.

2a Influences 7

3- OVERVIEW OF THE BASIC PARAGRAPHS

A description of a system in M is expressed in the notation, LM, as a set of paragraphs.
There is a recommended order for writing these paragraphs, given by figure I.

An important part of a system specification is the interface pacugraph, which gives the connection with

other systems, thus permitting the modular upproach to system description advertised above. This

paragraph, which does not appear in figure 1, will be discussed in section 5.

Attributes

| Trans forms _| rms

Constraints

Implementation

Figure 1: The Basic Paragraphs and their order.

The sorts, attributes and transforms paragraphs describe essentially what we have culled

the syntax of a system; the other paragraphs give the semantics, It is important to note that M
has been designed so that system descriptions may be incomplete; in particular, the TM toals
should be able to cope with specifications where some paragraphs are missing.

The sorts paragraphs lists the basic classes of objects that are used in the system. For
each sort, a list of some specific elements may be given. -

The operations of the systems are classified as “attributes” or “transforms”. In both cases,
the underlying mathematical notivn is that of (possibly partial) fuuction. A situple abtribute on

a sort X is a function

{[:X — Y

where Y is another sort. A function of this sort represents the possibility of accessing the value

of a particular attribute defined on objects of sort X {like the z codrdinate of “points” in

section 1.1).

An attribute on sort X may also be non-simple, that is to say, involve parameters of sorts

other than X. A aon-simple attribute thus corresponds to a function of the form
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[:X XU,XU,x% ++ KU, > Y

for some sorts Uy, Us, .... Um.

Transforms, on the other hand, represent operations that may change objects of a given

sort. Mathematically, a simple transform on sort X is a function of the form

[:X > X

but usually transforms will involve parameters other than the objects to be changed, i.e. they

will correspond to mathematical functions of the form

£:X X¥ViXV_0+: XV, aX

The invariants and effects paragraphs give the basic semantic properties associated with

attributes and transforms, respectively:

e Invariants describe properties that the attributes of all objects must always satisfy,

regardless of what operations (transforms) are applied to the objects.

« Effects describe the semantics of transforms by expressing for each sort X, each

transform ¢ on X and each attribute a on X, how (if at all) the value of a may change for

an object of sort X when ¢ is applied to it.

Both attributes and transforms may be partial functions, i.e. undefined for some values,

corresponding to abnormal cases. The invariants and effects apply to the case when these

functions are defined, that is to say, to the specification of the normal case.

The constraints paragraph gives the exact conditions under which each partial function is

defined.

For some of these partial functions, the extension paragraph defines an alternate function,

to be invoked instead of the corresponding primary function when an argument falls outside of

the normal domain.

The design paragraph expresses the basic decisions made by the designer regarding the

architecture of the implementation, by distributing the various elements of the system among

modules.

The implementation paragraph achieves the transition from design to actual

implementation.

3a Overview of the baste paragraphs 9

4- AN EXAMPLE

To show how the principles outlined in the previous section are applied in practice, we

have chosen to illustrate the method and the notation through a particular example. Although

small, this example cannot be characterized as a toy problem. It will allow us to present the

essential aspects of M, with one very important exception, modular features, whose presentation-

is deferred to the next section.

4.1- A Distributed File System

We consider the following problem, A computer network (figure 2) includes machines of

diverse kinds, e.g. IBM computers running MVS, others running VM, Vaxes running Unix or

VMS, etc. Users of these machines need to share files. This is the case, for example, when

separate teams are coOperating on a particular project.

var_untz

files

thm_mva

file;

Figure 2: Files on a network

Thus a program running on a machine may need a file that resides on another. Since,

however, this is a long-distance network, not a local-area one, it is impractical to let a program

directly access a remote file; so what is needed is a set of tools [or copying files back and forth

over the net.

This immediately raises several problems. One is that various computer systems support

various file types: for example, IBM MVS has a notion of "partitioned file” (a group of related

sequential files, often a subroutine library}, not supported by other systems; Unix and Multics

have "directories", unknown on MVS or VM. This clearly puts restrictions on possible file

transfers.

A more difficult problem is that of integrity: if we allow taking multiple copies of a file

and then copying back updated versions, then the question arises of maintaining some control

over possibly conflicting updates. Now the integrity of a file or set of files (database) cannot be

defined in abstracto®: it depends on what you want to do with these files.

Thus we decide on the following policy: the tools we will design do not purport to solve

the integrity problem, but they will make it possible for the designers of any particular

application to implement any reasonable policy they define for application-dependent integrity

control.

2 It may, however, be definable in Abstracto.
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In accordance with this idea, we decide on the following basic operations:

© Copy: this operation will copy a file from a given source computer to a given target

computer.

« Take: this operation is as Copy, but preémptive: once a Take operation has been

successfully performed on a file /, no other program may perform a Take on that file until

the file has been released by its temporary owner through one of the following two

operations.

© Return: this operation copies back a previously “taken” file to its original source, taking

into account any changes that may have been performed on the copy. The file becomes

available again for further Take operations.

© Free: this operation makes a previously “taken” file available again for further Take

operations. Changes performed on the copy are not reflected on the source.

© Taken: this operation is a query on the state of a file, which finds out whether or not the

file is available for preémptive copy (in a practical package, Take and Taken may have to

be presented as a single primitive to ensure mutual exclusion).

One more design decision is needed here: how should a program reference the files it needs

to access through the above primitives? In principle, a file residing on host emptr, where its

name (relative to the local file system of machine emptr) is local.name, may unambiguously be

identified, from any node of the network, by the pair <emptr, local_name>.

This solution is not satisfactory, however, since it requires programmers to know precisely

where each file resides on the network. Also, file naming conventions differ significantly on

computer systems, and it is unpleasant to require, say, MVS programmers to know about Unix

conventions or conversely. Finally, it seems wise to restrict applicability of the network file

transfer operations (Copy and Take) to designated files, rather than allowing any program

running on any machine to access any file on any other machine.

We thus introduce the notion of a global name. A file only be available as source for

the network transfer operations if it has been declared "global". When making a file global, one

must give it a global name, which will be used to refer to the file if it is to be the source of a

transfer operation. A new operation is thus needed: —

© Make_global: this operation associates a global name to a file residing on a certain

machine and makes this file available, through its global name, as source for the transfer

operations (Copy and Take),

Clearly, global names must characterize global files uniquely over the whole network

(whereas local names may be repeated: two different computers of the network may have a file

called Jill). The Make_global operation may be implemented by creating an entry in a central

catalog of global files: this catalog maintains the correspondence between global names and

physical <cmptr, local_name> addresses. But other implementations may be conceived: for

example, one might choose to have specialized file server as one of the machines on the net,

containing copies of all the global files. One of the roles of a useful specification is to express

those properties of the system that are independent of the particular implementation chosen.

This concludes the first draft of our system specification. Of course, many details remain

to be spelled out. Whereas natural language is quite adequate for discussing broad avenues of

initial design, it does not suffice for the following steps, when things must be made precise,

unambiguous and complete. Here formal specifications step in.

“-

|

-
42% An example il

4.2 - Sorts

We begin our specification by its first paragraph, the list of sorts, given below. This is the

sorts paragraph for our example system, which we call DFS, for "Distributed File System”.

system DFS sorts

COMPUTER ;

PILE ;

COMPUTER_TYPE has ibm_mus, ibm_um, vaz_uniz, epple_2_ms_dos, vaz_ums, multics ;

FILE_TYPE has sequential, direct_access, partitioned, directory ;

FILE_MODE has global, nonglobal ;

LOCAL_NAMEB ;

GLOBAL_NAME ;

FPILE,CONTENT ;

KEYWORD ;

USER ;

STATE ;

end system sorts ;

The sorts are the sets of values that may be taken by the various entities of the system

being described. As a notational convention, we write sorts in uppercase and everything else in

lower-case. Because of the emphasis on implicitness, we don't say much about each sort in the

sorts paragraph: we give its name, and sometimes the name of some of its elements, that’s all.

There is no way at this stage to express that, say, a POINT has four components (as introduced

in section 1.1), or (here) that a FILE is identified by a file descriptor with some concrete or even

abstract structure.

COMPUTER and FILE are obviously needed as sorts. For the next two sorts,

COMPUTER_TYPE and FILE.TYPE, we list some distinguished elements through the has

clause. Note that there is no claim that these are the only elements (as with a Pascal type

definition by enumeration): the sort is still open. The has clause implies, however, that the

elements listed are presumed to be different.

A FILE_MODE makes it possible to determine whether a file has been made global.

We call LOCAL_NAME the sort containing all the names that may be used to identify

files on the various computer systems involved. No specific property of this sort will be necessary

at this level of the specification. GLOBAL_NAME, too, will not be described any further; this

sort is used to describe possible global names for files that have been made global.

It is all nice to have names and modes associated with files, but of course if we want to

describe the result of copy operations we must have the notion of FILE.CONTENT. Again, we

need not specify this sort any further; it is enough that we can refer to it.

To "take" a file (preémptive copy), one will need a keyword, used again to release it later.

Hence the sort KEYWORD.

The sort USER is also needed for the Take operation: we shall need to record who has

“taken” a given file. By “user”, we actually mean a program rather than a person.

Finally, we need a sort STATE to describe the state of the complete distributed file

system at any given time. The need for such a sort is a common, although not universal,

occurrence in M specifications.
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Here then is the first paragraph of our specification. The result achieved so far is modest

but non zero: we have listed the categories of objects that play a role in our system. If we are

lazy, or broke, or both, we might stop here and still benefit from having taken the trouble to

write anything at all. This remark applies to each of the steps below, although we won't repeat

ity an M specification may be partial, and the associated TM tools should be prepared to deal

with it even if some paragraphs are missing. Of course, the full benefit of the method will only

be obtained if the specification is complete, but one may already get partial results before.

4.3- Attributes

We happen to be very courageous and enthusiastically undertake the rest of the

specification. The next step is the attributes paragraph, given below (portions of lines beginning

with two consecutive hyphens are LM comments).

A decision which significantly affects the appearance of M specifications was to

systematically attach every attribute (and transform, see below) to one and only one sort, This

raises no difficulty for what we have called “simple” attributes above, i.e. functions of the form

px my

Such a function will be included as part of the attributes “on X":

on X attributes

end X attributes

In our example, the attributes on sorts FILE, COMPUTER and USER fall into this category.

In the general case, however, we have already mentioned that an attribute is mathematically a

function of the form

[:X XU, XUpX ++ KU_n —>

We will also describe such a function as being an attribute “on X". To take the extra

parameters into account, the definition of the attribute will be written as:

on X attributes

LU, Ur ony Un) ¥5

end X attributes

Here, examples of such attributes are the attributes on sorts COMPUTER_TYPE (attribute
supporting) and STATE.

Mathematically, the device that we apply to attributes is called “currying", it cousiots in replacing (for

1 20} function of n+1 arguments, / in our example, by a function J” of one argument (with values in

X), yielding results that are functions of m arguments (in Uy, Up, wun Umit

2X (Ux Ux = KU > YY

There is a conscious dissymmetry in the convention chosen here, since we might just as

well choose one of the U, as the distinguished sort to which f is attached. The reason for this
dissymmetry is the concern for modular, manageable descriptions. If we treat X and all U, on

equal footing, then we risk ending up with large, messy attributes paragraphs. Attaching each
attribute to a distinguished sort makes it possible to divide the paragraph into a number of
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syatem DFS attributes

on FILE attributes

locname : LOCAL_NAME total ; ++ The local name of a file

host : COMPUTER total ; - + The machine where a file resides

Stype : FILE_TYPE total ; = = Sequential file, directory ete.

end FILE attributes ;

on COMPUTER attributes

make : COMPUTER_TYPE total ; - - What brand is this computer: ibm_mus; vez_uniz...?

end COMPUTER attributes ;

on USER attributes

where_running : COMPUTER total ;

end USER attributes ;

on COMPUTER_TYPE attributes

supporting (FILE.TYPE) : BOOL total; — = - Is this file type supported on this type of computer?

on STATE attributes

feontent (FILE) : FILE_CONTENT total; ~- Current contents of a file

file_exists (LOCAL_NAME, COMPUTER) ; BOOL total ;

~+ Is there a file of that name on that computer?

file_ofname (LOCAL_NAME, COMPUTER) : FILE partial ;

=< If so, what ig it? .

used_globname (GLOBAL_NAME) : BOOL total ;

~ + Has thés global name been assigned to a file?

globjile (GLOBAL_NAME) : FILE partial ; ~ - If s0, what file?

mode (FILE) ; FILE_MODE total ; ~ - Has this file been made global?

globname (FILE) ; GLOBAL_NAME partial ; :

++ If 90, under what name?

taken (GLOBAL_NAME) : BOOL partial ; - - Has the file with this global name beet reserved?

owner (GLOBAL.NAME) : USER partial ; - - If 40, 5y whom?

key (GLOBAL_NAME) : KEYWORD partial ;

- + and under what keyword?

end STATE attributes ;

end system attributes ;

small sections, each corresponding to a sort.

This device ls very close to a successful modularization technique for programming languages: the object-

oriented approach to program design embodied by the Simula 67 and Smalltalk languages. The designers

of Simula (followed by those of Smalltalk) introduced # conscious confusion between the notions of

module and type: a module is the implementation of a data abstraction This is in contrast with the

somewhat looser notion of module found in Ada or Modula, where a module may be almost any grouping
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of elements (types, variables. procedures). The Simula-Smalltalk approsch has some drawbacks. but it

implements @ very strong consistent view of modularity that in practice vields excellent system designs.

‘These questions are further discussed in [12].

The notation used in LM to denote attributes of objects reflects the chosen dissymmetry:

the argument corresponding to the distinguished sort will be written using dot notation (as for

components of Pascal record types, properties of Simula reference variables etc.); the other

arguments, if any, will be written in parentheses. Thus if f is an object of sort FILE, then its

local name (an attribute defined in the "on FILE" section) will be written

selocname

The host on which it resides will be written ¢ » host, etc. Referring now to the "on STATE"

section, the value of the attribute file_ezists for a state s, a local name / and a computer ¢ will

be written

s file_ezists (l,¢)

ete.

The last general remark necessary to fully understand the attributes paragraph is that

attributes may be partial functions: some attributes may not be defined in all cases. Being

partial is an important property, so every aliribute definition must be followed by one of the

two keywords total or partial. For any partial attribute, there will be an entry in the

constraints paragraph (see section 4.7) describing the exact conditions under which the attribute

is defined.

A few comments on the attributes of the example may be useful.

Note the difference between the attributes on FILE (properties of files which do not

depend on the system state, like the host on which a particular file resides, its local name, its

type, which are considered to be innate properties of the file) and the properties of files that are

defined under STATE because they are state-dependent, like the content of a file.

On sort USER, attribute where_running gives the host on which a user (i.e. program) is

being executed.

If et is a computer type and ft is a file type, then

ct » supporting (ft)

is @ boolean value (we assume the sort BOOL to be one of a small number of predefined sorts),

true if and only if computer type ct supports file type t. Thus we will expect idm_mus «

supporting (directory) to be false, vaz_uniz » supporting {sequential} to be true, etc. (these

properties will be expressed in the invariants paragraph).

On sort STATE, attribute feontent gives the current contents of any file. Files will

usually be accessed through their names, so we need to describe the correspondence between a

fite name and a file; this is achieved through attribute file_ezists, which corresponds to the

query “is there a file with a given name on a given computer?", In a state s, given a local file

name { and a computer ¢, the file of name ! on comiputer ¢ is

5 file_of_name (I, ¢)

Note that attribute file_of_neme is partial because there might be no file of name fan ¢ The

precise condition under which s + file_of_name (J, c) is defined is that s « file_ezists (1, c} be

true; this condition will be expressed in the constraints paragraph of the specification.

If g is a global name, then ¢ + used_global_name yields true if and only if name g has been

assigned to a global file in state s. If this is the case, then this file may be obtained as 3 «

glodfile (9).

The "mode" of a file is global if and only if the file has been made global. If so, the file has

a global name, obtained as s+ globname (9).
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Attribute taken applies to a global name and determines whether the file with that global

name has been “taken” by a user in the current state; this attribute is partial because it only

applies to global names which have been assigned to a file. If s« taken (g) is true for a global

name g, then the user that has "taken" the corresponding file is given by 9 * owner (g) and and

the key that was used to reserve it is s « key (9).

Note that because of the correspondence between global files and global names (attribute

globname and globfile), the arguments of attributes taken, owner and file could have been

chosen as FILEs rather than GLOBAL_NAMEs.

4.4 - Invariants

The invariants express properties of the attributes which must always hold. The

invariants paragraph for our example is given below.

system DFS invariante

declare | : LOCAL_NAME, g : GLOBAL_NAME, ¢ : COMPUTER, s : STATE, f : FILE ;

i: fe host » make « supporting (f « ftype) ;

ig: 96 fileofname (I, c) « looname =;

ig: 96 globfile (s+ globname (fj) =/;

fy: ae globname (2 « glodfile (9)) = 9 ;

is: aused_globname (s+ globname (f)) ;

ig: smode (s+ globfile (g)) = global ;

Jit s8m_mvs « supporting (ft) = (ft € {sequential, direct_access, partitioned}) ;

Jo: vor_untz

Js} multics « supporting (ft) = (ft © (sequential,

Jy i vaz_ums + supporting (ft) = (ft (sequential, direct_access, directory}) ;

upporting (ft) = (jt € (sequential, direct_access, direetory}) ;

irect_acceas, directory}) ;

is: apple_2.ms_dos « supporting (ft) = (ft € (sequential, direct_access}) ;

end system invariants

Each invariant has e label (ij, é, ji, J, ete. in our example), which may be used to refer

to it. Names are used in the invariants to denote objects of various sorts; they are introduced

by a declare clause. By convention, any free variable is considered to be universally quantified,

so that invariant #,, for example, should be understodd as if it was preceded by VW f € FILE.

The meaning of the invariants should not be hard to understand. Invariant §, gives a

consistency condition on file types: the brand of the computer on which file f resides (that is, f «

host « make) must support the file type of f. Invariant iz is a consistency property on attributes

fileof_name and locname: the name of the file of name ! (on a computer c, in a state s) is /.

Invariants i; and 4, express that attributes globfile and globname are inverse of each other.

Invariant is expresses the relationship between used_globalname and globname, ig between

mode and globfile. .

Invariants 7, to 7; simply give the properties of attribute supporting by enumeration.

For the more interesting invariants (1, to ig), the reader will have noticed that some of the

functions involved are partial, so the meaning of equality must be made more precise. The

appropriate interpretation is “weak equality’: a=b means “if both a and 6 are defined, then

they are equal”. (Recall that the precise specification of the domains of partial functions is

deferred to the constraints paragraph).
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Invariants play a very important role in expressing the fundamental properties of a

system, those which must be preserved by any operation applied to its objects. The search for

relevant invariants rewards the system designer with insights into the really important features.

It also yields two important side benefits®: .

© Invariants provide guidance for testing: the first thing to check when monitoring the

behavior of the system, or a prototype of the system, on a set of test inputs, is whether

any invariant is violated. This form of testing is effective because it goes right to the

essential properties of the system, as opposed to “blind” testing.

» Invariants are useful for evolutive maintenance: to check whether a change to the

software preserves the "essential semantics” of the system, one should go back to the

original invariants and see if they still hold.

4.5 - Transforms

So far we have described only the static properties of our system. We come now to its

dynamics, represented by transforms.

The transforms paragraph has several features in common with the attributes paragraph.

In the same fashion as attributes, transforms will be curried, i.e. a transform function of the

form

transf: X XV, xX V2-++ X Vy —> X

will appear as a transform "on X":

on X transforms

transf (Vi, Voy oy Vp) evo

end X transforms

As attributes, transforms are declared as either partial or total. Application of a

transform is written using the same convention as for attributes: if z is an element of sort X,

the object (of the same sort) resulting from applying transform trensf to z, with arguments

V1, Va, +) Up is denoted

ze transf (v4, ¥2y 5 Un)

or just z« transf in the case of a simple transform with no arguments.

An important feature of transforms is that they are entirely specified by their effects on

attributes. Let transf be a transform on sort X. When defining t, the M specifier must examine

all attributes defined on X in the attributes paragraph, and determine for each such attribute

attr whether application of transf may change the value of attr. In other words, one must

specify whether

Ze transf (vy, Uys ony Up)e attr (uy, thy) oo th)

may or may not be different from

ze attr (uy, Ua, Um)

for arbitrary v1, Ug, «5 Un» Ui, U2, sy Um» Here we are assuming that attribute attr has m

arguments; the uj argument list would be omitted for a simple attribute,

Every transform definition will thus be followed by the list of attributes that it may

change in this fashion (preceded by the keyword change) as illustrated by the example below.

3 Cam indebted to J..R. Abrial for these remarks.
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system DFS transforms

on STATE transforms

make_global (FILE, GLOBAL_NAME) partial

change mode, globfile, globname, used_globname ;

- - Make this file global with this global name

copy (GLOBAL_NAMEB, FILE) partial

change feontent ;

- - Copy the contents of the file with this global name into this other file

take (GLOBAL_NAME, FILE, USER, KEYWORD) partial

change feontent, teken, owner, key ;

-- As "copy", but also preémptive

return (GLOBAL_NAME, USER, KEYWORD) partial

change fcontent, taken, owner, key ;

- ~ Copy back and release

free (GLOBAL_NAME, USER, KEYWORD) partial

change taken, owner, key ;

- - Release without copying back

end STATE transforms ;

end system transforms ;

This process of doing for each sort the complete “product” of transforms by attributes is

an important part of M specifications. Note that for the reader of a specification the "change

-." list wext to each transform definition is useful not only because it highlights attributes

affected by the transform but also, just as importantly, because it makes it possible to infer

what attributes may not possibly be impacted.

The precise description of how every impacted attribute is changed by a given transform is

deferred to the next paragraph of the specification, the eflects paragraph.

In our example, the five transforms (all on sort STATE at this stage of the specification)

correspond to the operations introduced in the informal draft. For each of them, the reader

should check the list of possibly changed attributes.

4.6 - Effects

Next we return to the semantics of the system by giving the effects of the various

transforms. The structure of the effects paragraph leaves no place for hesitation: there must be

one and exactly one entry for every item of every “change' list in the transform paragraph.

Precisely, if we have a transform entry of the form

on X transforms

end X transforms

where attr is defined in the attributes paragraph as



18 M: A SYSTEM DESCRIPTION METHOD ?wié6

on X attributes

attr (Uy, Uy 0

end X attributes

then the effects paragraph must contain an entry of the form

Ze transf (vy, Vay ony Up)» attr (uty Yay ry Ue) = Erpensyattr[Yiy U2y oor Yay Way thay voy Un

where Eyany.ctr [| is an expression, usually involving the value of the attribute before the

transform is applied, i.e. z « attr (uj, ua, .... Yq). Hore we are assuming a proper declare line

for all the variables involved; recall that free variables are assumed to be universally quantified

(that is, preceded by V).

The left-hand side of such an entry is entirely determined by the previous paragraphs of

the specification; so the TM supporting tools should be able to construct it automatically. Of

course, the right-hand side (expression £) can only be provided by the specifier.

The effects paragraph below describes precisely the result of the various operations in our

example problem. To write it, we rely on the following useful notation. Let & be a function:

hA:X—>Y

Let a € X and v € Y. We denote by

9 = replace h at a with v

the function g that is identical to A except that its value for element a is v. In other words, for

any 2 €X:

9 (2) = if z = a then velse h (2) end if

If A is a partial function, the domain of g is domain (h) U {a}.

The replace... form is not strictly part of the LM notation, but may be considered as a

simple abbreviation (macro) for the if...then...else..end if expression, which is in LM. The

former makes it possible to describe effects more clearly.

In a similar fashion, we denote by

g = undefine fat a

a function that is the restriction of f to domain (f) - {a}.

An important point should be noted regarding the meaning of the given effects in the case

of partial functions. The transforms whose effects are given in the effects paragraph, and the

attributes on which these eflects are given, may be partial. The convention is that the effects

described by the right-hand sides of the equalities in this paragraph are applicable only when

the left-hand sides are defined. When a left-hand side is not defined, whether the corresponding

right-hand side is defined or not does not matter; all bets are off.

Note, however, that whenever a left-hand side is defined, then the corresponding right-

hand side must also be defined since its evaluation 1s required to obtain the value of the left-

hand side. This consistency problem will be studied in section 6.6.

|
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system DFS effects

declare |; LOCAL.NAME, 9 : GLOBAL_NAME, ¢ : COMPUTER,

3: STATE, f: FILE, k: KEY, w; USER ;

s make_global (f, g)+ mode = replace s + mode at f with global ;

s« make_global (f, 9) globfile = replace s + globfile at g with f;

3 « make_global (f, 9) » globname = replace s + globname at {with g ;

3 make_global (f, 9)» used_globname = replace s + used_globname at g with true ;

se copy (9, f) + feontent = replace s « feontent at f with s « globfile(g}« feontent ;

se take (9, f, u, k)« feontent = replace s « fcontent at f with s+ globfile(g)« feontent ;

se take (9, f, u, k)« teken = replace s » taken at g with true ;

stoke (9, f, u, k) +key = replace s « key at g with k ;

stake (9, f, u, k) « owner = replace 3 + owner at g with u;

se return (9, f, u, k)»feontent = replace s «content at s « globfile(g} with / « feontent ;

se return (g, f, u, k)» taken = replace s « taken at g with false ;

se return (9, f, u, k)+ owner = undefine s + owner at g;

sereturn (9, f, u, k) «key = undefine s + keyat 9;

ge free (g, f, u, k) « taken = replace s « tcken at g with false ;

a+ free (9, f, u, k) » owner = undefine s + ouner at 9;

se free (9, f, u, k)e key = undefine » «key at g;

end system effects ;

4.7 - Constraints

So far we have been treading on rather unsteady ground since our specification contains

partial functions and we have all but ignored undefined values. This method is useful for

concentrating on the basic cases first, but of course at some point we must say exactly when

operations are applicable and where they are not. This is the object of the constraints

paragraphs. .
In this paragraph, we look back at the definitions of attributes and transforms, and we

include an entry for each function that has been introduced as partial (again, the TM tools

should guide us here by automatically providing the list of entries to be filled). Each entry will

thus correspond to a partial function f (attribute or transform), previously defined as being “on

X" for some sort X, possibly with parameters in sorts A,, Ag, ..., Ay ; the entry will be written

in the form
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system DFS constraints

declare |: LOCAL_NAME, 9 : GLOBAL_NAME, ¢ : COMPUTER,
8: STATE, {: FILE, k ; KEY, u: USER ;

sin domain file_of_name for |, ¢ iff 9 « file_ezists (n, ¢);

2in domain globfile for g iff 9 « used_globname (9);

sin domain ylobname for f iff ++ mode (f) = global ;

sin domain taken for g iff +» used_globname (4g) ;

sin domain owner for g iff s + taken (g) ;

sin domain key for g iff s « taken (9) ;

sin domain make_glodal for f, g iff not s+ used_plebname (9)

sin domain copy for 9, /iff

s+ globfile (9) « ftype = J ftype and not (s« taken (3+ globname (f)))

sin domain take for 9, /, u, & iff

a+ globfite (g) + flype = f+ /type and not fs. taken(s » globname (f)))

and not s « teken (yg);

¢in domain return for g, u, & iff

3 taken (g) and 36 owner (g)=uand se key (g) =k;

sin domain free for 9, u, kiff - - Some conditions as for return

a+ taken (9) and s+ owner (g)= uand se key (g) =k;

end DFS constraints ;

tin domain f for a), ay, ...., a, iff P -

where P is a condition on 2, a), ay, ...., @,, defining the constraints that must be satisfied by
these arguments to ensure that tf (a;, ao, .... a,) is defined.

One of the benefits of a formal specification is that it forces the software designer to give
precise answers to some questions that are very important for the behavior of the eventual
system. We have an example here with the constraints on such transforms as copy and teke.
Although it was stated in the informal dealt specification {section 4.1) that take is preémptive
but copy is not, another problem was not addressed: is one permitted to perform a copy whose
source is a file that has been reserved by a take operation? Here we cannot escape this question.
The choice described below is to authorize a copy from @ source that has been “taken”, but a
copy or teke operation may not use a reserved file as its target. Formal notations naturally
lead to asking (and answering) such important questions.

An important point to note is the convention used when conditions on the domain of a
partial function refer to other partial functions. The convention is that the expression
f(a) = 9 (5), where f and g may be partial functions, is a shorthand for

(a € domain (f) and 6 € domain /g)) and then f(a) = 9 ()

where and then is the non-commutative and operator (yielding false if its first operand is false,
regardless of whether its second operand is defined or not). Thus the condition for owner below,
for example, should be understood as
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sin domain owner for g iff s+ used_globname (g) and then s« taken (9) ;

This device, which significantly simplifies the expression of constraints, corresponds to a
particular logic for dealing with undefinedness, analyzed more precisely in section 6.5 below.

4.8 - Extensions

Partial functions provide a simple mathematical tool for describing computations which
should not be attempted. We find this approach preferable to the alternative way of dealing
with errors by using explicit “undefined” elements with special properties (7]. Our approach

follows from one of the main tenets of M, namely that a specification method should allow the
system designer to concentrate on the essential things first, without being overwhelmed at once
by all the details that the final system will have to take into account.

As the specification is being refined, however, partial functions cannot usually remain
partial indefinitely: in implemented systems, one likes all functions to be total, if only out of

politeness towards the users of the system.

The extension paragraph (not described any further in this version of the paper) makes it
possible to improve a specification containing partial functions by associating with every partial

function (attribute or transform) an alternate function, known as its doppelganger, to be used
in lieu of the original function for arguments that fall outside its domain.
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5 - SYSTEM COMPOSITION AND DECOMPOSITION

As pointed out in section 1.4, it is essential for practical specifications to allow the

decomposition of system descriptions into descriptions of subsystems, and of re-using existing

specifications when describing new systems.

The modular features of M are based on an analysis of the relationships that may exist

between systems. The following relations are of primary importance.

o1- Bis a particular case of A. In other words, anything that is true of A is also true of

B (but some properties may be true of B that are not necessarily true of A).

© 2- Beontains an instance of A. For example, A could be the system of "trees", where B
uses one or more trees.

e3- Bisa particular case of a, with some exceptions. This is like case 1, except that some

of the properties of A may not hold for B. This is very important in practice, since so

many systems are "almost" upward-compatible with existing systems. Thus there must be

@ way to import elements from a specification while explicitly rejecting some of their

properties,

M provides support for these three kinds of interaction in the interface paragraph. To

support 1, we include in the interface paragraph a section of the form:

from A use

a; Bs...

end A use

In this notation, a, §, etc. denote “syntactic” elements, that is to say, sorts, attributes

and/or transforms. The semantic properties (invariants, effects, constraints) of these elements

should not be included: they follow automatically.

If, on the other hand, some of these properties are not wanted (that is to say, in case 3

above}, then they can be excluded explicitly. The use section will then contain an except

clause, as follows:

from A use

a; 8 poe

except 7, 6,...

end A use

where +, 6,... refer to invariants (denoted by their tags, e.g. #3 in our example), effects (denoted

as effect transf on attr), or constraints (denoted as constraint on /).

As a notational convenience, it is permitted to have a use section of the form

from A use

all ;

except +, 4,...

end A use

making all elements of A available to the current system description except those which are

explicitly excluded. In this case, the excluded elements (gamma, é,...} may include sorts as well

as semantic properties.
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Interfaces of type 2 above are expressed within the same notation using a very simple

device: a use section may include “renamed” clauses, as follows:

from A use

a;

B renamed {1 ;

end A use

In this fashion, several instances of the specification for the same system A may be used in

the specification for B. For example, assume that we have the specification of a system LISTS

describing the properties of lists. This specification includes sorts LIST and ELEMENT, on the

former sorts, it has attributes such as empty and transforms such as tnsert front, insert_back,

append etc. Now assume we have a specification which needs lists of integers and lists of reals.

Then this specification will have sorts INTEGER, REAL, INTEGER_LIST, and REAL_LIST;

its iftterface paragraph will need two use clauses, as follows:

system S interface

from LISTS use

ELEMENT renamed INTEGER ;

LIST renamed INTEGER_LIST ;

empty renamed empty_integer_list ;

insert_front renamed integer_insert_front ;

insert_back renamed integer_insert_back ;

append renamed integer_append ;

- - ete.

end LISTS uae ;

from LISTS use

ELEMENT renamed REAL ;

LIST renamed REAL_LIST ;

empty renamed empty_real_ttst ;

insert_front renamed realinsert_front ;

ingert_back renamed real_insert_back ;

append renamed real_append ;

- - ete.

end LISTS use

end system interface

The fundamental rule here is that no overloading of names whatsoever is permitted in

the LM notation: any conflict must be resolved by renaming as above. As a consequence of this

rule, if several properties are given for the same object and they are not logically contradictory,

they are considered as cumulative rather than conflicting.
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6 - PROVING THE CONSISTENCY OF A SPECIFICATION

6.1 - Overview

The reader may have noted that the process of writing an M specification, as seen so far,

is rather open; one may write many things, and not much control is exercised, even though the

method uses potentially unsafe features like partial functions.

What justifies this somewhat easy-going epproach is that at early stages the most difficult

problem is to understand what the system is all about; so the emphasis in the M features seen so

far has been on expressive power more than security. One should not prematurely confuse

specification with verification.

This cannot go on forever, however: one of the primary aims of specifications, especially

formal ones, is to significantly increase the trust that users can put in software systems. So at

some point one has to get serious about the consistency of the specification.

Thus we now study the properties that must be proved to make sure that an M

specification is consistent. Such properties are of three kinds:

* invariant-transform consistency (transforms preserve invariants);

© constraint consistency (constraints are meaningful);

« constraint-effect consistency (effects are meaningful under the given constraints).

The rules given below imply relatively tedious proofs. The need for verifications of the

last two kinds should be considered in light of the ease of specification gained by the use of

partial functions. As opposed to other specification methods (e.g. the traditional way of dealing

with abstract data types, see(7,8]), the M specifier docs not have to clutter his system

description with special cases for “error elements” aysociated with each type. He can thus

concentrate on the meaningful properties of the specification. The price to pay for this

simplicity of expression is the need to check the consistency of the eventual specification (and to

correct possible oversights resulting from inadvertently using a function outside its domain). It

is expected that this latter process should be strongly supported by tools.

6.2 - Consistency of modular specifications

When defining consistency, we shall be talking in terms of a single, independent

specification; for specifications with interface paragraphs, the proofs described below need to be

performed on the composite specification resulting from combining the elements of the given

specification with all those it uses from other specifications.

Assuming the specification of S$ refers to T, we thus request as consistency proof for $a proof of the

composite specification combining the specification of S with all the elements it uses from T. It would

clearly be much preferable to separately prove the consistency of T and the conditional consistency of 5.

Further investigation is weeded un this problem, which is made non-trivial by the versatility of the

modular facilities of M.

6.3 - Notations

Consider a sort X. A function f on X (attribute or transform) may be modeled

mathematically as a possibly partial function of the form

xX = (¥ > 2)

where Y is a one-element set if f has no parameters, and Z is the same as X in the case of a
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transform.

We shall denote by C; the function defining the constraint on f; that is to say, Cy is of

the form

Cy :X —> (Y —> BOOL)

where BOOL is the set {true, false}. Function f is applicable to z and y if and only if

ze Cy ly]

has value true (note that we apply to Cy the same dissymmetric dot notation used for

attributes and transforms).

If f is a total function, then Cy is identically true. Otherwise, f appears in the constraints

paragraph with a clause of the form

zin domain {for yiff T, [z, y]

T, [z, y] must be expressed in terms of some of the attributes of z; in other words, I’y [z, yj is

of the form

Py [pom (y) te ay (y), o> ean, (y)}

where a, a, ~ are attributes on sort X. Let Attrib(Cy) be the set of attributes

{aj, @2, °° * Oy}, the set of all attributes on X that take part in the definition of the

constraint on f. Attrib (C;) is empty if f is total,

Similarly, if @ is an attribute on sort X and ¢ a transform on X that may change a, there

will be a line in the effects paragraph of the form

zet(yjea(z)=re Be ly, z]

"

where Hy.q is the function defining the effect of t on a. We denote by Aftrib(E, 4) the set of

attributes that appear in the expression for z» By, [y, z)-

Finally, for an invariant of the form z+ J (z), we write Attrib (1) for the set of attributes

that appear in I.

6.4 - Invariance properties

The first kind of properties to be checked is that the invariants are preserved by the

transforms.

Let ¢ be a transform on a sort X. The set of attributes on X that may be changed by ¢ is

given in the transforms paragraph. For each such attribute a, the effect FE, , of £ on a is given

in the effects paragraph; note that this clause is only valid when the application of the

transform and of the attribute is defined.

Denote by ALLINV the conjunction of all the invariants involving attributes on sort X.

Let I be one of these invariants, involving ¢ (and possibly other attributes on X). J appears in

the invariants paragraph under the form

zeI (2)

with implicit universal quantification oa z and 2.

To say that transform ¢ is consistent with the invariants means that for any such

invariant J, whenever an element z satisfies ALLINV (thus, in particular, [) and ¢ is applied to

z, the resulting element z « ¢ (y) satisfies [.

This property is only required to hold when the transform is applicable, i.e. when the

constraint Q; holds on z. Hence the first law of consistency:
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Invariant-Transform Consistency Rule

For any sort X, any invariant / involving elements of X and any transform ¢ on X,

the following must hold:

Vaya(zeG ly) A (Wer zel(z))) => tohe (yz)

where z«/, , (y,z) is the expression obtained by substituting, for every attribute @ €

Attrib (1), 2» Ey.o.ly,2} for z+ a(z) in 2» I(2).

As an example, let us consider invariant i; of the above example specification and prove

that it is preserved by transform make_global, The invariant is

ty: 90 globfile (s« globname (f)) =f;

The property to be proved is:

V s€ STATE, f’ € FILE, 9 € GLOBAL_NAME,

(Cnate-gebaill’, 9] A (Wf € FILE, ALLINV)) => i

where ¢ is ¢; with s « make_glodal (f’, g), as obtained from the effects paragraph, substituted

for s. In other words, #3 is

s’« globfile (2’s globname (f)) =f

where

s'= s+ make_global (f', g)

Let ths be the left-hand side of #3. We have

the = ss globfile (')

with g’= 96 make_global (f’, 9)» globname (f)). The effect Encte sosel. glotnane gives that

g'=if f= /f' then g else #4 globname (fend if

Thus, factoring out the conditional expression, we get:

the = if f= f’ then 4’ globfile (g) else 2’ globfile (s+ globname ({)) end if

The value obtained in the then clause is

s« make_global (f’, 9) + globfile (9)

that is to say f’, according to the eflect Enna . globfie-

The value obtained in the else clause is

3+ make_globat (f', g)+ globfile (e» globname (f }}

that is to say, applying Emote pltet, slosple 888in:

if g = s+ globname (f) then f'else s« globfile (3+ globname (f)) end if

where the second case is just f because of the presence of invariant iy in the hypothesis. Thus

we get the following expression for the left-hand side ths of 3 (which we must prove is equal to

f):
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if f=’ then /’

else if g = s+ globname (f) then /?

’ else f

end if

The value of this expression is f in the first and third cases, But the condition for the

second case, namely g = 3+ globname ({), is contradictory with the constraint on s+ make_globa!

(f', 9), a8 defined in the constraints paragraph:

not s+ used_globname (9)

when one takes into account the invariant i;':

« used_globname (s« globname (f)}

Thus the value of ths is f in all legal cases, which concludes the proof that transform

make_global preserves invariant iz.

Note that as evidenced by this example, it is necessary in general to include the relevant

constraints and all the invariants in the hypotheses for invariant preservation proofs.

A proof such as the above one (for just one transform and one invariant!) is not difficult

but tedious; supporting tools are obviously required.

6.5 - Constraint consistency

The constraint consistency rule ensures that constraints are meaningful as given in the

specification.

The problem here is that the constraint on a transform or attribute may be defined in

refcrence to one or more attributes, some of which may be partial, This is quite clear in the
example discussed above: the constrainls on attributes owner and key as well as those on

transforms copy and take refer to taken, itself a partial attribute. Thus the problem arises of

whether the constraints define anything at all.

This problem is solved by imposing a strict order on constraints.

Constraint Consistency Rule

Consider the relation © defined as follows:

f &©g it and only if the constraint on f refers

to g (where f is an attribute or a transform

and g an attribute).

Then the relation ©) must be acyclic.

This rule (which ig indeed satisfied by our example of section 4), must be understood

together with the convention defined in section 4.7: in the predicate defining @ constraint, any

subpredicate involving a partial function is considered false outside the domain of that

function.

‘This corresponds to a special logic for dealing with undefinedness, different from the ones

examined in [3|, with the following truth tables.

4 ft may be worthwhile to mention that we had initially overlooked the need for |nvariant 1, It is only when
trying to prove the invariance of fg that we realized the invariant now called #5 was required to carry our this

proof, as shown here.
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The symbol L denotes the result of applying a function outside of its domain.
The first two tables (for equality and inequality) apply to a simple flat domain with

elements 0, 1, 2, L and can be generalized to any flat domain.

The next three tables (for and, or and not) are to be used for constraints involving

attributes that return boolean results. Such 2 boolean-valued attribute, usually total, is often

used in connection with a partial attribute, to serve as explicit characteristic function on the

domain of the latter: in our example, file_ezists plays this role for file_of_name, used_globname

for globfile and taken, teken for owner and key (but globname has a non-boolean attribute,

mode, for this purpose).
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The motivation for this seemingly strange logic should be clear. Logical expressions

appearing in constraints define the conditions under which a given function, say f, may be

applied. Since all the other properties of f (invariants and effects) are meaningless outside of

the domain of f, it is essential to know for sure that f is defined when we need it. Thus if the

constraint on f involvés another partial function, a conservative attitude ("when in doubt, say

nof') is taken: any condition that is not defined is considered to be false.

6.6 - Constraint-Effect Consistency

The last type of property to check relates to the eflects. The effect of a transform ¢ on an

attribute @ is given under the form

zetfyea(g)=reB, ly, 4

where ¢ and a may be partial functions, and the right-hand side is an expression that may also

invelve partial functions. The interpretation given in section 4.6 is that the effect is only

applicable when the left-hand side is delined; but then one should make sure that the right-hand

side is defined. This is the constraint-effect consistency problem.

Informally, the constraint-effect consistency rule expresses that whenever the constraints of

the specification imply that the left-hand side ze t fy) @ (z) ts defined, then they must also

imply that the right-hand side ze & , [y, 2 is defined.

In other words, if so Ly, [y, 4 is the condition for the left-hand side to be defined, and if z

«Ri [y, 4 is the condition for the right-hand side to be defined, the constraint consistency rule

is that

W a Y,% De Ly.aly,2] => rok, «f¥.2]

To refine this rule, we must examine more closely the conditions under which each side of

the "effect" specification is defined.

The right-hand side, z+ Ey, [y, a, is usually given by case analysis (as in the example

above; recall that the replace... form is an abbreviation for a conditional expression):

if ze Cond, (y, z) then z » Val, (y, z)

else if z+ Cond, (y, z) then t « Vals (y, 2)

else if z+ Cond,_, (y, z) then z « Val,_, (y, 2)

else z « Val, fy, 2)

end if

The condition for such a conditional expression to be defined is:

eRe ly a=

if ze Cond, (y, z) then z « Defined, (y, 2)

else if z+ Cond, (y, 5) then z « Defined, (y, z)

else if z+ Cond,_, (y, z) then z « Defined,_, (y, 2)

else z e Defined, (y, z)

end if'

where ze Defined, (y, z) is the condition for z « Val, fy, z) to be defined, obtained as the

conjunction of all the constraints z « Cq [y, z] for every attribute a € Atérsb (Val,} occurring in

the definition of the i-th alternative. This right-hand side is usually less formidable to determine

in practice that the above general form would suggest (an example is given below).
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We now examine the left-hand side of the "effects" specification for ¢ and a. This left-

hand side is a function composition (of t and a). A basic theorem on partial functions is that, if

f and g are two functions and & their composition (in this order), then

domain (h) = {a € domain (f} | £ (a) € domain (¢)}

Thus, for the left-hand side to be defined, two conditions must be met:

¢ The constraint on ¢, namely z« C, [y} ;

¢ The constraint on a, namely C,, but applied to the result 2’= ze ¢ (y) of applying the

transform. According to the notation introduced in section 6.3, this constraint may be

expressed as

I, [z's a, (z}, z’sag(z), +--+ 7e ny (z)]

This condition applies to z’, not z. It can be transformed into a condition on z, however,

by using the “effects” defined for ¢ and the attributes in Attrt) (T). The condition will be:

ze derived_constraint, , (y, z)=

r, [z 7 Ey a, ly, zh, re Ei ay (ys 2], ‘7 " De Erg, iv, all

The last consistency rule follows from this analysis.

Constraint-Effect Consistency Rule

For any sort X, any transform t on X, any attribute a changed by ¢, the following

must hold:

Wz, yz, te Lyely2] > 26 R, oly.zl

where

oF, , is the condition for EZ 4 to be defined, and

ocel,alyjz] = zeCraly] A xe derived_constraint, « (y, z)

and z e derived_constraint, , (y, z} is the expression obtained by substituting, for

every attribute a € Altrib(T,), 2 ¢ Zia [y.z| for z « a(z) in the expression I’, (...)

defining the constraint ze C, [z] on e.

As an example of the application of this rule, let us prove the constraint-effect consistency

of owner with respect to take in the above specification. Their effect clause may be expressed

as:

se take (9, f, u, k)+ owner (g'} =

if g = g’ then u

else 3« owner (g’) end if

(Recall that the replace... form is just an abbreviation).

The condition s ¢ Atate owner (9, /, U, &, g’| under which the right-hand side is defined

follows from the constraint on attribute owner:

ge Reake, ouner lg, Ve uy, k, g wi = (9 eg => Sse taken (9'))

The condition 8 ¢ Ligte owner (9, f, 4, *, g'}] under which the left-hand side is defined is of

the form

vr
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8 © Lute owner (Gif, 4, kgf =

ge Crake (9, ts u, k] and

sel Ig. fi us kg]‘take, owner

The first operand of the and is the condition under which take is applicable, namely:

8° Cre [9 f, ¥, kl =

(se globfile (g)« ftype = fs ftype and not (se taken (3 » globname (f)))

and nots » taken (9})

The second operand is the condition under which owner is applicable to the result of take,

namely, given s’= 3 take (g, f, u, k):

sok Ig, f, 4, k, g’/ = s'e taken (97)

To expand this condition, we apply the effect Exsie tazen Of take on taken, namely

,

take, owner

ge take (9, f, u, k)e taken = replace s « taken at g with true

and obtain:

geL (9, f, 4, &, og’) = if g’ = g then true else 50 taken (g’} end if
,

take, owner

It follows from this form that the validity of 3 © Ricke owner (9, /, &, &, g'| is implied by 5 «

L take, owner (9, f,u,kg ‘|; and thus by 3 © Leake, owner [g, fuk, g ‘| as well.
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7 - FROM SPECIFICATION TO DESIGN AND IMPLEMENTATION?

Once the specification paragraphs have been completed, it is possible to remain in the
same framework when going on to the next stages, design and implementation

The relative difficulty of producing @ complete specification (especially if the consistency
proofs are performed seriously) pays off at this point. As should be clear from the outline given
below, the existence of an adequate M specification provides strong guidance and help during
the design and implementation process.

As in the previous section, we consider the combined specification possibly resulting from
merging several descriptions.

7.1 - Design

The first non-specification paragraph is the design paragraph. By “design”, we mean here
“architecture”: the aim of this paragraph is to express the design decisions leading to a
decomposition of the software into modules.

Starting from the M specification, such a decision is very easy to express. The whole
description is based on the sorts; thus it suffices to distribute the sorts among modules, The
functions (attributes, transforms) will automatically follow since each has been attached to one
and only one.

Thus a typical design paragraph will have the form:

system S design

module MODULE_1 sorta

A;

B; -- ete. (names of sorts of the system)

end MODULE_1 sorts ;

_ module MODULE_2 sorts

Cj

D;

E; --ete.

end MODULE_2 sorts ;

module MODULE_S sorta

F; --ete.

end MODULE_$ sorts ;

end system design ;

This decomposition embodies the designer's architectural choices. Note that in a pure
object-oriented decomposition & la Simula or Smalltalk there will be exactly one sort per

§ This section benefited from suggestions by Mike Mansur. It is still in tentative formn.
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module. In general, however, the designer has some leeway in the assignment of sorts to

modules, The main criterion is to minimize the amount of intermodule communication.

7.2 - Importe

In order to evidence such communication, an imports paragraph may be written, that

spells out for every module the elements needed from other modules.

We will again rely on an example. Assume the above decomposition: MODULE_t is

responsible for sorts A and B, MODULE_2 for C, D and E, and MODULE_8 for F. Assume

that the attributes paragraph for the systern defincs attributes attrl, attr? and and attr9 on A,

attr{ on B, attrS on C and attré on B, as follows:

system S attributes

on A attributes

attr! : Btotal ; -- whether “totaf’ or "partial’ doesn’t matter for this discussion

attr2 (E) : D total ;

attrd : C total ;

end A attributes ;

on B attributes

attr, : A total ;

end 8 attribu

end C attributes ;

on E attributes

end E attributes ;

end system attributes ;

MODULE_1 is in charge of sorts A and B, thus of their attributes atirl, attr2, attr? and

attr4; because of the second and third, it needs access to sorts C, E and D, managed by

MODULE.2. Access to a sort does not necessarily mean access to the functions on that sort;

the most restricted kind of access just implies the ability to name elements of the sort as

arguments or results of a function (eg. here elements of sorts E and D in connection with

attr2). This type of access is not unlike using a “limited private” type from another module in

the programming language Ada.

Access to another module’s sorts is not, however, the only type of intermodule

communication that will be required once we consider not only the attributes but also the
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invariants, transforms and effects. Assume for example a transform transf on A, as follows:

system S transforms

on A transforms

transf (C) total change atirl, atir2 ;

end A traneforms ;

end system transforms ;

The effects of transform transf on attributes attr! and attr? are described in the effects
paragraph:

system 5S effecta

declare a: A,c:C,e:E,..;

Gs transf (c)» atirt = Brans ates [ey ¢f ;

as transf (e} + attr2 (e) = Eransy airs (4, ¢, ef ;

end system effects ;

; To define these effects, the expressions Brransf attr: 204 Evransf attra May need to refer to
attributes of objects ¢ and, in the latter case, e, for example attrS and attr6. MODULE_1 is in
charge of transf, a transform on sort A, and is thus responsible for its elects as well. in terms
of information flow, this means that MODULE_1 must have access not only to sorts C,D,E and
F,, but also to attributes attr5 and aitré. “

In the same fashion, the invariants pertaining to a certain sort may involve other sorts
and attributes and thus imply inter-module communication.

The imports paragraph is used to describe these access requirements, In the example, it
will have the form:

system S importa

on MODULE_1 imports

from MODULE_2 use C, D, E, attr, ..... d

from MODULE_8$ use F, attr6, ..... t

end M1 imports

end system imports ;

; There is no new information in the imports paragraph: it is a combined consequence of the
design paragraph and of the previous specification paragraphs. Thus the TM tools should be
able to synthesize the “imports”. In the absence of such tools, however, it may be useful to
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write this paragraph by hand since it gives interesting information on the structure of the

software.

7.3 - Implementation

The next step is to go to implementation®. Here the method may help in several ways.

The first application is the representation of data structures. A possible policy is to

represent every sort by the cartesian product of its simple attributes; in terms of the discussion

in section 1.1, this means going from an implicit to an explicit definition once the list of

attributes is frozen. {This list may result from combining several specifications if the modular

facilities of M have been used).

Take for example the POINT definition of section 1.1, with attributes rephrased here in

the LM notation:

system POINTS attributes

on POINT attributes

zt: REAL total ;

y : REAL total ;

z: REAL total ;

speed ; VECTOR total ;

end POINT attributes ;

end system attributes ;

If we decide that this list of attributes is complete, then we can proceed to the

implementation of POINTs as records:

type POINT =

record

Zr, y, 2: veal;

speed : VECTOR

end

If the structure of the simple attribute definitions is directly or indirectly recursive (c.g.

there is an attribute on A with values in B, and an attribute on B with values in A), then

pointers must be used. Thus the implementation paragraph will contain sections of the

following form, assuming the above example (where atirl and attr are attributes on A, yielding

results in sorts B and C respectively, with recursion in the first case):

8 The step called here “implementation” will result in a program which one may want to write in a language

("PDL" or “pseudocode") different from the programming language used for the final coding In such a case what

we call “implementation” is really the software lifecycle step known as “detailed design". a straightforward

translation step is needed to produce the executable program.
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system 5 implementation

implement A aa record ;

implement attr9 as C field ;

implement attri as B pointer ;

- +... more (see below)

end system implementation ;

Implementation clauses may also be written for non-simple attributes (those with
arguments} and for transforms. Let us first study the latter case. Transforms will be
implemented as procedures with side-effects on their first parameters, corresponding to the sort
"on" which each transform is defined. Here the specification provides guidance in the form of a
precise pre-and post-condition. Assume as previously a transform transf on sort A, defined in
the corresponding paragraph as

transf (C) total change atirl, attr? ;

The implementation part will then contain a clause of the form

implement trans/ as

procedure

(a:in out A;

¢:in C)

pre

Constrirensy and INV transf

poat

Eff transy ANG INV ransf

In this notation, Constriensy, INVs transe ONG EF 4 trongy ate boolean-valued expressions
(predicates) involving @ and c: Consttrangy i9 deduced from the constraint an transf in the
constraints paragraph; INV « wonsf i9 the conjunction of all the invariants that involve one or
more of the attributes on A that may be changed by the transform {atir{ and attr2 in our
example); and Effs trang is the conjunction of the relevant effects as delined in the effects
paragraph :

Thus the specification yields a very strict framework for building the various procedures
involved: the role of each procedure is precisely defined as a precondition-postcondition pair. All
that remains to be done is to write a procedure body that will satisfy this pair (of course this
may still require significant work).

Non-simple attributes (those with arguments) and will usually be implemented as
“functions” in programming languuge Lerininulogy, ie. value-relurning procedures with no side-
effects. Thus for attribute attr2 on A in the above example, i.e.

attr (E): D ;

the implementation paragraph will contain
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implement cttr2 as

function (a: in A; e:in £) return D

pre

Constraurpg and INV; and INV 4 qurs

post

INVp

where /NVg is the conjunction of all invariants on sort # and INVp is the conjunction of all

invariants on sort D, which the value returned by the procedure must satisfy.
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8- ON USING THE M METHOD

We now give some general guidelines that should be helpful to writers of M specifications’,

based in part on the experience gained through the modest (but non-zero) number of non-trivial

system specifications that have been written up to now in M.

8.1 - General form of a specification

As any (non-solitary) worker on formal specifications knows, any such specification usually

seem crystal clear to the person who has written it, and hopelessly obscure to anyone else.

Readability should thus be a basic concern. This is all the more important with a new method

such as M: many readers of a specification can be expected to have trouble both with the

notation and with the object domain of the specification (the real system being described).

The LM comment convention is the Ada one (a comment begins with two consecutive

hyphens and extends over the rest of the line). Comments are useful for explaining local details

of @ specification; they usually do not suffice, however, to make a complete specification really

understandable.

Thus when preparing a specification for human readers (as opposed to automatic analysis

tools, referred above as TM), it is in generally advisable to present it as an article, with French

language explanations® forming the bulk of the presentation and the formal material appearing

as inserts. Such inserts may be boxed, as in section 4 above; another acceptable solution is to

write formal elements on odd-numbered pages, with even-numbered pages serving as a running

commentary in natural language. The natural language text should serve both to comment on

the object domain (the system being described) and to explain how the M specification deals

with it.

8.2 - Incremental description

When trying to describe a system, either new or existing, one is often overwhelmed by the

amount of detail to be taken into account. The advice here is not to panic, but to focus on the

basic features first (like those that could be included in a beginner’s manual for the system al

hand), then add more and more features in an incremental fashion. The modular features of the

M method should help to make this a smooth process,

If you are specifying an existing system that you know well, you should design the overall

structure of the specification beforehand. In other words, you should plan the specification as a

set of "systems" in the M sense, each corresponding to a level of abstraction in the description of

the real system being modeled. [t is usually a good idea in this case to start out the

specification by writing the interface paragraphs of the successive M systems.

Sometimes, the informal documentation associated with a system may already distinguish between levels

of abstraction, thus easing the task of structuring the M specification, This is the case with such

examples as the T-layered ISO model for open interconnection of computer systems, the AGM Core

graphics library, etc.

7 Some of these rules obviously apply to other specifications methods as well,

8 English may in some cases be acceptable, as evidenced by this paper.
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8.3 - Completeness

A question often heard about specifications is "When do we know we have written

everything of significance?". There is obviously no general answer to this question, since

completeness of a specification could only be defined with respect to a formal list of the system's

functions, and that is precisely what the specification is about.

Some guidelines can be given, however. For example, although it is hard be sure that no

attribute or transform has been omitted, the method implies checking each transform and each

attribute on a given sort to determine whether the transform may change the value of the

attribute: this is an incentive to perform a systematic review of possible combinations. In

particular, one may see if there is any attribute not changed by any transform (not necessarily

an error, especially at an early stage in the specification process, but still definitely something to

look at).

The method also guarantees that once a transform has been declared to change an

attribute, the corresponding effect has to be included.

Finally, although one cannot guarantee that all relevant invariants have been included,

performing some of the proofs associated with the method will often reveal missing invariants.

This is part of our next tople, proofs.

8.4 - Proofs

The ability to prove properties of the specification is an essential feature of formal

methods, We have presented in section 6 the required proofs in M. Performing all these proofs

by hand is difficult. In the absence of adequate tools, it is still recommended to do as many

proofs as possible; this process reveals much about the system and will more often than not lead

to the discovery of errors or missing elements, as was the case with the example discussed in this

presentation (see the footnote in section 6.4).

8.6 - Attributes versus Transforms

The reader may have noted that the definitions given of attributes and transforms ure not
exclusive. We defined an attribute on a sort X as being, mathematically, a function

[:X X UX Uy X00 XU HY

whereas a transform on the same sort is a function

$:X¥XViK Ve + XV, > X

Nothing in the first definition precludes Y from being the same sort as X, so that any

transform may also be described as an attribute (the reverse, however, is not true in general),

Thus one may hesitate in some cases.

There is, however, a strong criterion for transforms which should help dispel the hesitation

in any particular case. A function may only be defined as a transform on X if one is able to list

precisely the attributes of X that this transform may change; although the exact way in which

each of these attributes is affected will only be given later (in the effects paragraph), one must

still be prepared to spell it out in full detail. If such a complete specification of the function's

effect cannot be given, then the function Is an attribute, not a transform.
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9- FURTHER WORK

As will be clear from this paper, there remains a lot of work to do on M. We list below
our main current focuses of attention.

9.1 - Concrete Syntax

The concrete syntax of the LM notation clearly needs some polishing. The language must
be defined more extensively. Some syntactic sugar is needed; for example, it should be possible
to define functions (attributes or transforms) with an infix syntax. Also, it may be useful to
define functional and relational operators (composition, transitive closure and the like) to avoid
the current restriction to low-level expressions of first-order predicate calculus in invariants,
eflects and constraints.

So far we have steadfastly resisted the temptation to add nice but non-essential syntactic
features, and plan to do so until the dust has settled on the fundamentals concepts.

It should be noted that the M method is, to a certain extent, independent fram the
particular notation (LM) presented in this paper. Other choices of specification languages could
still be compatible with the basic principles of M.

9.2 - Completeness of the notation

More important than syntactic extensions is the problem of whether all the facilities
needed to describe actual systems are present - in some form.

One construct, not used in the example of this paper, is most likely to be needed: a
constructor of the form

some zin X where re F end

where X is a sort and E a boolcan-valued expression, possibly involving attributes. Such an
expression denotes an element of the sort satisfying the given condition. Note that in
accordance with the "implicitness” essential to the M approach, one only specifies those
properties of z that are needed.

An important problem that needs further theoretical investigation is the intrinsic power of
the basic M semantic device: spelling out the effects of every transform on every attribute it
may change. There may be a need for more partial characterizations of a transform’s effect (by
properties resembling invariants, but involving transforms as well as attributes),

9.3 - Initialization

The formalism lacks a notion of system initialization. In particular, the consistency proofs
(section 6) should include not only invariance Proofs as given, but also proofs that the "initial"
elements (those given in the has clauses of the sort definitions) satisfy the invariants. There is
probably a need for an “initial” paragraph, describing properties of these initial objects:
properties such as the invariants called j, to 7, in the invariants paragraph of our example
(section 4.4), which are quite different in nature from the other invariants, would belong there.
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9.4 - Errors and partial functions

We think that partial functions are the right mathematical tool for dealing et

computations that may not always produce a normal result. However, the treatment o

abnormal cases and the notion of doppelginger function must be clarified.

9.5 - Tools

An essential aspect in making M (and other formal methods) practical is the need for

tools. We hope to be able to base an support system for M (TM) on two sets of software

engineering tools currently being developed: — ,

e Cépage, a general-purpose screen-oriented structural editor [11], which aw

adaptable to any new language, whether a programming language or a speci

language like LM;

e the Software Knowledge Base, a system [or configuration and project mansesmeT

which keeps track of the entities in a software project (called atoms Me ‘ relatio :

between these entities [13], and the constraints that must be satisfied by atoms an

relations.

9.6 - Theoretical Basia

More theoretical work is clearly needed. The position of "M theorctician-in-residence’ is

open,
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