THESE

présentée à

L'INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE

Service Commun de la Documentation INPL Nancy-Brabois

pour obtenir

LE DIPLOME DE DOCTEUR INGENIEUR
(Spécialité informatique)

par

DIDIER MERLE

Sujet

Service Commun de la Documentation INPL
Nancy-Brabois

CONTRIBUTION A L'ETUDE D'UN ANALYSEUR

DE MODELES A RESEAUX DE FILES D'ATTENTE

- ALGORITHMES DE CALCUL ET APPLICATIONS -

Soutenue le 16 Octobre 1978 devant la Commission d'examen composée de :

MM.

Claude PAIR

Président

Jean-Claude DERNIAME

Examinateurs

Jacques LENFANT

Dominique POTIER

Philippe de RIVET

Michel VERAN

D 136 035513 1

1978 MERLE D.

THESE

présentée à

L'INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE

pour obtenir

LE DIPLOME DE DOCTEUR INGENIEUR
(Spécialité informatique)

par

Service Commun de la Documentation INPL.

DIDIER MERLE

Nancy-Brabois

Sujet

CONTRIBUTION A L'ETUDE D'UN ANALYSEUR

DE MODELES A RESEAUX DE FILES D'ATTENTE

- ALGORITHMES DE CALCUL ET APPLICATIONS -

Soutenue le 16 Octobre 1978 devant la Commission d'examen composée de :

MM.

Claude PAIR

Président

Jean-Claude DERNIAME

Examinateurs

Jacques LENFANT

Dominique POTIER

Philippe de RIVET

Michel VERAN

Service Commun de la Documentation INFL Nancy-Symon

Je tiens à remercier,

Monsieur le Professeur Claude Pair, Président de l'INPL, de me faire l'honneur de présider le jury de cette thèse,

Monsieur Dominique Potier pour l'encadrement de qualité qu'il m'a prodigué en dirigeant ce travail,

Messieurs les Professeurs Jean-Claude Derniame et Jacques Lenfant qui ont bien voulu accepter de participer au jury,

Monsieur Philippe de Rivet pour toute l'aide et les conseils dont j'ai bénéficié,

et Monsieur Michel Véran avec qui ce fut un plaisir de collaborer.

Je remercie tous mes camarades de l'IRIA, Anne Schroeder, Marc Badel, Jacques Leroudier et Michel Scholl dont la compétence et l'amitié m'ont permis de travailler dans un environnement idéal.

Je tiens d'autre part à remercier les membres du Service "Evaluation des Performances", dirigé par Monsieur de Rivet, de CII-HB, et particulièrement Monsieur Jean-Paul Corré.

Je remercie enfin Madame Dominique Poulicet et toutes les personnes qui ont participé à la réalisation matérielle excellente de ce mémoire.

INTRODUCTION

CHAPITRE I - PRESENTATION DE QNAP

I - Introduction

II - Les méthodes de résolution

II.1 - Simulation

II.2 - Méthodes mathématiques exactes

II. 2.1 - Méthode d'analyse numérique d'une chaîne de Markov

II.2.2 - Méthode analytique BCMP

II.3 - Méthodes mathématiques approchées

II.3.1 - Méthode itérative

II.3.2 - Méthode de diffusion

III - Langage de description

III.1 - Description des stations

III.1.1 - Stations actives

III.1.2 - Stations passives

III.2 - Conditions d'exécution

III.3 - Contrôle de résolution

III.4 - Grandeurs calculées

IV - Exemples

IV.1 - Modèle de système interactif

IV.2 - Modèle de noeud de commutation de paquets

IV.3 - Modèle de gestion de disque

IV.4 - Modèle de système multiprogrammé à temps partagé

V - Conclusion

ANNEXES

CHAPITRE II - ALGORITHMES DE RESOLUTION DES RESEAUX DE TYPE BCMP

I - Introduction

II - Théorème de Baskett-Chandy-Muntz-Palacios

II.1 - Hypothèses

II.1.1 - Routage

II.1.2 - Processus d'arrivée au réseau

II.1.3 - Stations

II.2 - Théorème

II.2.1 - Taux d'arrivée

II.2.2 - Etats du système

II.2.3 - Probabilités à l'équilibre

II.3 - Conclusion

III - Algorithmes de calcul

III.1 - Réseaux fermés

III.1.1 - Calcul de la constante de normalisation

III.1.1.1 - Calcul des matrices H. et K.

III.1.1.2 - Calcul du produit G*K.

III.1.1.3 - Calcul de K_j dans le cas de dépendance globale

III.1.1.4 - Calcul du produit de convolution dans le cas d'une station à taux fixe

III.1.1.5 - Stations à serveur infini

III.1.1.6 - Algorithme général de calcul de la constante de normalisation

III.1.2 - Grandeurs élémentaires

III.1.2.1 - Cas général

III.1.2.2 - Cas des stations à dépendance globale

III.1.2.3 - Cas des stations à taux constant

III.1.2.4 - Nombre moyen de clients dans le cas d'une station à serveur infini

III.1.3 - Grandeurs diverses

III.1.4 - Problèmes d'implémentation

III.1.4.1 - Espace mémoire

III.1.4.2 - Contrôle des débordements

III.2 - Réseaux ouverts

III. 2.1 - Calcul de la constante de normalisation

III. 2. 2 - Grandeurs élémentaires

III. 2. 2.1 - Débits

III. 2. 2. 2 - Taux d'utilisation

III. 2. 2. 3 - Nombre de clients

III.3 - Réseaux mixtes

III.3.1 - Calcul de la constante de normalisation

III.3.1.1 - Stations à taux fixe

III.3.1.2 - Stations à serveur infini

III.3.1.3 - Stations à dépendance globale limitée

III.3.2 - Grandeurs élémentaires

III.3.2.1 - Sous-chaînes fermées

III.3.2.1.1 - Débits

III.3.2.1.2 - Nombre moyen de clients

III.3.2.1.3 - Taux d'utilisation

III.3.2.2 - Sous-chaînes ouvertes

III.3.2.2.1 - Débits

III.3.2.2.2 - Nombre moyen de clients

III.3.3.3.3 - Taux d'utilisation

III.4 - Généralisations

III.4.1 - Réseaux ouverts à taux d'arrivée externes constants, et à taux de service dépendant des classes

III.4.2 - Réseaux ouverts à processus d'arrivée globale

III. 4.2.1 - Constante de normalisations

III.4.2.2 - Probabilités marginales

III.4.3 - Réseaux ouverts à processus d'arrivée par sous-chaînes

III.4.4 - Réseaux fermés avec blocage

III.4.5 - Réseaux mixtes avec contraintes de population

IV - Conclusion - Exemples

IV.1 - Exemple de réseau fermé

IV. 2 - Exemple de réseau ouvert

IV.3 - Exemple de réseau mixte

ANNEXES

CHAPITRE III - APPLICATIONS

I - Introduction

II - Etude de robustesse de certaines hypothèses du théorème BCMP

II.1 - Stations PAPS avec classes de clients

II.1.1 - Le modèle considéré

II.1.2 - Résultats

II.2 - Stations PAPS à temps de service corrélés

II. 2.1 - Le modèle considéré

II.2.2 - Résultats

III - Etude d'un modèle de système informatique

III.1 - Introduction

III.2 - Le système étudié

III.2.1 - Architecture globale

III.2.2 - Mesures disponibles

III.2.3 - Problèmes posés pour la modélisation

III.3 - Les modèles étudiés

III.3.1 - Utilisation des données brutes

III.3.2 - Données corrigées

III.3.3 - Influence de la durée d'exécution des programmes en quadriprogrammation

III.4 - Conclusion

ANNEXES

CONCLUSION

BIBLIOGRAPHIE

INTRODUCTION

Les méthodes quantitatives d'évaluation des performances des systèmes informatiques sont usuellement divisées en deux classes :

- les mesures sur le système réel :
 - matérielles,
 - logicielles,
- les modèles de systèmes, probabilistes ou déterministes, dont la résolution peut être obtenue par :
 - simulation,
 - des méthodes analytiques,
 - des méthodes statistiques.

Si des mesures sur un système réel en donnent une image très fine et permettent de diagnostiquer des erreurs ou des blocages, elles ne peuvent en général, ni expliquer ni a fatiori prédire son fonctionnement. Par contre, le but même d'une expérience de modélisation est de donner une image relativement simple et interprétable du système étudier et d'en déduire des résultats sur son comportement pour différentes charges ou dans de nouvelles configurations.

Cependant, ces distinctions ne doivent pas faire oublier les liens étroits qui existent entre ces deux approches. Nous pouvons noter en particulier les suivants:

- Les mesures sont nécessaires pour fournir des données à un modèle quel qu'il soit,
- Un modèle peut aider à préciser les mesures à effectuer sur le système réel en déterminant les paramètres clé de son fonctionnement.

Pour notre part, nous ne nous intéressons dans ce mémoire qu'à l'aspect modélisation des systèmes informatiques, et plus spécialement aux modèles mis sous forme de réseaux de files d'attente. Ce type de modèle correspond à une vue

le plus souvent assez naturelle d'un système informatique où les ressources (unité centrale, canaux, périphériques) sont représentés par des stations (dans notre terminologie une station est constituée de files d'attente associées à des serveurs) et où les différents utilisateurs de ces ressources (programmes, tâches, requêtes) définissent des populations de clients transitant à travers un réseau dont les noeuds sont ces stations. Il est clair que ce mode de représentation introduit une simplification du système réel qu'il reste à apprécier ponctuellement, et que nous ne traiterons pas ici.

Les qualités essentielles des modèles à réseaux de files d'attente, qui peuvent expliquer leur popularité actuelle, sont les suivantes :

- fournir une bonne représentation des phénomènes globaux régissant les systèmes informatiques,
- ceci à l'aide d'un modèle relativement intuitif et simple à définir,
- pour laquelle les données sont le plus souvent accessibles par des mesures assez peu sophistiquées (probabilités de transition, taux de service, etc...).

Par ailleurs, les progrès réalisés ces mernières années en théorie des files d'attente permettent de disposer d'un large éventail de techniques de résolution, approchées ou exactes, qui offrent des domaines d'application complémentaires. Il paraît donc intéressant de regrouper au sein d'un même outil l'ensemble de ces techniques afin d'en faciliter la mise en oeuvre. C'est cet objectif qui a conduit à la réalisation du produit logiciel QNAP (Queueing Network Analysis Package) dont nous présentons, dans ce mémoire, quelques aspects et des exemples d'utilisation.

QNAP fait l'objet d'un travail en coopération, aussi nous ne parlerons ici que des points pour lesquels l'auteur a apporté sa contribution. Ainsi le Chapitre I sera consacré à la présentation de l'aspect externe du produit :

- les différentes méthodes de résolution proposées,
- le langage de spécification de réseaux de files d'attente.

Le Chapitre II décrit en détail les algorithmes de calcul d'un module de résolution particulier basé sur les théorèmes établis par Baskett-Chandy-Muntz et Palacios (BCMP). Cette méthode sera référencée dans la suite comme la méthode analytique BCMP. Enfin le Chapitre III est consacré à deux études illustrant l'utilisation de QNAP et des modules de résolution qu'il incorpore. Il s'agit tout d'abord d'examiner la robustesse de certaines hypothèses du théorème BCMP, puis de modéliser un système informatique réel.

CHAPITRE I

PRESENTATION DE QNAP

I - INTRODUCTION

QNAP peut être défini comme un outil de construction et de résolution de modèles à files d'attente. A cet effet, il est composé d'un ensemble de programmes FORTRAN pour lequel les données sont introduites par l'intermédiaire d'un fichier.

Ces données sont constituées à partir d'un langage de spécification qui permet de décrire :

i) la configuration du réseau:

selon notre terminologie, par ailleurs très classique, un réseau est composé d'un ensemble de stations (serveurs et file d'attente) à travers lesquelles transitent des clients selon un certain routage. Ces clients peuvent être réparties en plusieurs classes définissant des comportements différents.

ii) le traitement effectué au niveau de chaque station :

ce traitement peut être une simple consommation de temps (dans le cas d'analyse mathématique BCMP) ou mettre en jeu des mécanismes complexes décrits par un algorithme (synchronisation sur sémaphore, lancement d'activités parallèles, etc...).

iii) le programme contrôlant la résolution du réseau :

ce programme permet d'initialiser ou de modifier les paramètres du modèle d'activer les modules de résolution, d'enchaîner et de combiner des résolutions.

Ce langage de spécification sera brièvement présenté au paragraphe III de ce chapitre.

QNAP comprend d'autre part des modules de résolution que l'on peut diviser en trois classes:

- i) simulation à événements discrets,
- ii) méthodes mathématiques exactes :
 - méthode numérique d'analyse d'un modèle markovien,
 - méthode analytique BCMP,
- iii) méthodes mathématiques approchées :
 - méthode atérative,
 - méthode de diffusion.

Toutes ces méthodes permettent le calcul des grandeurs (taux d'utilisation, longueur moyenne de file d'attente, etc...) qui caractérisent à l'état stationnaire les stations qui composent le réseau. Ces méthode seront décrites succintement au paragraphe II de ce chapitre. La méthode analytique BCMP sera présentée plus longuement au chapitre II.

Les buts poursuivis par les concepteurs de QNAP sont essentiellement les suivants :

i) réduire le travail de programmation :

pour un modèle représenté sous la forme d'un réseau de files d'attente, le travail de programmation est réduit à l'écriture dans un langage simple de la structure et des caractéristiques du modèle.

ii) rendre transparent les méthodes de résolution :

chacun des modules de résolution peut être activé sans que l'utilisateur ait à se préoccuper dans le détail des fondements théoriques et des algorithmes de calcul de la méthode choisie. Cependant il doit être conscient des hypothèses de validité de cette méthode. Un effort de documentation du produit est entrepris à cet effet (notices d'utilisation, messages d'erreur clairs, etc...).

- iii) QNAP met en oeuvre des méthodes de résolution mathématiques qui sont en général moins familières que des méthodes de simulation, mais le plus souvent considérablement moins coûteuses du point de vue du temps de calcul et plus sûres quant aux résultats obtenus. A terme, il est projeté d'aiguiller automatiquement l'utilisateur vers la méthode de résolution la plus appropriée au modèle étudié, s'il le désire.
- iv) fournir un outil suffisamment souple pour permettre des études comparatives entre diverses méthodes. Son utilisation doit permettre de préciser les limites de chaque technique, sa précision et sa rapidité, et d'améliorer les algorithmes correspondants. D'autre part QNAP permet la résolution en une seule étape de modèles complexes faisant intervenir des réseaux imbriqués (modélisation hiérarchique, méthode de décomposition).

II - LES METHODES DE RESOLUTION

II.1 - Simulation

Il s'agit d'un programme de simulation de type "événements discrets" [LeP76], conçu et réalisé par M. Véran. Le noyau de synchronisation, écrit en FORTRAN, suit la même philosophie, que celui de FORTSIM [BaV76]. Ce module permet de simuler des modèles, sous forme de réseaux de files d'attente, spécifiés à l'aide du langage de description utilisé dans toute son extension.

Nous trouvons par exemple :

- . des opérations de synchronisation entre stations (synchronisation sur sémaphore, sur drapeaux),
 - . la création d'activité parallèles (création de clients fils),
 - . la manipulation d'attributs liés aux stations ou aux clients,
 - . la création d'objets structurés.

Notons d'autre part que les générateurs de nombre aléatoires disponibles permettent de tirer les lois classiques (exponentielles, Erlang, hyperexponentielles, etc...) et en outre de générer des nombres aléatoires correllés [Bad77].

L'un des problèmes importants à régler pour conduire correctement une simulation est le contrôle de la précision des résultats obtenus. Dans la version actuelle de QNAP un intervalle de confiance est calculé pour les taux d'utilisation des serveurs par la méthode des blocs [Con63] et édité conjointement avec la grandeur elle-même. L'extension du contrôle de précision est envisagé pour toutes les grandeurs calculées. Les calculs pourront être effectués par la méthode des blocs ou celle des points de régénération [Cr174].

II.2 - Méthodes mathématiques exactes

II.2.1 - Méthode d'analyse numérique d'une chaîne de Markov

Cette méthode s'applique lorsque le modèle peut être défini par une chaîne de Markov du premier ordre à nombre fini d'états. Le principe de la méthode consiste à construire la matrice de transition de la chaîne de Markov associée au modèle puis à calculer le vecteur propre associé à la valeur propre dominante.

La matrice de transition est construire en déterminant, pour chaque état pris individuellement, vers quels états une transition est possible en un seul intervalle de temps. Le nombre d'états peut être grand, mais la matrice de transition est habituellement creuse. Dans QNAP seuls les éléments non nuls sont conservés, ainsi que leur position dans la matrice.

Le vecteur des probabilités à l'équilibre est calculé à l'aide d'algorithmes itératifs efficaces, adaptés à ce type de problème [Ste78]. Ce vecteur est utilisé pour calculer les probabilités d'état marginales de chaque station et les grandeurs qui en dérivent.

Ces algorithmes sont issus du programme d'analyse de chaînes de Markov MARCA de W.J. Stewart [Ste76] pour lequel un sous-programme d'interface a été écrit.

Le champ d'application de cette méthode est très vaste. Nous pouvons ainsi introduire dans un réseau les éléments suivants :

- des distributions de temps de service de type Erlang, hyperexponentiel,
- des taux de service, ou des probabilités de transition dépendant de l'état du système,
- des transitions instantanées qui permettent d'introduire des mécanismes de synchronisation entre stations.

Les limites inhérentes à ce type de résolution proviennent en pratique de la multiplication des états de la chaine de Markov dès que le modèle atteint une certaine complexité. L'espace mémoire disponible limite alors la taille des modèles que l'on peut traiter. De même le temps de calcul peut devenir prohibitif. Il reste que cette méthode peut dans de nombreux cas remplacer avantageusement une simulation lorsque les autres méthodes mathématiques ne sont pas applicables. C'est d'autre part un outil de recherche très appréciable.

II.2.2 - Méthode analytique BCMP

Pour la méthode précédente, la difficulté des calculs provient donc d'une part, du dénombrement des états de la chaine de Markov associée au modèle, d'autre part, du calcul numérique des probabilités d'état stationnaires.

Un certain nombre de résultats théoriques sur des réseaux particuliers permettent d'obtenir de façon explicite ces probabilités stationnaires. Ces résultats ont été en particulier présentés par Baskett-Chandy-Muntz et Palacios [BaC75]. Nous les exposerons en détail au chapitre II, et ne donnerons ici que leurs principales conditions d'application.

Nous considérons des réseaux ouverts, fermés ou mixtes de files d'attente pour lesquels le routage est défini par une matrice de transition fixe $P = ((p_{\texttt{ir}}\;;\;j_{\texttt{s}})) \;\; \text{qui définit une chaine de Markov du premier ordre } (p_{\texttt{ir}}\;;\;j_{\texttt{s}}\;\; \text{est} \;\; \text{la probabilité constante pour qu'un client de classe r ayant achevé d'être servi à la station i rejoigne la station j en passant en classe s). Les stations composant le réseau sont de quatre types pour lesquels le service est réduit à une consommation de temps :$

- type 1 : station FIFO monoserveur - la distribution du temps de service est exponentielle identique pour chaque classe de clients.

- type 2 : station "processeur partagé" (limite du round-robin lorsque le quantum tend vers zéro), monoserveur. La distribution des temps de service et de type Cox [Cox55], éventuellement différente pour chaque classe.
- type 3 : station LIFO avec préemption et reprise, monoserveur. La distribution des temps de service suit le même modèle qu'une station de type 2.
- type 4 : station à serveur infini (délai pur). Il existe autant de serveurs que de clients succeptibles de requérir du service (pas d'attente). La distribution des temps de service est de type Cox, identique pour chaque serveur, éventuellement différente pour chaque classe.

Pour des réseaux ouverts ou mixtes, le ou les processus d'arrivée au réseau sont poissonniens.

Ces hypothèses vérifiées, et si $E = (N_1, N_2, ..., N_I)$ est un état du réseau (I est le nombre de stations, N_i un état d'une station i) le théorème établit que :

 $P(E) = \frac{1}{C} d(E) \prod_{i=1}^{I} f_i(N_i)$

dans les expressions $f_i(N_i)$ n'apparaissent que les probabilités p_{ir} ; js et les taux de service de la station i (ce qui rend inutile la détermination éventuelle des moments d'ordre supérieur à l des distributions). D'autre part, la forme produit de l'expression de P(E) que nous expliciterons au Chapitre II permet des calculs efficaces et rapides dont nous exposerons les algorithmes dans ce même chapitre II.

II.3 - Méthodes mathématiques approchées

II.3.1 - Méthode itérative

Une importante limitation de la méthode mathématique BCMP est de ne pas accepter le cas de réseaux qui comportent des station FIFO à lois de service générales. Cette restriction est lévée par des méthodes itératives [ChH75] dont celle réalisée par R. Marie [Mar78].

Les hypothèses de validité sont analogues à celles présentées pour la méthode analytique BCMP (avec cependant une seule classe de clients) mais incorporant des station FIFO multiserveurs dont la distribution des temps de service est de type de Cox (ce type de station est usuellement noté M/K/n si le processus d'arrivée est markovien).

Le principe de la méthode pour un réseau constitué de stations du type M/K/l est le suivant [Mar77] :

L'hypothèse de base consiste à supposer le réseau (noté R) équivalent (au sens de l'identité de la distribution des probabilités d'état stationnaires) à un réseau de type BCMP ayant la même structure et pour lequel le taux de service de chaque station i (soit u_i) dépend du nombre de clients dans la station soit :

 $u_i(n_i) = u_i^0 b_i(n_i)$ où u_i^0 est le taux de service nominal, b_i une fonction positive.

Ce taux de service est calculé par itération successives de la manière suivante :

à l'étape (k) des itérations le taux de service pour une station i et déterminé par :

$$u_{i}^{(k)}(n_{i}) = a_{i}^{(k-1)}(n_{i}^{-1}) \frac{p_{i}^{(k-1)}(n_{i}^{-1})}{p_{i}^{(k-1)}(n_{i})}$$

où : $a_i^{(k-1)}(n_i^{-1})$ est le débit à la station i d'un réseau $R_i^{(k-1)}$ de même structure que $R^{(k-1)}$ et où la station i est remplacée par une station de taux de service infini, avec n_i^{-1} clients dans ce réseau.

 $p_i^{(k-1)}(n_i)$ la probabilité stationnaire d'une station M/K/i de taux de service u_i^0 soumise à un flux d'arrivée de taux dépendant de l'état $a_i^{(k-1)}(n_i)$.

L'arrêt des itérations est réalisé en calculant la somme des nombres moyens de clients dans chaque station et en vérifiant les équations de Chang-Lavenberg [ChL72].

La méthode a donné de très bons résultats avec en général un nombre assez faible d'itérations.

II.3.2 - Méthode de diffusion

Cette technique est basée sur l'utilisation de résultats concernant les chaines de Markov à temps continu et espace d'état continu pour étudier des chaines de Markov à temps continu et espace d'état discret. Son application aux réseaux de files d'attente permet de traiter des modèles admettant les hypothèses retenues au paragraphe précédent étendues aux réseaux multi-classes [GeP77].

Schématiquement, le calcul se déroule en trois phases :

- i) calcul pour chaque station du réseau des deux premiers moments de la distribution du nombre total d'arrivées à la station, en supposant par hypothèse que le processus décrivant le temps des intersorties est un processus de renouvellement.
- ii) pour chaque station, appliquer à la distribution du nombre de clients une équation de diffusion dont les paramètres sont calculés en i) (les méthodes présentées en [Gel75] et [Kob74] se distinguent essentiellement par les conditons aux limites imposées à l'équation de diffusion).
- iii) discrétisation de la distribution obtenue en iî) pour obtenir les probabilités marginales à l'état stationnaire de chaque station et en déduire les statistiques habituelles.

III - LE LANGAGE DE SPECIFICATION

Nous présentons dans ce paragraphe les traits principaux du langage de specifications de QNAP réalisé par M. VERAN. Pour une définition plus complète de sa syntaxe et de ses possibilités, nous renvoyons le lecteur au Manuel d'utilisation [Ver77]. Le langage est composé de commandes qui correspondent aux deux fonctions déjà citées :

- i) description statique d'un réseau de files d'attente,
- ii) contrôle de résolution.

Le vocabulaire utilisé est le vocabulaire classique de la théorie des files d'attente. L'écriture d'un programme à l'aide du langage de spécification de QNAP est facilitée par l'utilisation d'un format libre et l'existence généralisée d'options par défaut. La liste complète des commandes est donnée en Annexe I.1. Nous détaillons ci-dessous les plus significatives d'entre elles. Leur utilisation est illustrée par plusieurs exemples au paragraphe IV.

III.1 - Description des stations

La commande /STATION/ permet de décrire chaque station du réseau, en indiquant à l'aide de paramètres (mots-clé) ses caractéristiques et les liaisons entre stations. Une station se compose d'une file d'attente associée à un ou plusieurs serveurs (station active) ou associée à un sémaphore ou une ressource (station passive).

III.1.1 - Stations actives

Les paramètres associés à une station active sont :

- NAME : identificateur de la file associée,
- SCHEDULING : politique de gestion de la file :
 - discipline de rangement des clients dans la file,
 - discipline de service,
- TYPE : type de la station :
 - MULTIPLE (n) : n nombre de serveurs associés,
 - DELAY : retard pur,
 - GEN : générateur de clients,
- INIT : nombre initial de clients dans la file,
- TRANSITION: ce paramètre précise la ou les destinations possibles d'un client au sortir de la station en fonction de la classe à laquelle il appartient. Il indique les probabilités de transitions associées ainsi que les changements de classe éventuels.

- SERVICE : description des opérations de service provoquées par la prise en charge d'un client par un serveur. Il peut s'agir non seulement de consommations de temps mais en outre d'opérations plus complexes telles que :
 - . opérations de synchronisation,
 - . lancement d'activités parallèles, etc...

Ces opérations de service sont définies au moyen d'un algorithme écrit dans un langage de type ALGOL.

- LOAD : ce paramètre qui n'est utilisable qu'en résolution mathématique, permet d'introduire des coefficients multiplicatifs du taux de service, liés au nombre de clients dans la file.
- MAX : nombre maximum de clients dans la station (files à capacité limitée).

Remarque:

Dans le cas des paramètres INIT, TRANSITION, LOAD, MAX, la valeur prise par le paramètre n'est pas nécessairement définie par une constante (numérique ou alphanumérique), mais peut l'être par l'intermédiaire de <u>variables</u> dont la valeur courante est évaluée lors de la phase d'exécution du programme de contrôle de résolution (voir la commande /EXEC/ du paragraphe III.3).

Exemple 1:

```
/DECLAR/QUEUE A,B;
/STATION/NAME=A;TYPE=GEN;
TRANSIT=B;SERVICE=CST(20);
/STATION/NAME=B;
TRANSIT=OUT,0.8,B;
SERVICE=EXP(10);LOAD=1,2,3;
```

Toutes les 20 unités de temps un client est émis de l'extérieur vers la station B où il est traité pendant une durée distribuée suivant une loi exponentielle de moyenne 10, 5, 3.333, 3.333, etc... s'il y a 1, 2, 3, 4, etc... clients dans la station. A la fin du service le client sort du réseau avec une probabilité 0.8, ou est réinjecté dans la station B avec la probabilité 0.2.

Exemple 2:

/DECLAR/QUEUE A,B,C;CLASS C1,C2;REAL T,N,PB,PC;
/STATION/NAME=A;
SERVICE(C1)=CST(T);SERVICE(C2)=EXP(10);
INIT(C1)=N;INIT(C2)=10;
TRANSIT(C1)=B(C2);
TRANSIT(C2)=B,BP,C,PC;

Après qu'un client ait été servi à la station A, il est dirigé vers la station B avec la classe C2 s'il appartient à la classe C1, où dirigé vers B ou C sans changer de classe avec les probabilités PB et PC s'il appartient à la classe C2. Toutes les variables introduites sont initialisées au niveau de la commande /EXEC/.

III.1.2 - Stations passives

Les stations passives (ressources ou sémaphores) permettent de réaliser des opérations de synchronisation entre stations par l'intermédiaire des primitives classiques P et V. Ce mécanisme n'est disponible que pour un modèle simulé (dans le cas d'une résolution par analyse numérique, les conditions de synchronisation doivent être décrites explicitement).

Une ressource ou un sémaphore est constituté d'une file et d'un compteur d'unités disponibles. Les paramètres associés sont les suivants :

- NAME : identification de la file,

- SCHED : politique de gestion de la file,

- VALUE : valeur initiale du compteur,

- TYPE : type de la station (RESOURCE ou SEMAPHORE).

Contrairement à une ressource, un sémaphore n'est pas un objet physique et un client n'en est pas propriétaire. En conséquence un client peut effectuer une opération V sur un sémaphore sans avoir au préalable effectué d'opération P

sur celui-ci. À l'inverse un client ne peut libérer une unité de ressource que s'il a obtenu cette ressource auparavant.

Par ailleurs, il existe d'autres mécanismes de synchronisation permettant par exemple la gestion d'activités parallèles.

Exemple 3:

```
/DECLAR/QUEUE A,B,S;
/STATION/NAME=A;
SERVICE=EXP(6);P(S) END;
TRANSIT=B;INIT=5;
/STATION/NAME=B;
SERVICE=BEGIN EXP(4);V(S) END;
TRANSIT=A;
/STATION/NAME=S;TYPE=SEMAPHORE;
VALUE=3;
```

La station B a une capacité limitée à 3 clients. Quand la station B est saturée, le serveur A est bloqué.

III.2 - Conditions d'exécution

Les commandes /SIMUL/ et /COMPUTE/ sont utilisées pour préciser les conditions d'exécution des méthodes de résolution. Les modules de résolution sont activés au niveau de la commande /EXEC/ par des primitives spécifiques.

Exemple 4:

```
/DECLAR/QUEUE A, B; REAL TAB(6); ...
/COMPUTE/METHOD=ANALYTIC;
INIT(C1)=1; INIT(C2)=5;
MARGINAL=A(TAB), B;
/EXEC/COMPUTE;
```

Le modèle est étudié pour l client en classe Cl et 5 clients en classe C2 par la méthode analytique BCMP. Les probabilités marginales pour les stations A et B sont calculées, et celles de la station A sont stockées dans le tableau TAB.

Exemple 5:

```
/DECLAT/QUEUE CPU;...
/STATION/NAME=CPU;...
/SIMUL/TMAX=10000; MESURE=200;
TEST=BEGIN
IF CPU.NBOUT>500
THEN BEGIN
PRINT("STOP");
STOP
END
END;
```

le paramètre TMAX indique la longueur de la simulation, tandis qu'un processus de mesures, active toutes les TMAS/MESURE unités de temps, recueille des statistiques sur les station du réseau. Le paramètre TEST active une séquence d'instruction à chaque processus de mesure. Dans l'exemple ces instructions déclanchent l'arrêt de la simulation lorsque le nombre de passage à la station CPU est supérieur à 500 (NBOUT est un attribut standard de la classe interne QUEUE).

III.3 - Contrôle de résolution

La commande /STATION/ permet la description de la structure d'un réseau de files d'attente. Le contrôle de la résolution du modèle ou des modèles ainsi décrits est assuré par la commande /EXEC/.

Les fonctions principales de cette commande sont les suivantes :

i) initialiser les variables paramètrant le modèle : cette initialisation s'effectue par le biais d'un langage algorithmique simple qui comprend d'une part des instructions de style ALGOL, d'autre part une bibliothèque de fonctions (générateurs de nombres aléatoires, impression de variables, etc...).

- ii) lancer les modules de résolution : au moyen de primitives spécifiques à chaque méthode (SIMUL, COMPUTE, MARCA...)
 - iii) modifier les variables ou le réseau et enchainer les résolutions.
- iv) sélectionner éventuellement un sous-réseau : cette fonction, assurée par la primitive NETWORK(.), permet de limiter la résolution à un sous-réseau et de permettre ainsi le traitement de modèles hiérarchiques ou décomposables.

Exemple 6:

```
/DECLAR/QUEUE S1,S2;
        INTEGER N; REAL R1, R2;
/STATION/NAME=S1;
         SERVICE=ERLANG(10.0,2); TRANSIT=S2;
         INIT=N:
/STATION/NAME=S2;
         SERVICE=EXP(20.0); TRANSIT=S1;
/COMPUTE/INIT=N;
/SIMUL/TMAX=10000; MESURE=200;
/EXEC/BEGIN
      N:=1:
      WHILE N<=10 DO
      BEGIN
      COMPUTE; R1:=S1.MBUSY;
              R2:=S2.MBUSY;
      PRINT("ECART ABSOLU", R1-R2);
      PRINT("ECART RELATIF", (R1-R2)/R2);
      N := N+1
      END
      END;
/END/
```

Dans cet exemple nous voulons étudier la robustesse d'un modèle analytique BCMP relativement à l'hypothèse exponentielle pour une station FIFO. La solution exacte est obtenue par analyse numérique markovienne (bien qu'erronnée pour la méthode d'analyse BCMP, le réseau sera traité, après impression d'un message d'erreur, en supposant que la station S1 est processeur partagé). Le modèle est traité pour un nombre de client variant de 1 à N. A chaque pas on calcule et

on imprime les écarts absolus et relatifs sur les taux d'utilisation de la station SI (MBUSY est un attribut de la classe interne QUEUE).

III.4 - Les grandeurs calculées

Les grandeurs calculées de façon standard par chacune des méthodes de résolution sont, pour chaque station :

- le temps moyen de service (SERVICE),
- le taux d'utilisation (BUSY PCT),
- le nombre moyen de clients dans la station (CUST NB),
- le temps moyen de résidence (RESPONSE),
- le débit (THRUPUT).

D'autre part, en fonction de la spécificité des méthodes employées, des résultats supplémentaires sont produits dont en particulier :

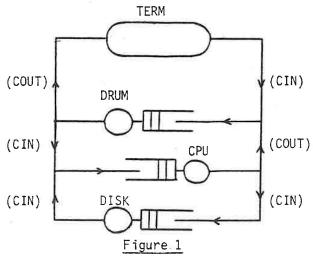
i) en simulation :

- intervalles de confiance sur les taux d'utilisation,
- temps moyen de blocage d'une station (attente d'une ressources, etc...),
- nombre total de clients ayant quitté la file associée,

ii) en analyse markovienne:

- des indications sur la précision des calculs,
- sur les états de la chaine de Markov,
- sur option les probabilités marginales d'état d'une station.

iii) en analyse mathématique BCMP :


- toutes les statistiques sont calculées par classe de clients,
- pour les réseaux fermés on peut obtenir sur option les probabilités marginales d'état d'une station, pour chaque classe et globalement, ainsi que la variance du nombre de clients dans la station.

IV - EXEMPLES

IV.I - Modèle de système interactif : usage de classes de clients

a) Présentation du problème

Considérons un système constitué d'un ensemble de terminaux (TERM) d'une unité centrale (CPU), d'un tambour de swapping (DRUM) et d'un disque fichier (DISK) comme représenté sur la figure 1 :

Nous supposerons d'autre part que :

- un client provenant d'un terminal est dirigé sur l'unité centrale après passage par le tambour,
- un client provenant de l'unité centrale et accédant au tambour est ensuite dirigé vers un terminal.

Ce comportement peut être modélisé en introduisant deux classes de clients (CIN et COUT) telles que CIN soit la classe d'un client qui entre dans le système à partir d'un terminal, COUT la classe d'un client qui sorte de l'unité centrale pour se rendre à un terminal. Ce modèle permet de connaître, suivant les caractéristiques des unités et le nombre de terminaux, le débit du système et les taux d'utilisation des unités CPU, DRUM, DISK.

b) Spécification du modèle dans le langage de QNAP

```
& MODELE DE SYSTEME INTERACTIF : USAGE DE CLASSES DE CLIENTS .....
/DECLAR/ QUEUE TERM, CPU, DRUM, DISK;
                                               & DECLARATION DES FILES
           CLASS CIN, COUT;
                                               & DECLARATION DES CLASSES
/STATION/ NAME=TERM; & TERMINAUX .....
 TYPE=DELAY;
                               & AUTANT DE TERMINAUX QUE DE CLIENTS
 SERVICE=EXP(5000); & DUREE DE SERVICE DISTRIBUEE SELON UNE LOI
& EXPONENTIELLE DE MOYENNE 5000
TRANSIT(COUT)=DRUN(CIN); & LES CLIENTS DE CLASSE COUT VONT DANS DRUM
                              & EN PASSANT DANS LA CLASSE CIN
/STATION/ NAME=DRUM; & TAMBOUR DE SWAPPING .....
           SCHED=PS:
 SERVICE(CIN)=EXP(100);
 SERVICE(COUT)=EXP(50);
 TRANSIT(CIN)=CPU:
                              & TRANSITION POUR LES CLIENTS DE CIN
 TRANSIT(COUT)=TERM;
                              & TRANSITION POUR LES CLIENTS DE COUT
/STATION/ NAME=CPU:
                          & UNITE CENTRALE .....
 SERVICE=EXP(20);
 TRANSIT(CIN)=DISK, 0.95, DRUM(COUT);
                              RUNCCOUI);
& TRANSITION VERS DISK
& AVEC LA PROBABILITE 0.95
& TRANSITION VERS DRUM ET LA CLASSE COUT
& AVEC LA PROBABILITE 0.05
/STATION/ NAME=DISK!
                          & DISQUE FICHIER .....
 SERVICE=EXP(20);
 TRANSIT(CIN)=CPU;
&---- PARAMETRISATION DE LA RESOLUTION -----
/COMPUTE/ METHOD=ANALYTIC:
                                & METHOD DEMANDEE : B.C.M.P.
           INIT(CIN)=18,28;
                                & ANALYSE AVEC 10 , PUIS 20 CLIENTS
&----- LANCEMENT EFFECTIF DE LA RESOLUTION -----
ZEXECZ COMPUTE:
```

c) <u>Résultats</u>

**** ANALYTIC RESOLUTION ****

****SUBCHAIN		NUMBER OF C		10			
*****	*****	****	********	*****	******	*****	
*							*
*QUEUE TERM	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CACTE	*
CLASS COUT	5000.	.9999	7.445	5000.	.1489E-02	1716.	-
*GLOBAL	5000.	.9999	7.445	5000.	.1489E-02	1716.	*
*							*
*QUEUE CPU	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CACFE	*
*CLASS CIN	20.00	.5955	1.191	40.01	.2978E-01	295.8	*
*GLOBAL	20.00	. 5955	1.191	40.01	.2978E-01	295.8	*
*		6					*
*QUEUE DRUM	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CACLE	*
	100.00	.1488	.1861	125.0	.1488E-02	6594.	*
*CLASS COUT	50.00	.7444E-01	.9307E-01	62.51	.1489E~02	6654.	*
*GLOBAL	75.00	.2233	.2791	93.76	.2977E-02	3265.	*
*							*
*QUEUE DISK	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CYCLE	*
*CLASS CIN	20.00	.5658	1.084	38.34	.2829E-01	315.2	*
*GLOBAL	20.00	.5658	1.084	38.34	.2829E-01	315.2	*
*							*
*****					*****	*****	***
****SUBCHAIN		NUMBER OF C		20			
*****	*****	*****	*****	****	*****	*****	
*							*
*QUEUE TERM	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CACLE	*
*CLASS COUT	5000.	1.0000	11.18	5000.	.2236E-02	3944.	*
*GLOBAL	5000.	1.0000	11.18	5000.	.2236E-02	3944.	*
*						dual e	*
*QUEUE CPU	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CACLE	*
*CLASS CIN	20.00	.8944	4.566	102.1	.4472E-01	345.1	*
*GLOBAL	20.00	.8944	4.566	182.1	.4472E-01	345.1	*
*							*
*GUEUE DRUM	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CYCLE	s#t
	100.00	. 2235	.3317	148.4	.2235E-02	8799.	**
*CLASS COUT	50.00	.1118	.1659	74.20	.2236E-02	8871.	*
*GLOBAL	75.00	.3353	.4976	111.3	.4471E-02	4362.	*
*							*
*QUEUE DISK	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CACTE	*
*CLASS CIN	20.00	.8497	3.755	88.40	.4248E-01	382.4	**
*GLOBAL	20.00	.8497	3.755	88.40	.4248E-01	382.4	塘
*							*
******					******	******	***
	BEEFE FULL	OF ANALYTIC	RESOLUTION	****			

IV.2 - Modèle d'un noeud de commutation de paquets

a) Présentation du problème

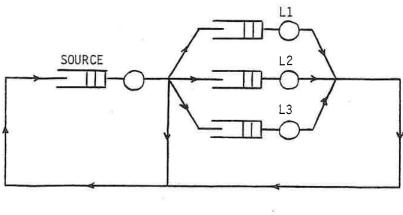


Figure 2

Le modèle représente le fonctionnement d'un noeud de commutation de paquets. Les paquets sont émis à partir d'une station SOURCE, et aiguillés, à leur arrivée au noeud de commutation, vers les lignes de sorties L1, L2, L3, avec des probabilités identiques.

Les paquets en attente derrière LI, L2, L3 sont stockés dans un nombre fini (NBUF) de buffers, à raison d'un paquet par buffer.

Lorsque l'ensemble des buffers est occupé, les paquets arrivant au noeud de commutation sont rejetés.

Les paquets transmis sur les lignes ou rejetés sont renvoyés vers la station SOURCE. Afin d'assurer que cette station se comporte comme une source infinie, c'est-à-dire qu'il y ait toujours au moins un paquet dans cette station, le nombre total N de paquets circulant dans le réseau est choisi tel que N > NBUF (il est facile de vérifier que la solution du modèle est indépendante de N pourvu que N > NBUF).

Le modèle permet de calculer le taux de rejet des paquets en fonction du taux d'arrivée des paquets (!/TSOURCE) de la vitesse des lignes, (1/TLINE), et de la capacité en buffers (NBUF). Il est résolu par analyse markovienne.

b) Spécification du modèle dans le langage QNAP

```
& NOEUD DE COMMUTATION ...
 /DECLAR/ QUEUE SOURCE, L1, L2, L3;
          REAL PLOST, PLINE;
                                 & PROBABILITES DE PERTE ET D'ENVOI
         REAL TLINE, TSOURCE:
          INTEGER NBUF;
                                 & NOMBRE TOTAL DE BUFFERS DISPONIBLES
                                 & HOMBRE DE CLIENTS DANS LE RESEAU
          INTEGER H;
/STATION/ NAME=SOURCE;
                                 & SOURCE DES PAQUETS SUR LE HOEUD ..
          INIT=N;
          SERVICE=BEGIN
                  EXP(TSOURCE): & PERIODE ENTRE ARRIVEES
                                 & TEST SI BUFFER DISPONIBLE ...
                  IF L(L1)+L(L2)+L(L3)(NBUF
                  THEN BEGIN
                                 & BUFFER LIBRE : ENVOI SUR UNE LIGHE
                       PLOST: =0;
                       PLINE:=1./3.;
                       END
                  ELSE BEGIN
                                 & BUFFERS OCCUPES : PERTE DU PAQUET
                       PLOST:=1;
                       PLINE: =0;
                       END;
                  END:
           TRANSIT=SOURCE, PLOST, L1, PLINE, L2, PLINE, L3;
/STATION/ NAME=L1; SERVICE=ERLANG(TLINE.2.0); TRANSIT=SOURCE;
/STATION/ NAME=L2; SERVICE=ERLANG(TLINE, 2.0); TRANSIT=SOURCE;
/STATION/ NAME=L3; SERVICE=ERLANG(TLINE, 2.0); TRANSIT=SOURCE;
ZEXECZ BEGIN
       TSOURCE: =10;
                               & PERIODE D'EMISSION DES PAQUETS
       TLINE:=30;
                               & DUREE MOYENNE DE TRANSFERT SUR LIGHE
                               & NUMBRE TOTAL DE BUFFERS DISPONIBLES
& NUMBRE DE CLIENTS DANS LE RESEAU
       HBUF:=4;
       N: =5;
       MARCA; & APPEL DE LA RESOLUTION NUMERIQUE ...
PRINT(" TAUX DE PERTE DANS LE NOEUD : ",
           1.-(L1.NTHRUPUT+L2.MTHRUPUT+L3.MTHRUPUT)/SOURCE.MTHRUPUT);
*** MARCA : MARKOV CHAIN ANALYSER ***
TOTAL NUMBER OF STATES = 129
NUMBER OF NON-ZERO ELEMENTS IN ARRAY A = 648
*QUEUE SOUR SERVICE
                       BUSY PCT
                                   CUST NB
                                              RESPONSE
                                                          THRUPUT *
*GLOBAL
            10.00
                       1.000
                                   2.017
                                              20.17
                                                        .10000
*QUEUE L1
            SERVICE
                       BUSY PCT
                                   CUST NB
                                              RESPONSE
                                                          THRUPUT *
*GLOBAL
            30.00
                       .6824
                                   . 9944
                                                         .2008E-01*
*@UEUE L2
            SERVICE
                       BUSY PCT
                                  CUST NB
                                              RESPONSE
                                                          THRUPUT *
*GLOBAL
            30.00
                        .6824
                                   .9944
                                              49.52
                                                         .2008E-01*
*QUEUE L3
            SERVICE
                       BUSY FOT
                                  CUST NB
                                             RESPONSE
                                                          THRUPUT *
*GLOBAL
            30.00
                       .6824
                                   .9944
                                              49.52
                                                         .2008E-01*
******************
NUMBER OF PREMULTS :
```

188

TAUX DE PERTE DANS LE NOEUD : .3976

IV.3 - Modèle de gestion de disque

a) Présentation du problème

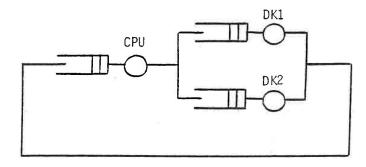


Figure 3

On considère un système constitué, comme représenté sur la figure 3, d'une unité centrale CPU, d'un canal unique CHANNEL, et de deux disques DKI et DK2 connectés à ce canal.

L'exécution des programmes sur cette machine est formée d'une succession d'intervalles d'exécution sur l'unité centrale de durée moyenne (TCPU), et d'opérations d'entrée-sortie exécutées avec des probabilités identiques sur DK1 et DK2.

Chaque disque n'utilise le canal que lorsque les mouvements de bras sont achevés et si le canal est libre. Le modèle est résolu par simulation. Les résultats obtenus permettent d'évaluer l'effet du partage du canal par les deux disques sur les performances.

b) Spécification du modèle dans le langage de QNAP et résultats

```
& MODELE DE DISQUE (SIMPLIFIE ) ...
/DECLAR/ QUEUE CPU, DK1, DK2, CHANNEL;
         REAL SEEK= 30;
                                  & DUREE MOVENNE DE DEPLACEMENT DE BRAS
         REAL SEEK= 30; & DUREE DE ROTATION
REAL ROTATION = 25 ; & DUREE DE ROTATION
         REAL TRANSFERT = 8 :
                                  & DUREE MOVENNE DE TRANSFERT
         INTEGER NO
                                  & NOMBRE DE CLIENTS ( PROGRAMMES )
                                   & UNITE CENTRALE
& DUREE ENTRE ACCES DISQUE
& ACCES EQUILIBRES AUX 2 DISQUES
/STATION/ NAME=CPU;
  SERVICE=EXP(20);
  TRANSIT=DK1.1.DK2.1;
                                   & NIVEAU DE MULTIPROGRAMMATION
  INIT=N;
/STATION/ NAME=DK1;
                                     & NODELE DE DISQUE ....
  SERVICE=BEGIN
                                    & DEPLACEMENT DE BRAS
& ( DISTRIBUTION EXPONENTIELLE )
          EXP(SEEK);
                                     & DEMANDE D'ACCES AU CANAL
          P(CHANNEL);
                                    & DELAI ROTATIONNEL
& ( DISTRIBUTION UNIFORME )
          UNIFORM(0.8, ROTATION);
                                     & TRANSFERT DE DUREE CONSTANTE
          CST(TRANSFERT);
                                     & LIBERATION DU CANAL
          V(CHANNEL);
          END;
  TRANSIT=CPU;
/STATION/ NAME=DK2; COPY=DK1;
                                    & DISQUE DK2 IDENTIQUE A DK1
                                    & CANAL ( STATION PASSIVE ) ...
/STATION/ NAME=CHANNEL;
          TYPE=RESOURCE;
                                     & LE CAHAL EST UNIQUE
          VALUE=1:
/SIMUL/ TMAX=500000;
                                     & DUREE DEMANDEE DE SIMULATION
         MESURE=500;
ZEXECZ BEGIN
                                      & NIVEAU DE MULTIPROGRAMMATION
       N:=18;
                                      & LANCEMENT DE LA SIMULATION
       SIMUL;
       END;
*** SIMULATION BEGINS ... ***
**TIME = 500000.00
* WAME *BUSY.PCT*CONF.INT*RESPONSE* SERVICE* BLOCKED*CUST NB *SERV NB *
*************************
* CPU * .661* .011* 38.964* 20.030* .000* 1.286* 16507*

* DK1 * .938* .011* 281.226* 56.046* 5.499* 4.707* 8368*

* DK2 * .906* .013* 246.152* 55.713* 5.615* 4.007* 8129*
                      .013* 246.152* 55.713*
.007* 26.083* 20.527*
                                                 5.615*
* CHAN *
                                                   .000*
                                                             .861*
            .677*
*************
*** END OF SIMULATION : TIME = 500000.00
```

IV.4 - Modèle de système multiprogrammé à temps partagé

a) <u>Présentation de problème</u>

Considérons le modèle de système multiprogrammé, temps partagé [PoL76, Bra74] dont l'architecture est schématisée par la figure 4.

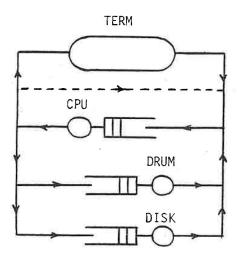
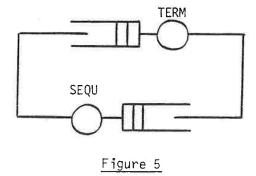


Figure 4

Le système est constitué de N terminaux interactifs (TERM), d'une unité centrale (CPU), d'un tambour supportant la pagination (DRUM) et d'un disque de fichier (DISK). Nous supposons que la distribution des temps entre défauts de page est une loi exponentielle dont la moyenne E est donnée par :

$$E = ALPHA(\frac{M}{n})^{K}$$
 (cf. [BeK69])


où M est la taille de la mémoire, n le nombre de programmes se partageant les ressources CPU, DRUM, DISK à un instant donné. On cherche à connaître le débit du système suivant les caractéristiques des unités, le comportement des programmes, et le nombre de terminaux connectés.

Le modèle est résolu de deux façons :

i) par une méthode de décomposition

La résolution directe par méthode BCMP de ce modèle n'est en effet pas possible car la loi de service de la station CPU ainsi que les probabilités de transition vers TERM, DRUM et DISK dépendent du nombre n de programmes en mémoire. Cependant, les interactions entre les terminaux et les autres unités étant faibles, le réseau est quasi-décomposable [Cou75] et nous pouvons alors remplacer l'ensemble CPU, DRUM, DISK par une station équivalente comme indiqué dans [Bra74]. Le taux de service TEQU(n), n = 1, 2,...,N de cette station équivalente sera obtenu en résolvant par BCMP le sous-réseau formé des stations CPU, DRUM, DISK avec successivement n = 1, 2,...,N programmes.

Le réseau constitué par les terminaux et la station équivalente (cf. Fig. 5) peut alors être résolu également par la méthode BCMP.

Nous procédons donc de la manière suivante :

Etape 1 : Nous sélectionnons le réseau CPU, DRUM, DISK par NETWORK (CPU, DRUM, DISK). Ce réseau est résolu pour un nombre n de clients variant de 1 à N en conservant dans un tableau TEQU les valeurs du taux de service pour la station équivalente.

<u>Etape 2</u>: Nous sélectionnons et résolvons le réseau réduit constitué par les terminaux (TERM) et la station équivalente (SEQU). Le débit du système complet est le débit de la station équivalente, ou de façon identique, celui de la station TERM.

ii) Par la méthode d'analyse markovienne

Dans ce cas, on résoud directement le réseau représenté sur la Figure 4. Le débit du système complet est le débit de la station TERM.

b) Spéficification et résolution du modèle par méthode de décomposition

Etape 1

```
& MODELE DE SYSTEME MULTIPROGRAMME ...
/DECLARATION/ QUEUE CPU.DRUM.DISK.TERM.SEQU;
              INTEGER M.N.I;
              REAL C.R.ALPHA.K.TDRUM.TDISK.PDRUM.PDISK.S.E;
              REAL TEQU(10);
& BOUCLE DE MULTIPROGRAMMATION (CPU, DRUM, DISK )......
/STATION/NAME=CPU;
         SERVICE=EXP(S);
         TRANSIT=DRUM, PDRUM, DISK, PDISK, CPU;
/STATION/HAME=DRUM;
         TRANSIT=CPU:
         SERVICE=EXP(TORUM);
ZSTATIONZNAME=DISK:
         TRANSIT=CPU;
         SERVICE=EXP(TDISK);
& RESOLUTION PAR ANALYSE BCMP ...................
/COMPUTE/INIT=N:
        METHOD=ANAL VTIC:
        OPTION=NOUT;
/EXEC/BEGIN
     C:=800;R:=20;ALPHA:=0.01;K:=1.5;
     TDRUM: =10; TDISK: =30; M: =512;
                                & SELECTION DU SOUS-RESEAU A ANALYSER
     NETWORK(CPU, DRUM, DISK);
     H:=1;
     WHILE N<=10 DO
           BEGIN
           E:=ALPHA*((M/N)**K);
                                     & DUREE DE VIE
            S:=1/(1/E+1/R+1/C);
                                     & SERVICE MOVEN UNITE CENTRALE
           PDRUM:=5/E;
                         PDISK:=S/R; & PROBABILITES DE TRANSITION
            COMPUTE:
            TEQU(N):=CPU.MTHRUPUT*(1.0-PDISK-PDRUM);
            N:=N+1:
           END:
     END;
```

**** ANALYTIC RESOLUTION ****

```
****SUBCHAIN
          1 TOTAL NUMBER OF CUSTOMERS=
                                 1
*QUEUE CPU
         SERVICE
                 BUSY PCT
                         CUST NB
                                 RESPONSE
                                          THRUPUT
                                                  CYCLE
*GLOBAL
                         .3867
         16.70
                 .3867
                                 16.70
                                          .2315E-01
                                                 26.49
*QUEUE DRUM SERVICE
                 BUSY PCT
                         CUST NB
                                 RESPONSE
                                          THRUPUT
                                                  CYCLE
*GLOBAL
        10.000
                 .3337E-01
                         .3337E-01 10.000
                                          .3337E-82
                                                  269.6
*QUEUE DISK SERVICE
                 BUSY PCT
                         CUST NB
                                 RESPONSE
                                          THRUPUT
                                                  CYCLE
*GLOBAL
                         .5800
         30.00
                 .5800
                                 30.00
                                          .1933E-01
**** END OF ANALYTIC RESOLUTION ****
```

(Les résultats sont obtenus pour N=1,...,10 ; seuls sont présentés les résultats calculés pour N=1 en raison de la place prise par ces résultats).

Etape 2

/EXEC/ BEGIN
NETWORK(TERN, SEQU);
FOR N:=3,5,7 DO COMPUTE;
END;

**** ANALYTIC RESOLUTION ****

****SUBCHAIN	1 TOTAL	NUMBER OF C	USTOMERS=	3			
*****	*****	*****	*****	*****	*****	*****	***
*							*
+QUEUE TERM	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CYCLE	*
*GLOBAL	5000.	.9318	1.928	5000.	.3856E-03	2779.	*
*							*
*QUEUE SEQU	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CYCLE	*
*GLOBAL	1795.	.6924	1.072	2779.	.3856E-03	5000.	*
*	27.50						*
	ar ar de de de de de de de de	de	and the same and the same same same same same	*****	*****	*****	***
***	BERE FRO	OF ANALYTIC	PESOLUTION	d strategy			

**** ANALYTIC RESOLUTION ****

****SUBCHAIN				5			
*****	*****	********	******	****	*****	****	***
							*
* *QUEUE TERM	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CYCLE	*
*GLOBAL	5000.	.9649	2.828	5000.	.565 <u>6</u> E-03	3848.	*
*							*
*QUEUE SEQU	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CYCLE	*
*GL 08AL	1582.	.8946	2.172	3840.	.5656E-03	5000.	*
*	1002,						*

	**** END	OF ANALYTIC	RESOLUTION	***			

**** ANALYTIC RESOLUTION ****

****SUBCHAIN	1 TOTAL			7	to ato ato ato ato ato ato ato ato ato a	alle sale sale sale sale sale sale	ake ake ake	
the state of the s	******	*****	****	****	the sales and reduce the sales and reduce the sales about	4-4-4-4-4-4-4-4-4-	*	
* *QUEUE TERM	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CYCLE	*	
#GLOBAL	5000.	.9699	3.353	5000.	.6706E-03	5438.	**	
4							*	
*QUEUE SEQU	SERVICE	BUSY POT	CUST NB	RESPONSE	THRUPUT	CYCLE	*	
*GLOBAL	1452.	. 9736	3.647	5438.	.6706E-03	5000.	*	
*	14021	.,					*	

	**** END	OF ANALYTIC	RESOLUTION	****				

Nota : On peut aisément calculer toutes les statistiques du modèle à partir des résultats de l'étape 1, et des probabilités marginales du réseau équivalent. Les probabilités marginales sont disponibles en utilisant dans /COMPUTE/ l'option MARGINAL.

c) Spécification et résolution du modèle par analyse markovienne

```
& RESOLUTION DU RESEAU COMPLET PAR ANALYSE MARKOVIENNE ......
 /STATION/NAME=CPU;
                             & MODIFICATION DES STATIONS ....
           SERVICE=BEGIN
                    T:=L(CPU)+L(DRUM)+L(DISK); & NIVEAU INSTANTANE
& DE MULTIPROGRÂNMATION
E:=ALPHA*((N/I)**K); S:=1/(1/E+1/R+1/C);
                    PDRUN:=S/E; PDISK:=S/R; EXP(S);
                    END;
 TRANSIT=DRUM, PDRUM, DISK, PDISK, TERN;
/STATION/NAME=TERM;
TRANSIT=CPU;
           INIT=N;
 YEXECY BEGIN
        NETWORK(TERN,CPU,DRUM,DISK);
FOR N:=3.5.7 DO MARCA;
END:
 *** MARCA : MARKOV CHAIN ANALYSER ***
TOTAL NUMBER OF STATES # 20
HUMBER OF NON-ZERO ELEMENTS IN ARRAY A #
                           ***************
                           BUSY PCT
 *QUEUE CPU
               SERVICE
                                       CUST NB
                                                    RESPONSE
                                                                 THRUPUT *
 *GLUBAL
               14.14
                           .3085
                                        .3781
                                                    17.34
                                                                .2181E-01*
 *QUEUE DRUM
               SERVICE
                           BUSY POT
                                       CUST NB
                                                    RESPONSE
                                                                 THRUPUT *
 *GLOBAL
                                       .6782E-81
                                                    11.17
                                                                .6001E-02*
*QUEUE DISK
               SERVICE
                           BUSY PCT
                                       CUST NB
                                                    RESPONSE
                                                                 THRUPUT *
               30.00
                           . 4626
                                        .6268
                                                    48.63
                                                                .1543E-01*
 *QUEUE TERM
                           BUSY PCT
                                       CUST NB
                                                    RESPONSE
                                                                 THRUPHT .
*GLOBAL
               5000.
                           .9309
                                       1.928
                                                                .3356E-03*
 NUMBER OF PREMULTS :
*** MARCA : MARKOY CHAIN ANALYSER ***
TOTAL NUMBER OF STATES =
NUMBER OF NON-ZERO ELEMENTS IN ARRAY A = 266
*QUEUE CPU
              SERVICE
                           BUSY PCT
                                       CUST NB
                                                   RESPONSE
                                                                 THRUPUT *
*GLOBAL
              11.17
                           .4525
                                       .6749
                                                   16.65
                                                                .4052E-01*
+QUEUE DRUM
              SERVICE
                           BUSY PCT
                                       CUST NB
                                                   RESPONSE
                                                                 THRIBUT &
*GLOBAL
              10.00
                           .1733
                                       .2369
                                                                .1733E-01*
                                                                 * THRUPUT *
*QUEUE DISK
              SERVICE
                                       CUST NB
                           BUSY PCT
                                                   RESPONSE
*GLOBAL
              30.00
                           .6787
                                       1.268
                                                   55.69
                                                                .2262E-01*
                                                                 THRUPUT *
*QUEUE TERM
              SERVICE
                           BUSY POT
                                       CUST NB
*GLOBAL
              5000.
                           .9648
                                       2.828
                                                   5000.
                                                                .5657E-83*
 NUMBER OF PREMULTS :
*** MARCA : MARKOV CHAIN ANALYSER ***
TOTAL HUMBER OF STATES = 120
HUMBER OF NON-ZERO ELEMENTS IN ARRAY A = 624
*QUEUE CPU
              SERVICE
                          BUSY PCT
                                      CUST NB
                                                   RESPONSE
                                                                THRUPUT *
*GLOBAL
              8.289
                          .5368
                                      .9482
                                                   14.52
*QUEUE DRUM
              SERVICE
                          BUSY PCT
                                      CUST NB
                                                   RESPONSE
                                                                THRUPUT *
*GLOBAL
              10.00
                          .3725
                                      .7278
                                                               .3725E-01*
*QUEUE DISK
              SERVICE
                          BUSY PCT
                                      CUST NB
                                                   RESPONSE
*GLOBAL
                          . 8051
                                      1.982
                                                   73.87
                                                               .2684E-01*
                                                                THRUPUT *
*QUEUE TERM
              SERVICE
                          BUSY PCT
                                                   RESPONSE
*GLOBAL
              5000.
                                      3.350
                                                   5000.
                                                               .6701E-03*
NUMBER OF PREMULTS :
                           271
```

V - CONCLUSION

Le but de QNAP est d'intégrer dans un même ensemble de programmes les différentes techniques générales permettant la résolution de réseaux de files d'attente (nous ne nous somme pas intéressés à la multitude de réseaux particuliers qui fleurissent dans la littérature).

La description de ces réseaux et le contrôle de leur résolution sont assurés par un langage simple qui résoud d'une manière très souple les problèmes de paramétrisation du modèle, l'enchainement des résolutions, le traitement de modèles hiérarchiques ou hybrides. Notons que, dans sa version actuelle, le mode d'utilisation usuel de QNAP est non interactif au sens ou le fichier de données est créé préalablement à l'exécution. Cette caractéristique résulte pour une part de la structure interne du produit, mais essentiellement de la philosophie qui a conduit la réalisation du projet :

- i) du point de vue implantation, il est difficile de prévoir des points de reprise après détection d'une erreur (erreurs syntaxiques dans le langage de spécification, hypothèses erronnées pour la méthode de résolution choisie).
- ii) certaines méthodes se prettent mal à une utilisation en mode interactif si l'on veut obtenir une bonne précision sur les résultats (simulation, 'méthode numérique d'analyse d'un modèle markovien, en particulier).
- iii) l'accent est mis sur la réalisation de modèles complexes (structurellement, à cause du degré de paramétrisation, ou par l'imbrication de sousmodèles) pour lesquels le temps de calcul ou la masse des résultats sont importants.
- iv) le problème de modifier les données, ou la structure d'un réseau ne se pose pas puisque la plupart des paramètres du réseau peuvent être mis à jour au niveau de la commande /EXEC/ et que le fichier de données peut comporter autant de modèles différents qu'il est souhaité.

Néanmoins, en ce qui concerne la plupart des modèles de complexité moyenne ou utilisant les méthodes les plus rapides (analyse BCMP en particulier), la résolution peut être menée et suivie aisément à partir d'une console interactive en utilisant les facilités fournies par le système hôte (éditeur de texte en particulier).

Notons que les techniques utilisées dans QNAP sont à la base de divers outils d'analyse de réseaux de files d'attente [Kek74, SaM77, ZaL77, KrT77]. Ceux dont nous avons connaissance ne proposent, à l'exclusion de RESQ, qu'une seule méthode de résolution et ne bénéficient donc pas de la complémentarité offerte par les différents modules composant QNAP. A titre indicatif, nous donnons en annexe I.2 quelques précisions concernant trois de ces outils.

A la lumière des premières expériences de mise en oeuvre de QNAP, nous pouvons dégager deux domaines d'activité où le produit peut apporter une aide efficace :

i) Recherche en modélisation

Tout particulièrement en ce qui concerne l'étude systématique de modèles théoriques où il s'agit de tester certaines hypothèses, de vérifier la validité et la précision d'une nouvelle technique de résolution, ou d'expériences de robustesse. QNAP facilite également le calcul et l'édition d'exemples numériques.

ii) Aide à la conception et à l'évaluation de systèmes informatiques

QNAP fournit un ensemble de fonctions qui permettent la description d'une architecture de système. Il est ainsi possible de tester différentes organisations, de dimensionner les ressources et d'apprécier les performances globales. En tant qu'outil d'évaluation, il fournit un mode de représentation, largement validé par l'expérience, avec une structure suffisemment souple pour conduire à un résultat satisfaisant, par rapport aux mesures sur le système réel, après les raffinements successifs du modèle initial nécessaires.

ANNEXE I.1

LISTE DES COMMANDES DU LANGAGE DE SPECIFICATION

E Version of		
/DECLARATION/	Déclaration de toutes les <u>files</u> , <u>classes</u> et <u>étiquettes</u> , des <u>variables</u>	
/STATION/	Description d'une station active ou d'une station passive. Paramètres : NAME, SCHED, TYPE, VALUE, TRANS, SERVICE, LOAD, MAX.	
/EXEC/	Spécification du programme de contrôle de résolution d'un modèle.	
/SIMUL/	Initialisation des paramètres de lancement d'une simulation. Paramètres : TMAX, OUT, MESURE, RANDOM, TRACE.	
/COMPUTE/	Initialisation des paramètres de lancement d'un calcul analytique. Paramètres : INIT, METHOD, OPTION.	
/START/	Ré-initialisation de l'analyseur.	
/LIST/, /NOLIST/	Impression ou arrêt de l'impression du fichier d'entrée.	
/DUMP/	Sortie de la mémoire libre de l'analyseur.	
/END/	Fin de fichier d'entrée.	

ANNEXE I.2

Quelgues exemples d'outils d'analyse de réseaux de files d'attente

1 - RESQ [SaM77]

RESQ est un produit interne IBM comportant un module de simulation [Sau75] pour lequel le contrôle statistique des résultats est très développé, et un module de résolution analytique BCMP [Rei75]. Le programme, écrit en PL1, permet la résolution de modèle hybrides simulation - analyse mathématique.

Son utilisation peut être conversationnelle ou non, mais sa philosophie relève du premier mode. Quatres commandes principales initialisent un dialogue avec l'utilisateur :

- SETUP : création du modèle initial,

- LIST : listage d'un modèle,

- EVAL : résolution du modèle,

- CHANGE: modification des paramètres d'un modèle.

2 - SNAP [KrT77]

Il s'agit d'un programme FORTRAN d'analyse de réseaux de type BCMP.

Un fichier de données du modèle est crée directement en format fixe ou à l'aide d'un programme conversationnel de type question-réponse. Des données complémentaires concernant les directives d'exécution et de modification du modèle créé initialement complètent le fichier d'entrée au programme. La paramétrisation du modèle est assurée par ces directives de modification et peut faire appel à des programmes utilisateurs qui doivent être édités conjointement à SNAP.

Un aspect intéressant de SNAP est de permettre l'édition de courbes à partir du fichier résultat créé par le programme (dans le cas de QNAP, l'utilisateur à la possibilité d'écrire sur fichier au niveau de la commande /EXEC/, le traitement de ce fichier lui incombant ensuite).

3 - QSOLVE [ZaL77]

QSOLVE est un programme PL! d'analyse numérique de modèle markovien mis sous forme de réseau de files d'attente. Le programme résoud les équations d'équilibre globales du système à l'aide d'algorithmes classiques de résolution d'équations linéaires.

Il semble cependant (d'après la documentation disponible) que ses possibilités soient réduites à la résolution de modèles où les politiques de service au niveau des stations sont relativement sophistiquées, et les distributions des temps de service générales.

CHAPITRE II

ALGORITHMES DE RESOLUTION DES RESEAUX DE TYPE BCMP

I - INTRODUCTION

Ainsi que nous l'avons indiqué dans le chapitre précédent, les réseaux de files d'attente ont fait l'objet récemment de développements tant du point de vue thécrique que du point de vue pratique, en particulier comme modèles de systèmes informatiques.

Nous ne nous intéressons ici qu'à un type particulier de réseau dont l'étude des probabilités d'état stationnaires conduit à ce qu'il est convenu de nommer la forme "produit", soit plus simplement :

$$p(E) = \frac{1}{C} d(E) \prod_{i=1}^{I} f_{i}(N_{i})$$

où $E = (N_1, ..., N_T)$

I le nombre de stations du réseau

d(E) une fonction qui ne dépend que des processus d'arrivée au réseau

N. l'état d'une station (en terme de configuration des clients)

f, une fonction ne dépendant que du type de la station considérée.

Les premiers résultats obtenus dans ce domaine sont dûs à J.R. Jackson [Jac 63] et concernent des réseaux de stations à file PAPS dont la distribution des temps de service est exponentielle, et où les clients sont d'un seul type. Ces résultats sont repris et développés par Gordon et Newell pour des réseaux fermés [GoN 67].

Les plus importantes extensions qui utilisent les propriétés d'équilibre local de ces réseaux [ChH77], sont ensuite introduites par Baskett, Chandy, Muntz et Palacios [BaC75], Reiser et Kobayashi [ReK75], et indépendamment semblet-il, par une méthode de démonstration différente, par Barbour et Kelly [Bar76, Kel75]. Les généralisations essentielles qui sont apportées sont relatives à de nouveaux types de stations admises et à la possibilité de définir plusieurs classes de clients. Ce sont ces résultats que nous présentons ici.

Enfin, des résultats récents traitent de réseaux avec blocage [Pit76], et de réseaux qui admettent des contraintes quant à la taille des populations qui y séjournent [Lam77]. Notons d'autre part un certain nombre d'études qui examinent avec précision les propriétés stochastiques des réseaux de type BCMP [Mun72, BeM75].

Ce chapitre est organisé de la manière suivante : le paragraphe II présente en détail les hypothèses et l'énoncé du théorème de Baskett, Chandy, Muntz et Palacios, le paragraphe III est consacré aux algorithmes de calcul de la constante de normalisation et des grandeurs élémentaires qui caractérisent à l'état stationnaire chaque station du réseau. Nous concluons et donnons quelques exemples de résolution au paragraphe IV.

II - THEOREME DE BASKETT-CHANDY-MUNTZ ET PALACIOS [BaC75]

II.1 - Hypothèses

II.1.1 - Routage

Nous considérons un réseau constitué d'un nombre fini, I, de stations que visitent des clients appartenant à un nombre fini, R, de classes de clients.

Un client de classe r quittant la station i se rend à la station j en prenant la classe s avec la probabilité $p_{ir;js}$. Nous supposerons que le graphe associé au réseau est décomposable en M composantes connexes [Ber70]. Par convention (non restrictive) nous supposerons dans toute la suite qu'une classe r ne peut appartenir qu'à une seule composante connexe. Une composante sera notée S_m . Un client en provenance de l'extérieur entre dans le réseau à la station j en classe s avec la probabilité $p_{m;js}$ si s appartient à S_m . Un client de classe r quitte le réseau à la station i avec la probabilité $p_{ir;m}$ si r appartient à S_m . De façon évidente nous avons les relations :

$$\sum_{j,s} p_{ir;js} + p_{ir;m} = 1 \qquad \forall (i,r) \quad r \in S_m$$

Une composante connexe, ou sous-chaine, peut être ouverte ou fermée. Dans ce dernier cas, le nombre de clients circulant dans la sous-chaine reste constant. Un réseau sera dit fermé si toutes les sous-dhaines qui le composent sont fermées, ouvert si elles sont ouvertes, mixte s'il existe concurrement des sous-chaines ouvertes et des sous-chaînes fermées.

II.1.2 - Processus d'arrivée

Dans le cas d'un réseau ouvert ou mixte, il peut exister autant de processus d'arrivée poissonniens de paramètre $\mathbf{v}_{\mathbf{m}}(\mathbf{\bar{n}}_{\mathbf{m}})$ que de sous-chaines ouvertes $\mathbf{\bar{n}}_{\mathbf{m}}$ est le nombre instantané de clients dans la sous-chaine $\mathbf{S}_{\mathbf{m}}$. Dans ce cas nous aurons d'autre part les relations suivantes :

$$\sum_{j,s \in S_m} P_{m;js} = 1 \quad \forall m .$$

Dans le cas d'un réseau ouvert, il peut exister un processus poissonnien unique de paramètre $v(\bar{n})$ où \bar{n} est le nombre instantané de clients dans le réseau.

Nous aurons alors :

$$\sum_{m} \sum_{j,s \in S_{m}} p_{m;js} = 1$$

II.1.3 - Stations

Nous distinguerons quatre types de stations :

- Type 1 : discipline de service "Premier Arrivé, Premier Servi" (PAPS).

 La distribution des temps de service est exponentielle. Le taux de service peut dépendre du nombre instantané de clients dans la station.

 Il n'y a qu'un serveur.
- Type 2 : discipline de service "Processeur Partagé (PP). Chaque classe de clients à une distribution des temps de service coxienne [Cox55]. Le taux de service de chaque classe peut dépendre du nombre instantané de clients dans la station et/ou du nombre de clients de cette classe dans la station. Un seul serveur.
- Type 3 : discipline de service "Dernier Arrivé, Premier Servi" avec préemption et reprise (DAPSPR). Chaque classe de client à une distribution des temps de service coxienne suivant le même modèle qu'une station PP. Un seul serveur.
- Type 4 : il existe un nombre de serveurs au moins égal au nombre de clients susceptibles d'être servis (SI pour Serveur Infini). Chaque classe de clients admet une distribution des temps de service coxienne, identique pour chaque serveur.

II.2 - Théorème BCMP

II.2.1 - Taux d'arrivée

Considérons les systèmes d'équations, définis pour chaque sous-chaine $\mathbf{S}_{\underline{\mathbf{m}}},$ suivants :

(1)
$$\sum_{(i,r)\in S_m} e_{ir} p_{ir;js} + p_{m;js} = e_{js} \qquad (j,s) \in S_m$$

Dans le cas d'une sous-chaine ouverte ce système admet une solution

unique si et seulement la chaine de Markov associée à la matrice P constituée des p complétée par les p est irréductible.

Dans le cas d'une sous-chaine fermée ce système admet une solution définie à une constante multiplicative près si et seulement si la chaine de Markov associée à la matrice P constituée des $P_{ir;js}$ est irréductible.

Le coefficient e peut être interprété comme les taux d'arrivée (relatif dans le cas d'une sous-chaine fermée) des clients de classe r à la station i.

II.2.2 - Etats du système

Le théorème énoncé dans [BaC75] est relatif à des états permettant une description complète du réseau. Dans la pratique et pour ce qui nous concerne nous ne considérerons que les probabilités marginales relatives aux états suivants :

$$E = (N_1, N_2, \dots, N_T)$$

oi

$$N_{i} = (n_{i1}, n_{i2}, ..., n_{iR})$$

et où n est le nombre de clients de classe r dans la station i.

II.2.3 - Probabilités à l'équilibre

Pour un réseau satisfaisant les hypothèses énoncées au paragraphe II.2.1 et tel que le système (1) admette une solution, la probabilité stationnaire que le réseau soit dans l'état E est donnée par :

Prob (E) =
$$\frac{1}{C}$$
 d(E) $f_1(N_1)$ $f_2(N_2)$... $f_T(N_T)$

où:

- C est la constante de normalisation

$$\begin{array}{c} & 1 & \text{dans le cas d'un réseau fermé} \\ & \overline{n}-1 \\ & \Pi & v(n) \text{ dans le cas d'arrivées externes globales} \\ & n=0 \\ & & \overline{n}_m-1 \\ & \Pi & V_m(n_m) \text{ dans le cas d'arrivées externes} \\ & S_m \text{ ouverte } n_m=0 & \text{ distinctes pour les sous-chaines ouvertes} \end{array}$$

- Dans le cas de taux de service constants :

$$f_{\mathbf{i}}(N_{\mathbf{i}}) = \begin{cases} n_{\mathbf{i}}! & (\frac{1}{u_{\mathbf{i}}^{0}})^{n_{\mathbf{i}}} & \frac{R}{\Pi} & \frac{e_{\mathbf{i}r}}{n_{\mathbf{i}r}!} & \text{type 1} \\ R & \frac{R}{n_{\mathbf{i}}!} & \frac{1}{n_{\mathbf{i}r}!} (\frac{e_{\mathbf{i}r}}{u_{\mathbf{i}r}^{0}})^{n_{\mathbf{i}r}} & \text{type 2 ou 3} \end{cases}$$

$$\begin{cases} R & \frac{1}{n_{\mathbf{i}r}!} (\frac{e_{\mathbf{i}r}}{u_{\mathbf{i}r}^{0}})^{n_{\mathbf{i}r}} & \text{type 4} \end{cases}$$

$$R & \frac{R}{n_{\mathbf{i}}} = \sum_{n_{\mathbf{i}r}} n_{\mathbf{i}r}, \end{cases}$$

avec: $n_i = \sum_{r=1}^{n} n_{ir}$,

 u_{i}^{0} taux de service de la station i (type 1)

u taux de service de la station i pour la classe r (types 2, 3 ou 4).

- Dans le cas où le taux de service dépend de l'état de la station nous admettrons les formes suivantes :

i)
$$u_{ir} = u_{ir}^{0} b_{i}(n_{i})$$

ii) $u_{ir} = u_{ir}^{0} c_{ir}(n_{ir})$

iii) $u_{ir} = u_{ir}^{0} b_{i}(n_{i}) c_{ir}(n_{ir})$

où b $_{\rm i}$ et c $_{\rm ir}$ sont des fonctions strictement positives avec les restrictions suivantes :

- seule la forme i) est valide dans le cas d'une station de type 1 avec en outre :

$$\forall r \quad u_{j,r}^0 = u_{j}^0$$

- une station de type 4 n'admet pas de taux de service dépendant de l'état, mais la distribution des probabilités d'état est identique à celle d'une station de type 2 ou 3 où le taux de service est $u_{ir} = u_{ir}^{0} n$. Nous aurons donc les formes suivantes pour les fonctions f :

en tenant compte des remarques faites précédamment. Notons par ailleurs que les formes i) et ii) peuvent être considérées comme des cas particulier de la forme iii).

Nous poserons dans la suite :

$$B_{i}(n_{i}) = \prod_{p=1}^{n_{i}} \frac{1}{b_{i}(p)}$$

$$C_{ir}(n_{ir}) = \prod_{q=1}^{n_{ir}} \frac{1}{c_{ir}(q)}$$

et

II.3 - Conclusion

Nous noterons d'abord quelques remarques relatives au théorème :

- i) dans l'expression des probabilités d'état stationnaires, les distributions de temps de service n'interviennent que par leur moyenne. Cette remarque présente un intérêt certain dans la mesure où elle nous dégage de la nécessité de calculer ou de mesurer des moments d'ordre supérieur.
- ii) la forme produit de cette expression, jointe aux caractéristiques des fonctions $\mathbf{f}_{\mathbf{i}}$ (où l'on reconnait des coefficients multinominaux)nous permettra d'utiliser des algorithmes de calcul efficaces.
- iii) le problème fondamental qui justifie la recherche d'algorithmes spécifiques est le calcul de la constante de normalisation. Nous verrons dans la suite que les problèmes posés par ce calcul sont différents suivant la nature du réseau : ouvert, fermé ou mixte.

Il est bien évident que malgré les extensions qui sont apportées par rapport au théorème de Jackson, la généralité des réseaux de type BCMP est toute relative. Notons par exemple :

- pour des stations à file PAPS la distribution des temps de service doit être exponentielle.

- Toujours dans ce cas, le taux de service doit être identique pour chaque classe de clients.
 - Les files sont à capacité illimitée.
 - Aucun mécanisme de synchronisation n'est disponible.
 - On ne peut pas définir de priorités entre classes de clients ...

Il est cependant deux applications importantes du théorème, qui ne sont pas immédiatement évidentes :

- i) transitions non instantanées en intercallant des stations de type 4 (délai pur).
- ii) transitions définissant une chaine de Markov d'ordre supérieur à 1 en jouant sur les changements de classe (cf. § IV).

III - ALGORITHME DE CALCUL

Nous présentons dans cette section les algorithmes de calcul de la constante de normalisation du réseau et des grandeurs élémentaires classiques :

- taux d'utilisation.
- nombre moyen de clients,
- débits etc...,

pour chaque station et chaque classe de clients.

Historiquement, les premiers algorithmes efficaces sont dûs à Buzen [Buz73] et Moore [Moo72] et sont relatifs à des réseaux de type Jackson fermés. Williams et Bhandiwad [WiB74] ont présenté des extensions des algorithmes de Buzen pour plusieurs classes de clients en utilisant la notion de fonctions auxiliaires. Reiser et Kobayashi [ReK75, ReK76] introduisent leurs algorithmes au moyen des fonctions génératrices et des produits de convolution, et généralisent alors largement les algorithmes disponibles (cf. aussi plus récemment [BaB77, KrT77A]).

Notre démarche vise à étudier dans la mesure du possible tous les cas prévus par le théorème BCMP, et nous nous attachons essentiellement à présenter un ensemble cohérent d'algorithmes, en indiquant, à la suite de notre expérience, les points où des difficultés d'implémentation peuvent intervenir, et ce qui en pratique nous parait réalisable (au sens de raisonnablement efficace). Nous ne négligeons pas en particulier le calcul des grandeurs élémentaires, ni les problèmes posés par les réseaux ouverts ou mixtes. Nous indiquons d'autre part un certain nombre de particularités qui conduisent à des calculs plus rapides.

Par rapport aux travaux de Reiser [Rei76] des compléments et extensions ont été introduits, dont :

- . Pour les réseaux ouverts ou mixtes, et dans certains cas particuliers où la stabilité du réseau peut être déduite simplement des données, nous indiquons les formules et algorithmes permettant d'obtenir les grandeurs élémentaires relatives aux stations.
- . Dans le cas de réseaux fermés et dans le cas où les hypothèses théoriques le permettent, nous autorisons le taux de service d'une station à dépendre du nombre instantané de clients par classe dans la station.

- . Dans tous les cas les grandeurs élémentaires sont calculées pour chaque classe de clients.
- . Les algorithmes présentés ne sont pas restreints à des réseaux sans communication entre classes (sous-chaines réduites à une classe). Nous précisons donc quand cela est utile la liaison entre résultats portant sur les sous-chaines et résultats portant sur les classes de clients.
- . Nous indiquons une méthode de calcul de la constante de normalisation de réseaux ouverts dans le cas où le taux d'arrivée des processus d'entrée dépend de l'état du réseau.

Dans la suite, nous étudions successivement les algorithmes ou les formules relatives à des réseaux fermés, ouverts puis mixtes qui sont implantés dans QNAP. Pour chacun de ces cas nous considérons d'abord le calcul de la constante de normalisation, puis celui des grandeurs élémentaires classiques. Enfin, un paragraphe est consacré à des généralisations qui n'ont pas donné lieu, pour QNAP, à une réalisation pratique à l'heure actuelle.

III.1 - Réseaux fermés

III.1.1 - Calcul de la constante de normalisation

Un réseau fermé est tel que le nombre de clients présents à chaque instant dans le réseau est constant. D'autre part comme il n'y a pas par définition de communication entre sous-chaines, le nombre de clients dans chaque sous-chaine reste constant.

Soit \bar{N}_m le nombre de clients dans la sous-chaine S_m . Un état E du réseau est "possible" si et seulement si :

$$\forall \mathbf{m} \sum_{\mathbf{i} \leq 1}^{\mathbf{N}} \sum_{\mathbf{r} \in \mathbf{S}_{\mathbf{m}}} \mathbf{n}_{\mathbf{i}\mathbf{r}} = \bar{\mathbf{N}}_{\mathbf{m}}$$

Nous noterons & l'ensemble des états du réseau. La constante de normalisation du réseau sera donc définie par :

$$C = \sum_{E \in \mathcal{E}} f_1(N_1) f_2(N_2) \dots f_I(N_I)$$

Soit

$$C = \sum_{E \in \mathcal{E}_{i=1}}^{I} n_{i}! B_{i}(n_{i}) \prod_{r=1}^{R} \frac{1}{n_{ir}!} C_{ir}(n_{ir}) \left(\frac{e_{ir}}{u_{ir}^{0}}\right)^{n_{ir}}$$

Nous poserons $x_{ir} = \frac{e_{ir}}{u_{ir}^0}$, quantité communément appelée intensité de trafic

Soit $X = (X_1, X_2, \dots, X_M)$ un vecteur de M variables auxiliaires, la variable X_m étant attachée à la sous-chaine S_m , et $g_1(X_1, X_2, \dots, X_M)$ la série formelle multivariable définie par :

$$g_{\mathbf{i}}(\mathbf{X}_{1},\mathbf{X}_{2},...,\mathbf{X}_{\mathbf{M}}) = \sum_{\mathbf{n}_{\mathbf{i},\mathbf{1}}=0}^{\infty} ... \sum_{\mathbf{n}_{\mathbf{i},\mathbf{R}}=0}^{\infty} n_{\mathbf{i}}! B_{\mathbf{i}}(\mathbf{n}_{\mathbf{i}}) \prod_{\mathbf{n}}^{\mathbf{R}} \frac{1}{\mathbf{n}_{\mathbf{i}\mathbf{r}}!} C_{\mathbf{i}\mathbf{r}}(\mathbf{n}_{\mathbf{i}\mathbf{r}}) \mathbf{x}_{\mathbf{i}\mathbf{r}}^{\mathbf{n}_{\mathbf{i}\mathbf{r}}} \mathbf{X}_{\mathbf{m}}^{\mathbf{n}_{\mathbf{i}\mathbf{r}}}$$

$$\mathbf{r} \in \mathbf{S}$$

Pour simplifier l'écriture les sommes \sum ... \sum seront notées \sum ... $n_{i} = 0$ $n_{i} = 0$ $n_{i} \geq 0$

Soit $g(X_1, X_2, ..., X_M)$ la série formelle définie par :

$$g(X_{1}, X_{2}, ..., X_{M}) = \Pi \quad g_{1}(X_{1}, X_{2}, ..., X_{M})$$

$$i=1$$

$$= \Pi \quad \sum_{i=1}^{n} n_{i}! \quad B_{1}(n_{i}) \quad \prod_{i=1}^{n} \frac{1}{n_{ir}!} \quad C_{ir}(n_{ir}) \quad x_{ir} \quad \prod_{i=1}^{n} x_{ir}$$

$$= \sum_{i=1}^{n} \dots \quad \sum_{i=1}^{n} \prod_{i=1}^{n} n_{i}! \quad B_{1}(n_{i}) \quad \prod_{i=1}^{n} \frac{1}{n_{ir}!} \quad C_{ir}(n_{ir}) x_{ir} \quad x_{ir}$$

$$= \sum_{i=1}^{n} \dots \quad \sum_{i=1}^{n} \prod_{r \in S_{m}} n_{ir} \quad \prod_{r=1}^{n} n_{i}! \quad B_{1}(n_{i}) \quad \prod_{r=1}^{n} \frac{1}{n_{ir}!} \quad C_{ir}(n_{ir}) x_{ir}$$

$$= \sum_{i=1}^{n} \dots \quad \sum_{i=1}^{n} \prod_{r \in S_{m}} n_{ir} \quad \prod_{i=1}^{n} n_{i}! \quad B_{1}(n_{i}) \quad \prod_{r=1}^{n} \frac{1}{n_{ir}!} \quad C_{ir}(n_{ir}) x_{ir}$$

$$= \sum_{i=1}^{n} \dots \quad \sum_{r=1}^{n} \prod_{i=1}^{n} n_{i}! \quad B_{1}(n_{i}) \quad \prod_{r=1}^{n} \frac{1}{n_{ir}!} \quad C_{ir}(n_{ir}) x_{ir}$$

Il est donc clair que la constante de normalisation C est le coefficient du monôme $X_1^{\ \overline{N}_1}$ $X_2^{\ \overline{N}_2}$... $X_M^{\ \overline{N}_M}$ dans $g(X_1,X_2,\ldots,X_M)$.

Ce coefficient ainsi que ceux correspondant aux monômes de degré inférieur est obtenu en effectuant successivement des produits de convolution de façon très classique sur les polynômes égaux aux sommes partielles des $\vec{\epsilon}_i$ de degré inférieur ou égal à $(\bar{\mathbb{N}}_1, \bar{\mathbb{N}}_2, \ldots, \bar{\mathbb{N}}_M)$. Il est donc d'autre part nécessaire de calculer pour chaque série g_i les coefficients de \mathbf{X}_1 \mathbf{X}_2 \ldots \mathbf{X}_M pour $0 \le n_1 \le \bar{\mathbb{N}}_1, \ldots$,

 $0 < n_{\underline{M}} \leq \overline{N}_{\underline{M}} \text{ a partir des termes de la forme } n_{\underline{i}} ! B_{\underline{i}} (n_{\underline{i}}) \prod_{r=1}^{R} \frac{1}{n_{\underline{i}\underline{r}}!} C_{\underline{i}\underline{r}} (n_{\underline{i}\underline{r}}) \times_{\underline{i}\underline{r}}^{n_{\underline{i}\underline{r}}}.$

Donc les deux problèmes essentiels à résoudre sont :

- Calcul des coefficients des monômes X_1 ... X_M
- produit de convolution (noté *)

Notations :

$$. \tilde{N}_{r}^{*} = \bar{N}_{m} \text{ si } r \in S_{m} \text{ et } \bar{n}_{im} = \sum_{r \in S_{m}} n_{iir}$$

$$. H_{j}(n_{j1}, n_{j2}, ..., n_{jR}) = n_{j!} B_{n}(n_{j}) \prod_{r=1}^{R} \frac{1}{n_{jir}!} C_{jr}(n_{jr}) x_{jr}$$

 $H_{j}[0:N_{1}^{*},...,0:N_{R}^{*}]$ matrice associée à la station j dont les éléments sont les $H_{j}(n_{j1},...,n_{jR})$

- . G[O: $\overline{\textbf{N}}_{1}$,..., O: $\overline{\textbf{N}}_{\underline{\textbf{M}}}$] matrice des constantes de normalisation
- . $K_{j}[0:\overline{N}_{1},...,0:\overline{N}_{M}]$ matrice des coefficients des monômes $X_{1}^{n_{1}}...X_{M}^{n_{M}}$ dans $g_{j}(X_{1},X_{2},...,X_{M})$
- . Dans la suite, nous supposerons que les éléments de ces matrices sont initialisés à 0.
 - . On notera que pour tout $\mbox{ j } \mbox{ }$
 - . Pour le calcul des grandeurs élémentaires telles que :
 - taux d'utilisation,
 - nombre moyen de clients dans sune station,

il est nécessaire de conserver, si l'on veut éviter des calculs redondants, les matrices F_j et G, et l'une des matrices H_j ou K_j .

III.1.1.1 - Calcul des matrices H_j et K_j

Le calcul est basé sur la remarque suivante :

$$H_{j}(n_{j1},...,n_{jR}) = \frac{1}{b_{j}(n_{j})} \sum_{\substack{r=1 \ n_{jr} > 0}}^{R} \frac{x_{jr}}{c_{jr}(n_{jr})} H_{j}(n_{j1},...,n_{jr}-1,...,n_{jR})$$

D'autre part :

On notera qu'il est inutile de calculer un terme $H_j(n_{j1},\dots,n_{jR})$ tel qu'il existe m tel que $\sum_{r \in S_m} n_{jr} > \overline{N}_m$.

D'où l'algorithme :

```
\mathbf{K}(\bar{\mathbf{n}}_{1},\ldots,\bar{\mathbf{n}}_{M}) \;:\; =\; \mathbf{K}(\bar{\mathbf{n}}_{1},\ldots,\; \bar{\mathbf{n}}_{M}) \;+\; \mathbf{H} \; (\mathbf{n}_{1},\ldots,\mathbf{n}_{R})
         fin ;
Le calcul de H, nécessite au plus :
                  R(N_1^*+1) ... (N_R^*+1) additions
                  (R+1)(N_1^*+1) ... (N_R^*+1) multiplications
                  R(N_1^* + 1) ... (N_R^* + 1) divisions
Le calcul de K, R(N_1^*+1)...(N_R^*+1) additions
                   III.1.1.2 - Calcul du produit G* K
                  Il s'agit d'un produit de convolution discret :
\mathbf{G}^* \mathbf{K}_{\mathbf{j}} (\mathbf{n}_{1}, \mathbf{n}_{2}, \dots, \mathbf{n}_{\mathbf{M}}) = \sum_{\substack{0 \leq \mathbf{k}_{1} \leq \mathbf{n}_{1} \\ 0 \leq \mathbf{k}_{1} \leq \mathbf{n}_{1}}} \dots \sum_{\substack{\mathbf{G} (\mathbf{k}_{1}, \dots, \mathbf{k}_{\mathbf{M}}) \\ \mathbf{K}_{\mathbf{j}} (\mathbf{n}_{1}, \mathbf{k}_{1}, \dots, \mathbf{n}_{\mathbf{M}}, \mathbf{k}_{\mathbf{M}})}
nous noterons la symétrie de l'expression de droite.
        procédure convgen (G, K)
                 pour n, de N, à 0 pas -1 faire
                 pour n<sub>M</sub> de N<sub>M</sub> à 0 pas -1 faire
                          pour k, de 0 à n, faire
                          pour k de 0 à n faire
                                G(n_1, ..., n_M) := G(n_1, ..., n_M) + G(k_1, ..., k_M) K(n_1-k_1, ..., n_M-k_M)
                          fait ;
                          fait
        fait ;
```

- 50 -

fait

fin ;

Ce calcul nécessite :

III.1.1.3 - Calcul de la matrice K, dans le cas de dépendance globale

Ce cas est relatif aux stations dont le taux de service ne dépend pas du nombre de clients par classe. Nous avons alors :

$$g_{j}(X_{1},X_{2},...,X_{M}) = \sum_{\substack{n \geq 0 \\ n \geq 0}} B_{j}(n_{j})n_{j}! \prod_{\substack{r=1 \\ r=1}}^{R} \frac{x_{jr} X_{m}}{n_{jr}!}$$

avec r € S_m

d'où:

$$g_{j}(X_{1},X_{2},...,X_{M}) = \sum_{\substack{n_{j} \geq 0}} B_{j}(n_{j})n_{j}! \prod_{\substack{m=1 \ m=1}}^{M} \frac{(\overline{x}_{jm} X_{m})}{\overline{n}_{jm}}$$

où

$$\bar{x}_{jm} = \sum_{r \in S_m} x_{jr}$$
 et $\bar{n}_{jm} = \sum_{r \in S_m} n_{jr}$

et
$$g_{j}(X_{1}, X_{2}, ..., X_{M}) = \sum_{\substack{n_{j}=0}}^{\infty} B_{j}(n_{j}) (\overline{x}_{j1}X_{1} + ... + \overline{x}_{jn}X_{M})^{n_{j}}$$

Nous montrons plus loin que la connaissance des matrices H_j est inutile dans le cas de station dépendance globale, pour le calcul des grandeurs élémentaires citées plus haut. Le calcul de K_j est effectué par l'intermédiaire de l'algorithme suivant :

III.1.1.4 - Calcul du produit de convolution dans le cas d'une station à taux fixe

Dans ce cas le taux de service est constant quelque soit l'état de la file d'où :

$$\varepsilon_{\mathbf{j}}(\mathbf{X}_{1}, \mathbf{X}_{2}, \dots, \mathbf{X}_{\mathbf{M}}) = \sum_{\mathbf{n}_{\mathbf{j}}=0}^{\infty} (\bar{\mathbf{x}}_{\mathbf{j}1}\mathbf{X}_{1} + \dots + \bar{\mathbf{x}}_{\mathbf{j}\mathbf{M}}\mathbf{X}_{\mathbf{M}})^{\mathbf{n}_{\mathbf{j}}}$$

Soit formellement :

$$g_{j}(X_{1}, X_{2}, ..., X_{M}) = \frac{1}{1 - (\bar{x}_{j1}X_{1} + ... + \bar{x}_{jM}X_{M})}$$

notons $\bar{g}_{j-1}(X_1, X_2, \dots, X_M)$ la série suivante :

$$\bar{\varepsilon}_{j-1}(X_1, \dots, X_M) = \prod_{i=1}^{j-1} \varepsilon_i(X_1, \dots, X_M)$$

$$\bar{\varepsilon}_j(X_1, \dots, X_M) = \frac{\bar{\varepsilon}_{j-1}(X_1, \dots, X_M)}{1 - (\bar{x}_{j1}X_1 + \dots + \bar{x}_{jM}X_M)}$$

d'où

$$\bar{\varepsilon}_{\mathbf{j}}(\mathbf{X}_{1},\ldots,\mathbf{X}_{\mathbf{M}}) = \bar{\varepsilon}_{\mathbf{j}-1}(\mathbf{X}_{1},\ldots,\mathbf{X}_{\mathbf{M}}) + \bar{\varepsilon}_{\mathbf{j}}(\mathbf{X}_{1},\ldots,\mathbf{X}_{\mathbf{M}})(\bar{\mathbf{x}}_{\mathbf{j}1}\mathbf{X}_{1}+\ldots+\bar{\mathbf{x}}_{\mathbf{j}\mathbf{M}}\mathbf{X}_{\mathbf{M}})$$

donc en identifiant les monômes X_1 \dots X_M nous déduisons un algorithme dû à Williams et Bhandiwad [WiB74] qui généralise celui de Buzen [Buz73]. Soit :

Le nombre d'opérations est $M(\overline{N}_1 + 1) \dots (\overline{N}_{M} + 1)$ additions et multiplications.

Nous montrerons plus loin que le calcul des grandeurs élémentaires ne nécessite pas d'autre connaissance que la matrice G.

Soit
$$g_j(X_1, X_2, ..., X_M) = \exp(\overline{x}_{j1} X_1 + ... + \overline{x}_{jM} X_M)$$

Supposons que le réseau considéré comprenne i_0 stations à serveur infini, numérotées de 1 à i_0 pour simplifier. Alors :

$$\bar{g}_{io}(x_1, x_2, ..., x_M) = \exp \left[\sum_{i=1}^{io} (\bar{x}_{i1} x_1 + ... + \bar{x}_{iM} x_M) \right]$$

Nous avons donc intérêt, pour ce qui concerne le calcul de la constante de normalisation, à regrouper ces stations en une seule station équivalente telle que les intensités de trafic résultantes soient :

$$\forall m \qquad \vec{x}_{om} = \sum_{i=1}^{io} \vec{x}_{im}$$

et à initialiser la matrice G à l'aide des coefficients utiles de \bar{g}_{io} , soit :

$$G(n_1, ..., n_M) = \prod_{m=1}^{M} \frac{\overline{x}}{n_m!} \quad \text{pour} \quad 0 \le n_1 \le \overline{N}_1 \quad ... \quad 0 \le n_M \le \overline{N}_M$$

or :

$$G(n_1,...,n_M) = \prod_{m=1}^{M} G(0,...,n_m,...,0) = \prod_{m=1}^{M} \frac{\overline{x}}{n_m} G(0,...,n_m-1,...,0)$$

et
$$G(0,...,0) = 1$$

Nous procédons bien sûr de même pour le calcul des matrices K_j . Le nombre d'opérations nécessaires pour chaque calcul est :

$$\overline{\mathbb{N}}_1\times \cdots \times \overline{\mathbb{N}}_M$$
 divisions
$$\mathbf{M}(\overline{\mathbb{N}}_1+1) \, \cdots \, (\overline{\mathbb{N}}_M^{+-1}) + \, \overline{\mathbb{N}}_1 \, \times \cdots \times \, \overline{\mathbb{N}}_M \quad \text{multiplications} \, .$$

III.1.1.6 - Algorithme général de calcul de la constante de normalisation

Des paragraphes précédants nous pouvons déduire un schéma de calcul de la matrice des constantes de normalisation et des matrices associées à chaque station :

```
si i ≠ 0 alors assdel (G,o);

pour i de 1 à i ofaire
assdel (K,i)

fait

fsi;

pour i de i + 1 à I faire
si i "à taux fixes" alors convtfx (G,i)
sinon si i "à dépendance globale" alors assdel(K,i)
sinon assgen(H,i,K,i)

fsi;
convegen (G,K,i)

fsi;
fait;
```

Rappelons que dans le cas de stations à dépendance globale ou à serveur infini, il n'est pas nécessaire de calculer la matrice H_i, mais qu'il est utile de conserver la matrice K_i. Dans le cas d'une station "générale" c'est la matrice H_i qu'il faut préserver pour le calcul des grandeurs élémentaires. Dans le cas d'une station à taux fixes ces deux matrices ne sont pas nécessaires.

Nous verrons au paragraphe suivant que sauf dans le cas des stations à taux fixe la matrice complémentaire est nécessaire. Cette matrice peut être obtenue simplement au cours du calcul de la constante de normalisation en omettant le produit de convolution pour la station correspondante. Ce processus nécessite

autant de matrices que de stations non à taux fixe. Une idée intéressante serait de procéder à une déconvolution à partir de la matrice G et des matrices - K, par la procédure CONVGEN. Ce processus est malheureusement entaché d'une instabilité numérique fréquente qui nous a fait préférer la première solution pour QNAP. Le dernier type d'implémentation peut cependant se révéler nécessaire si les contingences de place mémoire sont prépondérantes.

Nous noterons que comme sous-produit direct de ces calculs nous pouvons déduire les probabilités marginales d'état d'une station à partir des matrices associées et complémentaires dans le cas de stations à serveur infini, à dépendance globale ou générale. Cependant on s'intéresse le plus souvent à des grandeurs plus globales que nous étudions dans le paragraphe suivant.

Une autre remarque intéressante est de noter que le calcul de la constante de normalisation pour $\overline{N}_1,\ldots,\overline{N}_M$ clients nous permet de déduire directement la constante de normalisation pour toutes valeurs $0 \leq \overline{n}_1 \leq \overline{N}_1,\ldots,0 \leq \overline{n}_M \leq \overline{N}_M$.

III.1.2 - Grandeurs élémentaires

Dans ce paragraphe nous nous intéressons au calcul des grandeurs, définies pour chaque station, chaque classe ou globalement, suivantes :

- Nombre moyen de clients dans une station (lqq_{ir}, lgq_i) ,
- Taux d'utilisation (util ir, util i),
- débit moyen (deb ir, deb).

Notons que ces quantités sont additives, et que nous avons donc les relations suivantes :

$$lgq_{i} = \sum_{\substack{r=1 \ R}}^{R} lgq_{ir}$$

$$util_{i} = \sum_{\substack{r=1 \ R}}^{} util_{ir}$$

$$deb_{i} = \sum_{\substack{r=1 \ R}}^{} deb_{ir}$$

III.1.2.1 - Cas général

Toutes les grandeurs citées plus haut se déduisent des probabilités marginales suivantes :

 $p_i(n_{i1}, n_{i2}, ..., n_{iR}) = Prob \{ n_{i1} \text{ clients de classe 1, ..., } n_{iR} \text{ clients de classe R} \}$

nous avons :

$$p_i(n_{i1}, n_{i2}, ..., n_{iR}) = 0$$
 sinon.

Définissons aussi les probabilités suivantes :

 $\mathbf{p_i(\bar{n}_{i1}, ..., \bar{n}_{iM})} = \text{Prob } \{ \ \bar{n_{i1}} \ \text{clients de sous-chaine } \mathbf{S_1, ..., \bar{n}_{iM}} \ \text{clients de sous-chaine } \mathbf{S_M}, \ \text{dans la station i} \}$

$$\begin{split} \mathbf{p}_{\mathbf{i}}(\bar{\mathbf{n}}_{\mathbf{i}1}, \dots, \bar{\mathbf{n}}_{\mathbf{i}M}) &= & \frac{1}{C} \, \mathbf{F}_{\mathbf{i}} \, (\bar{\mathbf{n}}_{1} - \bar{\mathbf{n}}_{\mathbf{i}1}, \dots, \bar{\mathbf{n}}_{M} - \bar{\mathbf{n}}_{\mathbf{i}M}) \, \mathbf{K}_{\mathbf{j}}(\bar{\mathbf{n}}_{\mathbf{i}1}, \dots, \bar{\mathbf{n}}_{\mathbf{i}M}) \\ &= & \mathbf{0} \quad \text{sinon} \, . \end{split}$$

Notons que :

$$\begin{split} \mathbf{p_{i}}(\mathbf{\bar{n}_{i1}}, \dots, \mathbf{\bar{n}_{iM}}) &= \sum & \dots & \sum & \mathbf{p_{i}}(\mathbf{n_{i1}}, \dots, \mathbf{n_{iR}}) \\ & \mathbf{r_{cS_{i}}}^{\Sigma n_{ir} = \mathbf{\bar{n}_{i1}}} & \mathbf{r_{cS_{iM}}}^{\Sigma n_{ir} = \mathbf{\bar{n}_{iM}}} \\ &= \frac{1}{C} \mathbf{F_{i}}(\mathbf{\bar{n}_{i}} - \mathbf{\bar{n}_{i1}}, \dots, \mathbf{\bar{n}_{M}} - \mathbf{\bar{n}_{iM}}) & \sum & \dots & \sum & \mathbf{H_{i}}(\mathbf{n_{i1}}, \dots, \mathbf{n_{iR}}) \\ & \mathbf{r_{cS_{i}}}^{\Sigma n_{ir} = \mathbf{\bar{n}_{i1}}} \mathbf{r_{cS_{iM}}}^{\Sigma n_{ir} = \mathbf{\bar{n}_{iM}}} \end{split}$$

i) taux d'utilisation

Pour des stations de type 1, 2 ou 3, nous définirons le taux d'utilisation pour la classe r comme la proportion de temps d'occupation du serveur par un client de classe r. Si la station i est dans l'état $N_{\bf i}=(n_{\bf i1},\ldots,n_{\bf iR})$ la probabilité qu'un client de classe r soit en cours de service est :

$$\frac{n_{ir}}{n_{i}} p_{i}(n_{i1},...,n_{iR}) \quad (cf. annexe II-1)$$

Si un client au moins est en cours de service. D'où:

$$util_{ir} = \sum_{\varepsilon - \{0, ..., 0\}} \frac{n_{ir}}{n_{i}} p_{i}(n_{i1}, ..., n_{iR})$$

Remarquons que util, est la probabilité que la station i soit occupée, d'où :

util_i =
$$1 - \frac{1}{C} F_i(\bar{N}_1, ..., \bar{N}_M)$$

Dans le cas d'une station à serveur infini, le taux d'utilisation pour une classe r est défini usuellement comme étant le nombre moyen de serveurs occupés par des clients de classe r. Cette définition coincide avec celle du nombre de moyen de clients de classe r dans la station et doit être utilisée pour vérifier les équations de Chang-Lavenberg [ChL72].

Cependant, elle ne permet pas d'obtenir la probabilité d'occupation de la station (vue comme un tout). Nous sommes alors amenés à définir le taux d'utilisation d'une station serveur infini i pour une classe r comme la proportion de service accordée à cette classe. Dans ce cas l'expression ci-dessus convient et la quantité :

$$util_{i} = \sum_{r=1}^{R} util_{ir}$$

donne la probabilité que la station i soit occupée. D'autre part nous avons vu qu'une station serveur infini est "équivalente" à une station PP avec un taux de service de la forme $u_{ir} = u_{ir}^0$ n (le terme "équivalente" est pris dans le sens d'une identité des distributions du nombre de clients dans la station). Le taux d'utilisation de la station SI calculé par la formule (2) est alors le même que pour la station PP équivalente.

ii) nombre moyen de clients

Soit L la variable aléatoire dont une réalisation est le nombre de clients de classe r dans la station i. Nous avons :

$$lgq_{ir} = E(L_{ir}) = \sum_{\substack{n_{ir} = 0}}^{N*} n_{ir} p_{ir}(n_{ir})$$

où $p_{ir}(n_{ir}) = Prob \{ n_{ir} \text{ clients de classe r dans la station i} \}$.

De façon évidente nous avons :

$$p_{ir}(n_{ir}) = \sum_{\substack{s=1 \\ s \neq r}}^{R} \sum_{\substack{n_{ir}=0}}^{\infty} p_{is}(n_{i1}, ..., n_{iR})$$

D'où :

$$lgq_{ir} = \sum_{n_{i1}=0}^{\infty} \dots \sum_{n_{iR}=0}^{\infty} n_{ir} p_{ir}(n_{i1}, \dots, n_{iR}) = \sum_{\epsilon} n_{ir} p_{ir}(n_{i1}, \dots, n_{iR})$$

iii) débit moyen

Pour une station de type 1, 2 ou 3 un client de classe r est en cours de service si la station i est dans l'état $N_i = (n_{i1},...,n_{iR})$ avec la probabilité :

$$\frac{n_{ir}}{n_{i}} p_{i}(n_{i1}, \dots, n_{iR})$$

Le client est servi suivant le taux $u_{ir} = u_{ir}^{0} b_{i}(n_{i})c_{ir}(n_{ir})$. D'où le débit :

$$deb_{ir} = \sum_{i} u_{ir}^{o} b_{i}(n_{i}) c_{ir}(n_{ir}) \frac{n_{ir}}{n_{i}} p_{i}(n_{i1}, ..., n_{iR})$$

$$= \sum_{i} u_{ir}^{o} b_{i}(n_{i}) c_{ir}(n_{ir}) \frac{n_{ir}}{n_{i}} F_{i}(\overline{N}_{1} - \overline{n}_{i1}, ..., \overline{N}_{M} - \overline{n}_{iM}) H_{i}(n_{i1}, ..., n_{iR})$$

$$e^{+}$$

$$avec e^{+} = e - \{0, ..., 0\}$$
(3)

si r $\in S_m$ alors:

$$\text{deb}_{\text{ir}} = \frac{e_{\text{ir}}}{c} \sum_{\bar{n}_{\text{i1}} = 0}^{\bar{N}_{\text{1}}} \cdots \sum_{\bar{n}_{\text{im}} = 1}^{\bar{N}_{\text{m}}} \cdots \sum_{\bar{n}_{\text{iM}} = 0}^{\bar{N}_{\text{n}}} F_{\text{i}}(\bar{N}_{\text{1}} - \bar{n}_{\text{i1}}, \dots, \bar{N}_{\text{M}} - \bar{n}_{\text{iM}}) H_{\text{i}}(n_{\text{i1}}, \dots, n_{\text{ir}} - 1, \dots, n_{\text{iR}})$$

d'où:

$$deb_{ir} = \frac{e_{ir}}{c} G(\overline{N}_1, ..., \overline{N}_m-1, ..., \overline{N}_M)$$

Dans le cas d'une station de type 4 et si cette station est dans l'état $N_i = (n_{i1}, \ldots, n_{iR})$ il y a n_{ir} serveurs dévolus à des clients de classe r. Ces clients sont servis avec le taux u_{ir}^0 . D'où le débit pour la classe r :

$$deb_{ir} = \sum_{\mathcal{E}^+} u_{ir}^0 n_{ir} p_i(n_{i1}, ..., n_{iR})$$

ce qui, formellement est un cas particulier de l'expression (3) lorsque le taux de service est u^0 n donc dans tous les cas, nous aurons :

$$deb_{ir} = \frac{e_{ir}}{c} G(\overline{N}_1, ..., \overline{N}_{m-1}, ..., \overline{N}_{M})$$

L'algorithme de calcul du taux d'utilisation et du nombre moyen de clients pour une station i sera donc :

```
procédure utilgen (F,H)
       util : = 0 ; lgq : = 0 ;
       pour r de 1 à R faire
             util_r := 0 ; lgq_r := 0
       pour n de 0 à Nt faire
      pour n<sub>R</sub>de 0 à N<sub>R</sub> faire
             pour m de 1 à M faire
                   \bar{n}_{m}: = \sum_{r \in S_{m}} n_{r}; n : = n + \bar{n}_{m};
                    si \bar{n}_{m} > \bar{N}_{m} alors aller en eti <u>fsi</u>
             fait;
             t := F(N_1 - \bar{n}_1, ..., N_M - \bar{n}_M) H(n_1, ..., n_R) ;
             pour r de 1 à R faire
                     \underline{\text{si}} \, \underline{\text{n}}_{r} \neq 0 \, \underline{\text{alors}}
                            util_{r} := util_{r} + \frac{r}{n} t ;
                            lgq_r := lgq_r + n_r t
                       fsi
             fait ;
eti : fait ;
        fait;
        pour r de 1 à R faire
              util_r : = util_r/C ; util : = util + util_r ;
              lgq_r : = lgq_r/C ; lgq = lgq + lgq_r
       fait ;
fin
```

Dans les cas particuliers que nous avions notés pour le calcul de la constante de normalisation certaines simplifications peuvent intervenir.

III.1.2.2 - Cas des stations à dépendance globale

Nous avons noté que dans ce cas, le calcul de la constante de normalisation pouvait être mené en utilisant directement les intensités de traffic cumulées au niveau des sous-chaines :

$$\bar{x}_{im} = \sum_{r \in S_m} x_{ir}$$

Nous pouvons calculer le taux d'utilisation et le nombre moyen de clients pour une sous-chaine m dans une station i par un algorithme identique au précédent mais simplifié. Nous nous proposons de montrer les résultats, assez intuitifs, suivants :

$$util_{ir} = \frac{x_{ir}}{x_{im}} util_{im}$$

$$lgq_{ir} = \frac{x_{ir}}{x_{im}} lgq_{im}$$

i) taux d'utilisation :

$$\begin{array}{l} {\rm util}_{\rm ir} = \sum\limits_{\mathfrak{G}^+} \frac{n_{\rm ir}}{n_{\rm i}} \; p_{\rm i}(n_{\rm i1}, \ldots, n_{\rm ir}) = \sum\limits_{\mathfrak{G}^+} \frac{n_{\rm ir}}{n_{\rm i}} \; F_{\rm i}(\overline{N}_{\rm i} - \overline{n}_{\rm i1}, \ldots, \overline{N}_{\rm M} - \overline{n}_{\rm iM}) H_{\rm i}(n_{\rm i1}, \ldots, n_{\rm iR}) \\ = \frac{1}{C} \sum\limits_{\substack{n_{\rm i1} = 0}} \cdots \sum\limits_{\substack{n_{\rm im} = 1}} \sum\limits_{\substack{n_{\rm im} = 0}} F_{\rm i}(\overline{N}_{\rm i} - \overline{n}_{\rm i1}, \ldots, \overline{N}_{\rm M} - \overline{n}_{\rm iM}) \sum\limits_{\substack{\Sigma \; n_{\rm is} = \overline{n}_{\rm i1} \\ s \in S_{\rm i}}} \sum\limits_{\substack{n_{\rm is} = \overline{n}_{\rm i1} \\ s \in S_{\rm is}}} \frac{n_{\rm ir}}{n_{\rm i}} \; H_{\rm i}(n_{\rm i1}, \ldots, n_{\rm iR}) \\ = \frac{x_{\rm ir}}{C} \sum\limits_{\substack{n_{\rm i1} = 0}} \cdots \sum\limits_{\substack{n_{\rm im} = 1}} \sum\limits_{\substack{n_{\rm im} = 0}} \sum\limits_{\substack{n_{\rm im} = 0}} F_{\rm i}(\overline{N}_{\rm i} - \overline{n}_{\rm i1}, \ldots, \overline{N}_{\rm M} - \overline{n}_{\rm iM}) \sum\limits_{\substack{\Sigma \; n_{\rm is} = \overline{n}_{\rm i1} \\ s \in S_{\rm is}}} \cdots \sum\limits_{\substack{n_{\rm is} = \overline{n}_{\rm iM}}} \frac{1}{b_{\rm i}(n_{\rm i1}, \ldots, n_{\rm ir} - 1, \ldots, n_{\rm iR})} \\ = \frac{x_{\rm ir}}{C} \sum\limits_{\substack{n_{\rm i1} = 0}} \sum\limits_{\substack{n_{\rm im} = 1}} \cdots \sum\limits_{\substack{n_{\rm im} = 0}} \frac{1}{b_{\rm i}(n_{\rm i})} \; F_{\rm i}(\overline{N}_{\rm i} - \overline{n}_{\rm i1}, \ldots, \overline{N}_{\rm im} - \overline{n}_{\rm iM}) K_{\rm i}(\overline{n}_{\rm i1}, \ldots, \overline{n}_{\rm im} - 1, \ldots, \overline{n}_{\rm iM}) \\ = \frac{x_{\rm ir}}{x_{\rm im}} \; \text{util}_{\rm im} \end{array} \quad \text{util}_{\rm im} \end{array}$$

ii) nombre moyen de clients :

$$lgq_{ir} = \sum_{\sigma^+} n_{ir} p_i(n_{i1}, ..., n_{iR}) = \sum_{\sigma^+} n_{ir} F_i(\overline{N}_1 - \overline{n}_{i1}, ..., \overline{N}_M - \overline{n}_{iM}) H_i(n_{i1}, ..., n_{iR})$$

$$= \frac{\frac{x_{ir}}{C} \sum_{n_{i1}=0}^{\overline{N}_{1}} \sum_{n_{im}=1}^{\overline{N}_{m}} \sum_{n_{iM}=0}^{\overline{N}_{M}} F_{i}(\overline{N}_{1}-\overline{n}_{i1}, \dots, \overline{N}_{M}-\overline{n}_{iM}) \sum_{\substack{\Sigma \\ s \in S_{1}}} \dots \sum_{\substack{\Sigma \\ s \in S_{M}}} \frac{n_{i}}{s \in S_{M}} \sum_{n_{is}=\overline{n}_{iM}=0}^{\overline{n}_{i}} F_{i}(n_{i1}, \dots, n_{iR})$$

$$= \frac{\frac{x_{ir}}{C} \sum_{n_{i1}=0}^{\overline{N}_{1}} \sum_{n_{im}=1}^{\overline{N}_{m}} \dots \sum_{n_{iM}=0}^{\overline{N}_{M}} F_{i}(\overline{N}_{1}-\overline{n}_{i1}, \dots, \overline{N}_{M}-\overline{n}_{iM}) \sum_{\substack{k \\ b_{i}(n_{i})}} K_{i}(\overline{n}_{i1}, \dots, \overline{n}_{im}-1, \dots, \overline{n}_{iM})$$

$$= \frac{x_{ir}}{C} \log_{im} .$$

Ces résultats ont une importance pratique non négligeable, en effet l'effort de calcul devra dans ce cas porter sur les sous-chaines et non sur les classes de clients, les premières pouvant être en nombre beaucoup plus faible que les dernières.

L'algorithme de calcul est le suivant :

```
procédure utilgdg (F, K,i)
         pour m de 1 à M faire
                 util_{m} := 0 ; lgq_{m} := 0
        pour n<sub>1</sub>de 0 à N<sub>1</sub> faire
        \underline{\text{pour}}\ n_{\underline{M}}\ \underline{\text{de}}\ 0\ \underline{\grave{\text{a}}}\ \overline{N}_{\underline{M}}\ \underline{\text{faire}}
                  n := 0 :
                  pour m de 1 à M faire
                           n := n + n_m
                  t := F(N_1-n_1,...,N_m-n_m) K(n_1,...,n_m) ;
                  pour m de 1 à M faire
                           \underline{\text{si}} \ n_{\underline{m}} \neq 0 \ \underline{\text{alors}}
                                  util_m := util_m \div \frac{n}{m} t ;
                                  lgq_{m} : = lgq_{m} + n_{m}t
                           fsi
                  fait
         fait ;
```

 $\frac{fait}{util} := 0 ; lgq := 0 ;$ $\frac{pour}{pour} r \stackrel{de}{de} 1 \stackrel{\grave{a}}{\underline{a}} R \stackrel{faire}{\underline{alors}}$ $\frac{si}{r} \in S_m \stackrel{alors}{\underline{alors}}$ $util_r := \frac{x}{\overline{x}_{im}} util_m ; util := util + util_r ;$ $lgq_r := \frac{x}{\overline{x}_{im}} lgq_m ; lgq := lgq + lgq_r$ $\frac{fsi}{fait} ;$ $\frac{fin}{\underline{fait}} ;$

III.1.2.3 - Cas des stations à taux constant

Ce cas est un cas particulier du précédent. Nous posons donc le problème du calcul des taux d'utilisation et du nombre moyen de clients au niveau des sous-chaines. Dans ce cas nous supposons non connues les matrices H_i , F_i et K_i .

i) taux d'utilisation

D'après le paragraphe précédant nous avons :

$$\text{util}_{\text{im}} = \frac{\overline{x}_{\text{im}}}{C} \sum_{n_{\text{i1}}=0}^{\overline{N}_{\text{1}}} \dots \sum_{n_{\text{im}}=1}^{\overline{N}_{\text{m}}} \dots \sum_{n_{\text{iM}}=0}^{\overline{N}_{\text{M}}} F_{\text{i}}(\overline{N}_{\text{1}}-\overline{n}_{\text{i1}},\dots,\overline{N}_{\text{M}}-\overline{n}_{\text{iM}}) K_{\text{i}}(\overline{n}_{\text{i1}},\dots,\overline{n}_{\text{im}}-1,\dots,\overline{n}_{\text{iM}})$$

d'où util_{im} =
$$\frac{\overline{x}_{im}}{c}$$
 $G(\overline{N}_1, ..., \overline{N}_m-1, ..., \overline{N}_M)$

ii) nombre moyen de clients

Soit $\mathbf{l_{im}}(\mathbf{z_{im}})$ la fonction génératrice associée aux probabilités suivantes :

 $p_{im}(\bar{n}_{im}) = Prob [\bar{n}_{im}]$ clients appartenant à la sous-chaine m dans la station i

soit $f_i(X_1,...,X_M) = \prod_{j \neq i} g_j(X_1,...,X_M)$

alors $l(z_{im})$ est le coefficient du monôme $X_1^{\overline{N}} \dots X_M^{\overline{N}}$ dans $f(X_1, \dots, X_m)$

$$\frac{1}{C} \frac{f_{\underline{i}}(X_1, \dots, X_{\underline{M}})}{1 - (\bar{x}_{\underline{i}1}X_1 + \dots + \bar{x}_{\underline{i}m}Z_{\underline{i}m}X_{\underline{M}} + \dots + \bar{x}_{\underline{i}M}X_{\underline{M}})}$$

ce que nous noterons :

$$1_{im}(z_{im}) = \frac{1}{C} \left[\frac{f_i(X_1, \dots, X_M)}{1 - (\overline{x}_{i1}, \overline{X}_1 + \dots + \overline{x}_{im} z_{im} X_m + \dots + \overline{x}_{iM} X_M)} \right]_{\overline{N}_1 \dots \overline{N}_M}$$

or :

$$lgq_{im} = l_{im}(1)$$

d'où

$$\log_{\text{im}} = \frac{1}{C} \left[\frac{f_{\text{i}}(X_{1}, \dots, X_{M})\overline{x}_{\text{im}} X_{\text{m}}}{(1 - (\overline{x}_{\text{i}1}X_{1} + \dots + \overline{x}_{\text{i}M}X_{M}))^{2}} \right] \overline{N}_{1} \dots \overline{N}_{M}$$

$$= \frac{1}{C} \left[\frac{g(X_{1}, \dots, X_{M})\overline{x}_{\text{im}} X_{\text{m}}}{1 - (\overline{x}_{\text{i}1}X_{1} + \dots + \overline{x}_{\text{i}M}X_{M})} \right] \overline{N}_{1} \dots \overline{N}_{M}$$

donc si nous notons ${\tt G}_{\tt i}$ la matrice obtenue par convolution de ${\tt G}$ en utilisant la procédure convtfx appliquée à la station i, nous aurons :

$$\log_{im} = \frac{\overline{x}_{im}}{C} G_i(\overline{N}_1, ..., \overline{N}_{m}-1, ..., \overline{N}_{M})$$

III.1.2.4 - Nombre moyen de clients dans le cas d'une station à
serveur infini

De même que précédemment nous avons :

$$\mathbf{1}_{\text{im}}(\mathbf{z}_{\text{im}}) = \frac{1}{C}[\mathbf{f}_{\text{i}}(\mathbf{X}_{1}, \dots, \mathbf{X}_{M}) \text{ exp } (\overline{\mathbf{x}}_{\text{i}1}\mathbf{X}_{1} + \dots + \overline{\mathbf{x}}_{\text{im}}\mathbf{X}_{m}\mathbf{z}_{\text{im}} + \dots + \overline{\mathbf{x}}_{\text{i}M}\mathbf{X}_{M})]_{\overline{\mathbf{N}}_{1}\dots\overline{\mathbf{N}}_{M}}$$

d'où

III.1.3 - Grandeurs diverses

i) Temps de réponse moyen

A l'état stationnaire, nous utiliserons la formule de Little [Lit71] :

$$resp_{ir} = \frac{lgq_{ir}}{deb_{ir}}$$

$$\operatorname{resp}_{\mathbf{i}} = \frac{\operatorname{lgq}_{\mathbf{i}}}{\operatorname{deb}_{\mathbf{i}}}$$

ii) Temps moyen de service

Pour des stations de type 1, 2 ou 3 nous aurons :

$$\operatorname{serv}_{ir} = \frac{\operatorname{util}_{ir}}{\operatorname{deb}_{ir}} \quad \operatorname{serv}_{i} = \frac{\operatorname{util}_{i}}{\operatorname{deb}_{i}}$$

$$serv_i = \frac{util_i}{deb_i}$$

Dans le cas d'une station de type 4, le temps moyen de service est égal au temps de réponse (pas d'attente).

iii) Probabilités marginales

Nous avons noté que :

$$\mathbf{P}_{\mathbf{i}}(\mathbf{n}_{\mathbf{i}1}, \dots, \mathbf{n}_{\mathbf{i}R}) = \frac{1}{C} \quad \mathbf{F}_{\mathbf{i}}(\overline{\mathbf{N}}_{1} - \overline{\mathbf{n}}_{\mathbf{i}1}, \dots, \overline{\mathbf{N}}_{M} - \overline{\mathbf{n}}_{\mathbf{i}M}) \mathbf{H}_{\mathbf{i}}(\mathbf{n}_{\mathbf{i}1}, \dots, \mathbf{n}_{\mathbf{i}R})$$

avec
$$\bar{n}_{im} = \sum_{r \in S_m} n_{ir}$$
.

- Dans le cas général (dépendance globale et dépendance par classe), nous disposons des matrices $\mathbf{F}_{\mathbf{i}}$ et $\mathbf{H}_{\mathbf{i}}$ et le calcul est peu coûteux.
- Dans le cas de dépendance globale ou de stations à serveur infini, il est nécessaire de calculer les éléments de la matrice $\mathbf{H}_{\underline{i}}$.
- Dans le cas de stations à taux fixe, nous ne disposons ri de la matrice $\mathbf{H}_{\mathbf{i}}$ ni de la matrice $\mathbf{F}_{\mathbf{i}}$. La matrice $\mathbf{H}_{\mathbf{i}}$ s'obtlent en utilisant la procédure assgen (ou convtfx légèrement adaptée). La matrice F, s'obtient par déconvolution en se rappelant que :

$$\begin{split} \mathbf{F}_{\mathbf{i}}(\overline{\mathbf{N}}_{1}-\overline{\mathbf{n}}_{\mathbf{i}1},\ldots,\overline{\mathbf{N}}_{\mathbf{M}}-\overline{\mathbf{n}}_{\mathbf{i}M}) &= \mathbf{G}(\overline{\mathbf{N}}_{1}-\overline{\mathbf{n}}_{\mathbf{i}1},\ldots,\overline{\mathbf{N}}_{\mathbf{M}}-\overline{\mathbf{n}}_{\mathbf{i}M}) \\ &-\sum_{\mathbf{m}=1}^{\mathbf{M}} \overline{\mathbf{x}}_{\mathbf{i}\mathbf{m}} \mathbf{G}(\overline{\mathbf{N}}_{1}-\overline{\mathbf{n}}_{\mathbf{i}1},\ldots,\overline{\mathbf{N}}_{\mathbf{m}}-1-\overline{\mathbf{n}}_{\mathbf{i}\mathbf{m}},\ldots,\overline{\mathbf{N}}_{\mathbf{M}}-\overline{\mathbf{n}}_{\mathbf{i}M}) \\ &\overline{\mathbf{n}}_{\mathbf{i}\mathbf{m}} \neq \mathbf{N}_{\mathbf{m}} \end{split}$$

Le calcul est alors possible sans trop perdre des avantages notés dans les calculs relatifs aux stations à taux constant. Le problème concerne principalement la précision de calcul, assez médiocre (Nous avons obtenu dans un cas des valeurs négatives pour les probabilités de l'ordre de 10⁻⁶ et moins).

Ce calcul des probabilités marginales est intéressant par les grandeurs que nous pouvons en déduire, par exemple :

- Distribution du nombre total de clients dans une station (utilisée en modélisation hiérarchique, ou pour des modèles décomposables.
- Taux d'arrivées conditionnés par le nombre de clients dans une station (résolution approchée de modèles ne vérifiant pas les hypothèses BCMP).
 - Variance de la distribution du nombre de clients dans une station.

III.1.4 - Problèmes d'implémentation

III.1.4.1 - Espace mémoire

En ce qui concerne la réalisation pratique des algorithmes que nous avons présentés divers choix sont possibles suivant les contingences de temps et/ou d'espace mémoire disponible. Le tableau ci-desous indique la place nécessaire pour chaque étape de calcul (chaque étape partant sur une station).

type de station	Constante de normalisation	Grandeur élémentaire (*)
à taux fixe	G(0: N ₁ ,,0: N _M)	$G(0:\overline{N}_{1},,0:\overline{N}_{M})$ $G_{1}(0:\overline{N}_{1},,0:\overline{N}_{M})$
à serveur infini ou à dépendance globale	$G(0:\overline{N}_{1},,0:\overline{N}_{M})$ $K_{j}(0:\overline{N}_{1},,0:\overline{N}_{M})$	$K_{j}(0:\overline{N}_{1},\ldots,0:\overline{N}_{M})$ $F_{j}(0:\overline{N}_{1},\ldots,0:\overline{N}_{M})$
à dépendance par classe (générale)	$G(0:\overline{N}_{1},,0:\overline{N}_{M})$ $H_{J}(0:N_{1}^{*},,0;N_{R}^{*})$	$H_{j}(O: N_{1}^{*},, O: N_{R}^{*})$ $F_{j}(O: \overline{N}_{1},, O: \overline{N}_{M})$

(*) non compris le calcul des probabilités marginales.

Donc en théorie nous pouvons nous contenter de ne conserver en mémoire qu'une zone de $\sum_{m=1}^{\Sigma} (\overline{N}_m + 1) + \sum_{r=1}^{\Sigma} (N_r^* + 1)$ mots (tout au moins en ce qui concerne les matrices de travail).

En pratique, une telle solution nécessite des écritures et lectures sur mémoire secondaire et/ou d'effectuer deux fois certains calculs $(F_j$ et K_j ou H_j), ceci au préjudice du temps d'exécution.

III.1.4.2 - Contrôle des débordements

La constante de normalisation d'un réseau fermé est donc obtenue comme somme d'un nombre qui peut être grand de termes positifs. Nous concevons bien que des problèmes de débordement peuvent se poser.

Les causes de débordement sont liées aux valeurs de N (m:1-M) et des x_{ir} (i:1-I; r:1-R) en supposant que les u_{ir}^0 sont choisis de façon à n'avoir pas de problèmes avec les fonctions B et C iv. Nous savons que les intensités de trafic x_{ir} sont, pour les sous-chaînes fermées, définies à une constante multiplicative près.

Le principe de contrôle des débordements consistera alors à déterminer un facteur a (a < 1 dans le cas de débordement vers le haut, a > 1 dans le cas de débordement vers le haut, a > 1 dans le cas de débordement vers le bas) tel que la constante de normalisation calculée avec les intensités de trafic ax soit correctement évaluée. Notons cependant qu'il n'existe pas nécessairement de valeur de a prévenant à la fois un débordement vers le haut et vers le bas pour la matrice G (dans ce cas, il faudrait prévoir des coefficients différents suivant l'endroit où l'on se trouve dans G). Nous indiquons dans la suite des méthodes tendant à régler le problème dans la majorité des cas pratiques.

i) prévention des débordements hauts :

De façon évidente la constante de mormalisation C est majorée par :

$$C_{o} = \sum_{\substack{n_{ir} \geq 0 \text{ i=1} \\ n_{ir} \geq 0 \text{ i=1}}}^{\prod} n_{i}! B_{i}(n_{i}) \prod_{r=1}^{R} \frac{1}{n_{ir}!} C_{ir}(n_{ir}) x_{ir}^{n_{ir}}$$

$$\forall i \forall r$$

$$= \prod_{\substack{i=1 \\ i=1}}^{\prod} \sum_{\substack{n_{ir} \geq 0 \\ \forall r}} n_{i}! B_{i}(n_{i}) \prod_{r \neq 1}^{R} \frac{1}{n_{ir}!} C_{ir}(n_{ir}) x_{ir}^{n_{ir}}$$

En posant
$$B_i(n_i) = 1$$
 $n_i > \overline{N}_1 + \dots + \overline{N}_M = \overline{N}$ (nombre total de clients dans $C_{ir}(n_{it}) = 1$ pour $n_{ir} > N_r^*$ le réseau)

Soit
$$b_i = \max_{n_i \ge 0} [B_i(n_i)]$$

$$c_{ir} = \max_{n_i \ge 0} [c_{ir}(n_{ir})]$$

$$\bar{x}_i = \sum_{r=1}^{\infty} x_{ir}$$

Nous supposerons que sauf pour les stations à serveur infini \bar{x}_i < 1

alors:
$$C_0 \leq \prod_{i=1}^{i_0} \exp(\overline{x}_i) \prod_{i=i_0+1}^{R} b_i \prod_{r=1}^{R} c_i \frac{1}{1-\overline{x}_i} = C_1$$

Si $^{\rm C}_{1}$ est inférieur au maximum admissible (soit $^{\delta}_{+}$) alors la constante de normalisation le sera.

Sinon, il faudra choisir un coefficient multiplicatif a (< 1) des intensités de trafic tel que :

$$\frac{\log \delta - \log C_1}{\bar{N}}$$

ii) choix heuristique des intensités de trafic

Une solution heuristique proposée par Balbo et al. [BaB77] consiste à minimiser la distance des intensités de trafic par rapport à 1, la distance choisie étant la distance quadratique. Nous obtenons le coefficient multiplicateur suivant :

$$a = \frac{\sum_{i=1}^{I} \sum_{r=1}^{R} x_{ir}}{\sum_{i=1}^{I} \sum_{r=1}^{R} x_{ir}^{2}}$$

Le défaut de cette méthode est d'être inefficace dans le cas où les intensités de trafic ont des ordres de grandeur très différents.

iii) contrôle "dynamique"

Le principe de la méthode est de tester un débordement éventuel des éléments de la matrice G (après une première initialisation des intensités de trafic par i) ou ii)) et si l'indice (n_1,\ldots,n_M) est le premier pour lequel

un débordement se produit, recommencer le calcul avec des intensités de trafic corrigées par un facteur a (n_1,\ldots,n_M) de façon à ce que $G(\overline{N}_1,\ldots,\overline{N}_M)$ ne déborde pas.

Tout le problème est donc de calculer $a(n_1,\ldots,n_M)$, ce qui dans notre cas a été résolu de façon parfaitement heuristique de la manière suivante :

Nous supposons que les éléments de G sont de la forme :

$$G(n_{1},...,n_{M}) = \alpha^{n_{1}+...+n_{M}} \text{ dans le cas d'overflow } (\alpha > 0)$$

$$-(n_{1}+...+n_{M}) \text{ dans le cas d'underflow } (\beta > 0)$$

Si $G(n_1, \ldots, n_M)$ est la première valeur en overflow par exemple nous aurons :

$$G(n_1,...,n_M) \simeq \delta_L$$

donc $a(n_1, ..., n_M)$ tel que :

$$\frac{\alpha}{a(n_1,\ldots,n_M)} < \delta_+ \\ (\frac{1}{n_1+\ldots+n_M} - \frac{1}{\bar{N}+1}) \log \delta^+$$
 et
$$a(n_1,\ldots,n_M) > e$$

L'avantage essentiel de cette méthode est de permettre le calcul de la constante de normalisation même si l'initialisation des intensités de trafic n'est pas bonne.

Son inconvénient principal est de nécessiter parfois plusieurs itérations avant d'aboutir à un résultat.

III.2 - Réseaux ouverts

Pour un réseau ouvert, défini selon les hypothèses du paragraphe II-1, le nombre de clients dans chaque sous-chaine n'est pas limité. La constante de normalisation s'écrit alors :

$$C = \sum_{\substack{n_1 \geq 0}} \dots \sum_{\substack{n_1 \geq 0}} d(E) \prod_{i=1}^{I} n_i! B_i(n_i) \prod_{r=1}^{R} C_{ir}(n_{ir}) \frac{1}{n_{ir}!} (\frac{e_{ir}}{u_{ir}})^{n_{ir}}$$

Le réseau sera dit stable si la constante C est finie. Dans la suite de ce paragraphe nous ne développerons que les calculs qui ont conduit

à une réalisation dans la version actuelle de QNAP (Avril 1978) et qui couvrent la plus grande partie des cas pratiques.

Les hypothèses limitatives suivantes ont été introduites :

1 Les taux d'arrivée externes sont constants :

- globaux : $\forall n$, $v(n) = v_0$

- par sous-chaines : $\forall S_m$, $\forall n_m$, $v_m(n_m) = v_{om}$

dans la suite les intensités de trafic sont définies par :

$$- x_{ir} = \frac{e_{ir} v_{o}}{v_{ir}^{o}}$$

$$- x_{ir} = \frac{e_{ir} v_{om}}{v_{ir}^{o}} \quad \text{si } r \in S_{m}$$

2 Nous supposerons que pour une station i de type 1, 2 ou 3 le taux de service u pour une classe r ne dépend que du nombre total de clients dans la station suivant les relations :

III.2.1 - Calcul de la constante de normalisation

L'hypothèse (1) conduit au résultat suivant :

$$C = \prod_{i=1}^{I} \sum_{n_i \ge 0} n_i! B_i(n_i) \prod_{r=1}^{R} C_{ir}(n_{ir}) \frac{1}{n_{ir}!} x_{ir}^{n_{ir}}$$

soit :

$$C = \prod_{i=1}^{I} \sum_{\substack{n_{i1} \geq 0}} \dots \sum_{\substack{n_{iR} \geq 0}} H_{i}(n_{i1}, \dots, n_{iR})$$

$$C = \prod_{i=1}^{I} C_{i}$$

Cette relation traduit la mutuelle indépendance des stations qui composent le réseau. La stabilité du réseau résulte donc de la stabilité de chacune des stations.

L'hypothèse (2) nous permet d'écrire :

$$\sum_{\substack{n_{i} \geq 0}} \dots \sum_{\substack{n_{i} \geq 0}} B_{i}(n_{i1}, \dots, n_{iR}) = \sum_{\substack{n_{i} = 0}}^{\infty} B_{i}(n_{i}) x_{i}^{n_{i}}$$
où $x_{i} = \sum_{r=1}^{\infty} x_{ir}$

En conséquence le réseau est stable si et seulement si pour toute station i la série de terme général $B_i(n_i)x_i^{n_i}$ converge. Le problème est donc double soit :

- a) démontrer la convergence de cette série de façon automatique,
- b) en calculer pratiquement la somme.

Or, pour les stations à taux fixe, à serveur infini ou dans le cadre de l'hypothèse 2 (dont une motivation pratique est le fait qu'il parait difficile de fournir les valeurs $b_i(n_i)$ pour toute valeur positive de n_i), nous pouvons conclure a priori à partir des intensités de trafic :

i) station à taux fixe :

$$C_{\mathbf{i}} = \sum_{n_{\mathbf{i}} = 0} B_{\mathbf{i}}(n_{\mathbf{i}}) x_{\mathbf{i}}^{n_{\mathbf{i}}} = \sum_{n_{\mathbf{i}} = 0}^{\infty} x_{\mathbf{i}}^{n_{\mathbf{i}}}$$

$$si \quad x_i < 1 \qquad C_i = \frac{1}{1 - x_i}$$

ii) station à serveur infini :

$$C_{i} = \sum_{n_{i}=0}^{\infty} \frac{x_{i}^{n_{i}}}{n_{i}!}$$

$$\forall x_i$$
 $C_i = exp(x_i)$

iii) station à dépendance globale limitée

$$B_{\mathbf{i}}(n_{\mathbf{i}}) = \prod_{k=1}^{n_{\mathbf{i}}} \frac{1}{b_{\mathbf{i}}(k)} \text{ donc pour } n_{\mathbf{i}} \ge d_{\mathbf{i}} B_{\mathbf{i}}(k) = B_{\mathbf{i}}(d_{\mathbf{i}} - 1)$$

En conséquence :

$$C_{i} = \sum_{n_{i}=0}^{d_{i}-1} B_{i}(n_{i})x_{i}^{n_{i}} + B_{i}(d_{i}-1)\sum_{n_{i}=d_{i}}^{\infty} x_{i}^{n_{i}}$$

si
$$x_{i} < 1$$

$$C_{i} = \frac{B_{i}(d_{i}-1)x_{i}}{1-x_{i}} + \sum_{n_{i}=0}^{d_{i}-1} B_{i}(n_{i})x_{i}^{n_{i}}$$

Remarque :

On notera en particulier que l'on retrouve bien les constantes de normalisation des stations M/M/1 et M/G/∞ isolées.

III.2.2 - Grandeurs élémentaires

Les probabilités marginales définies au paragraphe III.1.2.1 sont données par :

$$p_{i}(n_{i1},...,n_{iR}) = \frac{1}{C_{i}} n_{i}! B_{i}(n_{i}) \prod_{r=1}^{R} \frac{x_{ir}}{n_{ir}!}$$

$$p_{i}(n_{i}) = \frac{1}{C_{i}} B_{i}(n_{i}) x_{i}^{n_{i}}$$

Nous en déduisons les résultats suivants :

III.2.2.1 - Débits moyens

$$\begin{split} \det_{\text{ir}} &= \sum_{\substack{n_{i1} \geq 0 \\ n_{i1} \geq 0}} \dots \sum_{\substack{n_{iR} \geq 0}} u_{\text{ir}}^{\text{b}} \, b_{\text{i}}(n_{\text{i}}) \, \frac{n_{\text{ir}}}{n_{\text{i}}} \, p_{\text{i}}(n_{\text{i1}}, \dots, n_{\text{iR}}) \\ &= \sum_{\substack{n_{i1} \geq 0 \\ n_{\text{i}1} \geq 0}} \dots \sum_{\substack{n_{iR} \geq 0}} \sum_{\substack{x_{\text{ir}}} u_{\text{ir}}^{\text{o}} \, B_{\text{i}}(n_{\text{i}}-1)(n_{\text{i}}-1)!} (\frac{R}{n_{\text{i}}-1})! (\frac{R}{n_{i$$

Donc dans tous les cas où la constante de normalisation est finie :

III.2.2.2 - Taux d'utilisation

$$util_{ir} = \sum_{\substack{n_{i1} \ge 0}} \dots \sum_{\substack{n_{iR} \ge 0}} \frac{n_{ir}}{n_i} p_i(n_{i1}, \dots, n_{iR})$$

$$= x_{\underset{1}{\text{ir}} \underset{1}{\sum}} \cdots \underset{n_{\underline{i}R} \geq 0}{\sum} \frac{p_{\underline{i}}(n_{\underline{i}1}, \dots, n_{\underline{i}R})}{b_{\underline{i}}(n_{\underline{i}+1})}$$

Nous pouvons remarquer que le rapport des taux d'utilisation de deux classes est égal au rapport des intensités de trafic. D'autre part, d'après notre définition du taux d'utilisation, le taux d'utilisation pour la station i est trivialement égal à 1 $-\frac{1}{C}$, d'où dans tous les cas considérés :

 $util_{ir} = \frac{x_{ir}}{x_{ir}} \cdot \frac{C_{i}-1}{C_{i}}$

III.2.2.3 - Nombre de clients dans la station

$$\begin{split} & \underset{n_{i1} \geq 0}{\operatorname{Lgq}_{ir}} & = \underset{n_{iR} \geq 0}{\sum} \cdots \underset{n_{iR} \geq 0}{\sum} & \underset{n_{ir} \geq 0}{\operatorname{n_{ir}}} & \underset{p_{i}(n_{i1}, \dots, n_{iR})}{\operatorname{p_{i}(n_{i1}, \dots, n_{iR})}} \\ & = \underset{n_{i1} \geq 0}{\times} \cdots \underset{n_{iR} \geq 0}{\sum} & \frac{(n_{i+1})p_{i}(n_{i1}, \dots, n_{iR})}{b_{i}(n_{i+1})} \end{split}$$

De même que précédemment, nous sommes ramenés au calcul du nombre moyen de clients dans la station avec :

$$\lg q_{ir} = \frac{x_{ir}}{x_{i}} \lg q_{i}$$

Soit $l_i(z_i)$ la fonction génératrice des probabilités marginales $p_i(n_i)$:

$$l_{i}(z_{i}) = \sum_{n_{i} \ge 0} p_{i}(n_{i})z_{i}^{n_{i}} = \frac{1}{C_{i}} \sum_{n_{i} \ge 0} B_{i}(n_{i})x_{i}^{n_{i}} z_{i}^{n_{i}}$$

et on a: $lgq_i = l_i(1)$

i) stations à taux fixe :

$$l_{i}(z_{i}) = \frac{1}{C_{i}} \frac{1}{1 - x_{i}z_{i}} \qquad d^{1}où \qquad lgq_{i} = \frac{x_{i}}{1 - x_{i}}$$

ii) stations à serveur infini :

$$l_{i}(z_{i}) = \frac{1}{C_{i}} \exp(x_{i}z_{i}) \quad \text{d'où} \quad lgq_{i} = x_{i}$$

iii) stations à dépendance globale limitée

$$1_{\underline{z}}(z_{\underline{i}}) = \frac{1}{C_{\underline{i}}} \left[\frac{b_{\underline{i}}(d_{\underline{i}}-1)(x_{\underline{i}}z_{\underline{i}})^{d_{\underline{i}}} + \sum_{k=0}^{d_{\underline{i}}-1} B_{\underline{i}}(k)(x_{\underline{i}}z_{\underline{i}})^{k} \right]$$
soit
$$1gq_{\underline{i}} = \frac{1}{C_{\underline{i}}} \left[\frac{B_{\underline{i}}(d_{\underline{i}}-1)x_{\underline{i}}^{d_{\underline{i}}}}{(1-x_{\underline{i}})^{2}} (x_{\underline{i}}+d_{\underline{i}}(1-x_{\underline{i}})) + \sum_{k=0}^{d_{\underline{i}}-1} (k+1)B_{\underline{i}}(k+1)x_{\underline{i}}^{k} \right]$$

De même, nous pouvons calculer la variance des probabilités marginales $p_i(n_i)$:

$$var_{i} = l_{i}(1) + l_{i}(1)(1 - l_{i}(1))$$

i) station à taux fixe :

$$var_{i} = \frac{x_{i}}{(1-x_{i})^{2}}$$

ii) station à serveur infini :

iii) station à dépendance globale limitée

$$var_{i} = \frac{1}{C_{i}^{i}} \left[\frac{B_{i}(d_{i}-1)x_{i}}{(1-x_{i})^{3}} (d_{i}(d_{i}-1)+2d_{i}(1-d_{i})x_{i}+(1-d_{i})(2-d_{i})x_{i}^{2}) + \frac{d_{i}-3}{(k+1)(k+2)B_{i}(k+2)} x_{i}^{k} \right] + 2d_{i}(1-d_{i})x_{i} + 2d_{i}(1-d_{i})x_{i}$$

III.3 - Réseaux mixtes

Dans la suite, nous supposerons que le réseau composé de :

- .M₁ sous-chaines ouvertes (de 1 à M₁) correspondant à R₁ classes (de 1 à R₁)
- .M2 sous-chaines fermées (de M1+ 1 à M) correspondant à R2 classes (de R1+ 1 à R2)

Rappelons qu'un état du réseau est défini par :

$$E = (N_1, N_2, \dots, N_I)$$

avec

$$N_{i} = (n_{i1}, ..., n_{iR})$$

où n est le nombre de clients de classe r dans la station i. Un état E est admissible si et seulement si :

•
$$\forall i \forall r \quad n_{ir} \geq 0$$

.
$$\forall$$
 S_m fermée $\sum_{i=1}^{I} \sum_{r \in S_m} n_{ir} = \overline{N}_m$

Nous adopterons les notations suivantes :

$$\begin{split} \mathcal{S}_{1} &= \{ (n_{11}, \dots, n_{1R_{\hat{1}}}; \dots; n_{\text{II}}, \dots, n_{\text{IR}_{1}}) / \; \forall i, \; \forall r \; \in [1, R_{1}] \;, \; n_{\text{ir}} \geq 0 \; \} \\ \\ \mathcal{S}_{j1} &= \{ (n_{j1}, \dots, n_{jR_{\hat{1}}}) \; / \; \forall r \; \in [1, R_{1}] \;, \; n_{jr} \geq 0 \; \} \\ \\ \mathcal{S}_{2} &= \{ (n_{1R_{\hat{1}}+1}, \dots, n_{1R}; \dots; n_{\text{IR}_{\hat{1}}+1}, \dots, n_{\text{IR}}) \; / \; \forall i, \; \forall m, \; \sum_{i=1}^{I} \; \sum_{r \in S_{m}} = \; \overline{N}_{m} \; \} \\ \\ \mathcal{S}_{j2} &= \{ (n_{jR_{\hat{1}}+1}, \dots, n_{jR}) \; / \; \forall m, \; 0 \leq \sum_{r \in S_{m}} n_{jr} \leq \; \overline{N}_{m} \; \} \end{split}$$

Les problèmes à résoudre dans le cas des réseaux mixtes sont doubles :

- i) Problème d'existence d'une solution stable, dû à la présence des sous-chaines ouvertes,
- ii) Prise en compte de la condition partant sur les souséchaines fermées : $\forall m \sum_{i=1}^{n} \sum_{r \in S_m} n_{ir} = \bar{N}_m$.

D'autre part, dans la version actuelle de QNAP, les sous-chaines ouvertes doivent vérifier les conditions 1 et 2 déjà imposées pour les réseaux ouverts.

III.3.1 - Calcul de la constante de normalisation

En fonction des hypothèses retenues, la constante de normalisation s'écrit :

$$C = \sum_{\delta_1, \delta_2} \sum_{i=1}^{\Pi} B_i(n_i) n_i! \prod_{r=1}^{R_1} \frac{x_i}{n_{ir}!} \prod_{r=R_1+1}^{R_1} \frac{x_i}{n_{ir}!} C_{ir}(n_{ir})$$

Soit :

$$C = \sum_{\substack{\mathcal{S}_{2} \text{ i=1} \\ r=R_{1}+1}}^{\text{I}} \prod_{\substack{\mathcal{C}_{ir}(n_{ir}) \\ \text{ir}}}^{\text{R}} \sum_{\substack{\text{nir} \\ \text{nir}}}^{\text{nir}} \prod_{\substack{\mathcal{S}_{i} \\ \text{si}_{1}}}^{\text{R}} \prod_{\substack{\text{in} \\ \text{in}}}^{\text{R}} \prod_{\substack{\text{in} \\ \text{in}}}^{\text{nir}} \prod_{\substack{\text{nir} \\ \text{nir}}}^{\text{nir}} \prod_{\substack{\text{n$$

posons:
$$\bar{n}_i = \sum_{r=R_1+1}^{R} n_{ir}$$
 et $x_i^o = \sum_{r=1}^{R_1} x_{ir}$

et
$$\overline{B}_{i}(\overline{n}_{i}) = \frac{1}{\overline{n}_{i}!} \sum_{\delta_{i1}} B_{i}(n_{i})n_{i}! \prod_{r=1}^{R_{1}} \frac{x_{ir}^{n_{ir}}}{n_{ir}!} = \frac{1}{\overline{n}_{i}!} \sum_{k=0}^{\infty} B_{i}(\overline{n}_{i}+k) \frac{(\overline{n}_{i}+k)!}{k!} x_{i}^{\underline{n}}$$

Si pour toute valeur de \bar{n}_i (en nombre fini) $\bar{B}_i(\bar{n}_i)$ est fini alors le réseau est stable, et la constante de normalisation s'écrit :

$$C = \sum_{\mathcal{E}_2} \prod_{i=1}^{I} \overline{B}_i(\overline{n}_i) \overline{n}_i ! \prod_{r=R_1+1}^{R} C_{ir}(n_{ir}) \frac{x_{ir}}{n_{ir}!}$$

et nous sommes ramenés au calcul de la constante de normalisation d'un réseau fermé.

Donc le calcul de la constante de normalisation d'un réseau mixte pourra s'effectuer en deux étapes :

- 1) Calcul pour chaque station i de la fonction $\bar{B}_i(\bar{n}_i)$ pour toute valeur de \bar{n}_i inférieure ou égale au nombre total de clients dans les souschaines fermées.
- 2) Calcul de la constante de normalisation du réseau fermé constitué par les sous-chaines fermées, avec des taux de service modifiés. Notons que pour chaque valeur de \bar{n}_i le calcul de $\bar{B}_i(\bar{n}_i)$ est un calcul de constante de normalisation pour un réseau ouvert.

III.3.1.1 - Stations à taux fixe

$$\overline{B}_{\mathbf{i}}(\overline{n}_{\mathbf{i}}) = \frac{1}{\overline{n}_{\mathbf{i}}!} \sum_{\substack{n_{\mathbf{i}1} \geq 0}} \dots \sum_{\substack{n_{\mathbf{i}R_{\mathbf{i}}} \geq 0}} n_{\mathbf{i}}! \prod_{\substack{r=1 \\ r=1}}^{R_{\mathbf{i}}} \frac{x_{\mathbf{i}r}}{n_{\mathbf{i}r}!} = \frac{1}{\overline{n}_{\mathbf{i}}!} \sum_{k=0}^{\infty} \frac{(\overline{n}_{\mathbf{i}} + k)!}{k!} x_{\mathbf{i}}^{\circ}$$

$$\overset{R}{\mathbf{i}}$$

$$\overset{R}{\mathbf{i}}$$

$$\overset{R}{\mathbf{i}}$$

$$\overset{R}{\mathbf{i}}$$

$$\overset{R}{\mathbf{i}}$$

$$\overset{R}{\mathbf{i}}$$

donc si $x_i^0 < 1$ alors

$$\bar{B}_{i}(\bar{n}_{i}) = \frac{1}{(1-x_{i}^{0})^{\bar{n}}i^{+1}}$$

D'où, en conservant les notations utilisées pour un réseau fermé, l'étape i du calcul de la constante de normalisation sera constitué de la séquence suivante :

1) modifier les valeurs des intensités de trafic des appartenant à des sousichaines fermées :

$$x_{ir} := x_{ir} / (1 - x_i^0)$$

- 2) appliquer la procédure convtfx comme pour un réseau fermé
- 3) multiplier par $1/(1-x_{i}^{0})$ tous les éléments de G

III.3.1.2 - Stations à serveur infini

$$\begin{split} \overline{\mathbb{B}}_{\mathbf{l}}^{\prime}(\overline{\mathbf{n}}_{\mathbf{i}}) &= \frac{1}{\overline{\mathbf{n}}_{\mathbf{i}}!} \sum_{\substack{\mathbf{n}_{\mathbf{i}} \geq 0 \\ \mathbf{n}_{\mathbf{i}} \geq 0}} \cdots \sum_{\substack{\mathbf{n}_{\mathbf{i}} \geq 0 \\ \mathbf{n}_{\mathbf{i}} \mathbf{R}_{\mathbf{l}}}} \mathbf{n}_{\mathbf{i}\mathbf{r}}!} \mathbf{n}_{\mathbf{i}\mathbf{r}}! = \frac{1}{\overline{\mathbf{n}}_{\mathbf{i}}!} \sum_{\mathbf{k} = 0}^{\infty} \frac{\mathbf{x}_{\mathbf{i}}^{0}}{\mathbf{k}!} \\ \mathbf{d}^{\prime} \mathbf{o} \mathbf{u} : \quad \overline{\mathbb{B}}_{\mathbf{i}}(\overline{\mathbf{n}}_{\mathbf{i}}) &= \frac{\exp\left(\mathbf{x}_{\mathbf{i}}^{0}\right)}{\overline{\mathbf{n}}_{\mathbf{i}}!} \end{split}$$

Donc la contribution des sous-chaines ouvertes est réduite à une constante $\exp(x_i^0)$. Le calcul peut donc être mené comme pour un réseau fermé sans tenir compte des sous-chaines ouvertes et en multipliant la matrice G par $\exp(x_i^0)$ en fin de calcul.

III.3.1.3 - Stations à dépendance globale limitée

Rappelons que dans ce cas, le taux de service, d'une station i pour une classe r appartenant à une sous-chaine ouverte, ne dépend que du nombre total de clients, de telle façon que :

$$\begin{cases} u_{ir} = u_{ir}^{0} b_{i}(n_{i}) & \text{si} \quad n_{i} < d_{i} \\ u_{ir} = u_{ir}^{0} & \text{si} \quad n_{i} \ge d_{i} \end{cases}$$

$$i) \quad \bar{n}_{i} \ge d_{i}$$

$$\begin{split} & \bar{\mathbf{n}}_{\underline{\mathbf{i}}} \! : \; \bar{\mathbf{B}}_{\underline{\mathbf{i}}}(\bar{\mathbf{n}}_{\underline{\mathbf{i}}}) = \sum_{k=0}^{\infty} \; \mathbf{B}_{\underline{\mathbf{i}}}(\bar{\mathbf{n}}_{\underline{\mathbf{i}}} + k) \, \frac{(\bar{\mathbf{n}}_{\underline{\mathbf{i}}} + k)!}{k!} \, \mathbf{x}_{\underline{\mathbf{i}}}^{\circ} \; ^{k} = \; \mathbf{B}_{\underline{\mathbf{i}}}(\mathbf{d}_{\underline{\mathbf{i}}} - 1) \, \sum_{k=0}^{\infty} \, \frac{(\bar{\mathbf{n}}_{\underline{\mathbf{i}}} + k)!}{k!} \, \mathbf{x}_{\underline{\mathbf{i}}}^{\circ} \; ^{k} \\ & \text{si} \; \; \mathbf{x}_{\underline{\mathbf{i}}}^{\circ} < \; 1 \quad \text{alors} \\ & \bar{\mathbf{B}}_{\underline{\mathbf{i}}}(\bar{\mathbf{n}}_{\underline{\mathbf{i}}}) \; = \; \frac{\mathbf{B}_{\underline{\mathbf{i}}}(\mathbf{d}_{\underline{\mathbf{i}}} - 1)}{(1 - \mathbf{x}_{\underline{\mathbf{i}}}^{\circ})^{\overline{\mathbf{n}}} \underline{\mathbf{i}} + 1} \\ & \text{ii)} \; \bar{\mathbf{n}}_{\underline{\mathbf{i}}} < \; \mathbf{d}_{\underline{\mathbf{i}}} \\ & \bar{\mathbf{h}}_{\underline{\mathbf{i}}} : \; \bar{\mathbf{B}}_{\underline{\mathbf{i}}}(\bar{\mathbf{n}}_{\underline{\mathbf{i}}}) = \; \sum_{k=0}^{\infty} \; \mathbf{B}_{\underline{\mathbf{i}}}(\bar{\mathbf{n}}_{\underline{\mathbf{i}}} + k) \, \frac{(\bar{\mathbf{n}}_{\underline{\mathbf{i}}} + k)!}{k!} \, \mathbf{x}_{\underline{\mathbf{i}}}^{\circ} \; ^{k} + \; \mathbf{B}_{\underline{\mathbf{i}}}(\mathbf{d}_{\underline{\mathbf{i}}} - 1) \sum_{k=0}^{\infty} \, \frac{(\mathbf{n}_{\underline{\mathbf{i}}} + k)!}{k!} \, \mathbf{x}_{\underline{\mathbf{i}}}^{\circ} \; ^{k} \\ & = \; \mathbf{B}_{\underline{\mathbf{i}}}(\mathbf{d}_{\underline{\mathbf{i}}} - 1) \sum_{k=0}^{\infty} \, \mathbf{B}_{\underline{\mathbf{i}}}(\bar{\mathbf{n}}_{\underline{\mathbf{i}}} + k) \, \mathbf{B}_{\underline{\mathbf{i}}}(\mathbf{d}_{\underline{\mathbf{i}}} - 1)) \, \frac{(\bar{\mathbf{n}}_{\underline{\mathbf{i}}} + k)!}{k!} \, \mathbf{x}_{\underline{\mathbf{i}}}^{\circ} \; ^{k} + \; \frac{\mathbf{B}_{\underline{\mathbf{i}}}(\mathbf{d}_{\underline{\mathbf{i}}} - 1)}{(1 - \mathbf{x}_{\underline{\mathbf{i}}}^{\circ})^{\overline{\mathbf{n}}} \underline{\mathbf{i}} + 1} \, \bar{\mathbf{n}}_{\underline{\mathbf{i}}}! \\ & \text{si} \; \; \mathbf{x}_{\underline{\mathbf{i}}}^{\circ} \; < \; 1 \\ & \bar{\mathbf{B}}_{\underline{\mathbf{i}}}(\bar{\mathbf{n}}_{\underline{\mathbf{i}}}) \; = \; \frac{\mathbf{B}_{\underline{\mathbf{i}}}(\mathbf{d}_{\underline{\mathbf{i}}} - 1)}{(1 - \mathbf{x}_{\underline{\mathbf{i}}}^{\circ})^{\overline{\mathbf{n}}} \underline{\mathbf{i}} + 1} \, + \, \sum_{k=0}^{\mathbf{d}_{\underline{\mathbf{i}}} - \overline{\mathbf{n}}_{\underline{\mathbf{i}}} - 1} (\mathbf{B}_{\underline{\mathbf{i}}}(\bar{\mathbf{n}}_{\underline{\mathbf{i}}} + k) - \; \mathbf{B}_{\underline{\mathbf{i}}}(\mathbf{d}_{\underline{\mathbf{i}}} - 1)) \, \frac{(\bar{\mathbf{n}}_{\underline{\mathbf{i}}} + k)!}{\bar{\mathbf{n}}_{\underline{\mathbf{i}}}!} \, \mathbf{x}_{\underline{\mathbf{i}}}^{\circ}} \, ^{k} \\ & \bar{\mathbf{B}}_{\underline{\mathbf{i}}}(\bar{\mathbf{n}}_{\underline{\mathbf{i}}}) \; \bar{\mathbf{n}}_{\underline{\mathbf{i}}} + \mathbf{B}_{\underline{\mathbf{i}}}(\bar{\mathbf{n}}_{\underline{\mathbf{i}}} - 1) \, \mathbf{B}_{\underline{\mathbf{i}}}(\bar{\mathbf{n}}_{\underline{\mathbf{$$

Ces calculs faits on pourra appliquer les algorithmes de calcul \underline{assgen} ou \underline{assdgl} relativement aux sous-chaines fermées avec :

$$\begin{cases} \bar{b}_{i}(\bar{n}_{i}) = \bar{B}_{i}(\bar{n}_{i}) / \bar{B}_{i}(\bar{n}_{i}-1) \\ \text{et } \bar{b}_{i}(o) = \bar{B}_{i}(o) \end{cases}$$

III.3.2 - Grandeurs élémentaires

De même que pour les réseaux fermés nous supposerons que nous disposons de la matrice G et des matrices $\mathbf{H_i}$, $\mathbf{F_i}$, $\mathbf{K_i}$ pour chaque station \mathbf{i} . Ces matrices portent sur les sous-chaines fermées.

Nous pouvons définir les probabilités marginales suivantes :

$$p_{i}(n_{i1}, ..., n_{iR_{1}}, n_{iR_{1}+1}, ..., n_{iR}) = \frac{1}{C} F_{i}(N_{M_{1}+1} - n_{iM_{1}+1}, ..., N_{M} - n_{iM}) B_{n}(n_{i}) n_{i}!$$

$$R_{1} \frac{x_{ir}}{n_{ir}!} \frac{\pi_{ir}}{n_{ir}!} \frac{\pi_{ir}}{n_{ir}!} C_{ir}(n_{ir}) \frac{x_{ir}}{n_{ir}!}$$

$$n_{ir} \frac{x_{ir}}{n_{ir}!} C_{ir}(n_{ir}) \frac{x_{ir}}{n_{ir}!} C_{ir}(n_{ir}) \frac{x_{ir}}{n_{ir}!} C_{ir}(n_{ir}) C_{ir}$$

$$\overline{p}_{i}(n_{iR_{1}+1}, \dots, n_{iR}) = \frac{1}{C} F_{i}(\overline{N}_{M_{1}+1} - \overline{n}_{iM_{1}+1}, \dots, \overline{N}_{M} - \overline{n}_{iM}) \overline{B}_{i}(\overline{n}_{i}) \overline{n}_{i}! \prod_{r=R_{1}+1}^{R} C_{ir}(n_{ir}) \frac{x_{ir}}{n_{ir}!}$$

III.3.2.1 - Sous-chaînes fermées III.3.2.1.1 - Débits

Considérons une classe r appartenant à une sous-chaine fermée ${\bf S}_{\bf m}.$ Nous avons :

$$deb_{ir} = \frac{1}{C} \sum_{\delta_{i1}} \sum_{\delta_{i2}} F_{i} (\bar{N}_{M_{1}+1} - \bar{n}_{iM_{1}+1}, ..., \bar{N}_{M} - \bar{n}_{iM}) u_{ir}^{o} b_{i} (n_{i}) c_{ir} (n_{ir}) B_{i} (n_{i}) n_{i}! \prod_{s=1}^{R_{1}} \frac{x_{is}}{n_{is}!} c_{is} (n_{is}) a_{is}!$$

Soit :

$$\begin{split} \text{deb}_{\text{ir}} &= \frac{\mathbf{x}_{\text{ir}}}{\mathbf{C}} \ \mathbf{u}_{\text{ir}}^{\text{O}} \sum_{\mathcal{S}_{\text{i}2}} \mathbf{F}_{\text{i}} (\overline{\mathbf{N}}_{\text{M}_{\text{1}}+1} - \overline{\mathbf{n}}_{\text{iM}_{\text{1}}+1}, \dots, \overline{\mathbf{N}}_{\text{M}} - \mathbf{n}_{\text{iM}}) \mathbf{B}_{\text{i}} (\overline{\mathbf{n}}_{\text{i}}-1) (\overline{\mathbf{n}}_{\text{i}}-1) [\begin{array}{c} \mathbf{R} \\ \overline{\mathbf{n}} \\ \mathbf{s} \\ \mathbf{s} \neq \mathbf{r} \\ \mathbf{n}_{\text{is}} \\ \\ \mathbf{n}_{\text{ir}} - 1 \\ \\ \hline (\mathbf{n}_{\text{ir}} - 1) \\ \hline (\mathbf{n}_{\text{ir}} - 1) . \end{split}$$

d'où, quelque soit le type de la station :

$$deb_{ir} = \frac{1}{C} \times_{ir} u_{ir}^{o} G(\overline{N}_{M_{1}+1}, \dots, \overline{N}_{m}-1, \dots, \overline{N}_{M})$$

III.3.2.1.2 - Nombre moyen de clients dans la station

On voit facilement que :

$$\text{lgq}_{\text{ir}} = \frac{1}{C} \sum_{\mathcal{E}_{\text{i}} \geq \mathbf{E}_{\text{i}}} \mathbb{F}_{\text{i}}(\overline{\mathbb{N}}_{\mathbb{M}_{1}+1} - \overline{\mathbb{n}}_{\text{iM}_{1}+1}, \dots, \overline{\mathbb{N}}_{\mathbb{M}} - \overline{\mathbb{n}}_{\text{iM}}) \overline{\mathbb{p}}_{\text{i}}(\mathbb{n}_{\text{iR}_{1}+1}, \dots, \mathbb{n}_{\text{iR}}) \mathbb{n}_{\text{ir}}$$

donc le calcul sera effectué comme pour un réseau fermé, sans tenir compte des sous-chaines ouvertes, avec en particulier les résultats suivants :

- pour une station à taux fixe :

$$lgq_{ir} = \frac{x_{ir}}{C} G_i(\overline{N}_{\underline{M}_1+1}, ..., \overline{N}_{m}-1, ..., \overline{N}_{\underline{M}}) \quad si \quad r \in S_m$$

- pour une station à serveur infini :

$$lgq_{ir} = \frac{x_{ir}}{C} G(\overline{N}_{M_1+1}, \dots, \overline{N}_m-1, \dots, \overline{N}_M) \quad si \quad r \in S_m$$

- pour une station à dépendance globale, le calcul est réalisé à partir des sous-chaines.

III.3.2.1.3 - Taux d'utilisation

Par définition nous avons :

$$\text{util}_{\text{ir}} = \frac{1}{C} \sum_{\delta_{\text{i}1}} \sum_{\delta_{\text{i}2}} F_{\text{i}} (\overline{N}_{\text{M}_{1}+1} - \overline{n}_{\text{i}M_{1}+1}, \dots, \overline{N}_{\text{M}} - \overline{n}_{\text{i}M}) \frac{n_{\text{ir}}}{n_{\text{i}}} B_{\text{i}} (n_{\text{i}}) n_{\text{i}} ! \prod_{\text{s}=1}^{N} \frac{x_{\text{is}}}{n_{\text{is}}} \prod_{\text{s}=R_{1}+1}^{N} \frac{x_{\text{is}}}{n_{\text{is}}} ! C_{\text{is}} (n_{\text{i}})$$

i) Station à taux fixe

Dans ce cas un calcul tout à fait analogue à celui des débits conduit au résultat suivant :

$$util_{ir} = \frac{x_{ir}}{C} G(\overline{N}_{M_1+1}, ..., \overline{N}_{m}-1, ..., \overline{N}_{M})$$

ii) Station à serveur infini

Soit $U_{\underline{i}}(\bar{n}_{\underline{i}})$ défini par :

$$\overline{U}_{i}(\overline{n}_{i}) = \overline{n}_{i} \sum_{\delta_{i}} \frac{1}{n_{i}} \prod_{r=1}^{R_{1}} \frac{x_{ir}}{n_{ir}!}$$

On montre que :

$$U_{i}(\bar{n}_{i}) = \frac{(-1)^{\bar{n}_{i}-1}}{x_{i}^{o_{i}}} \bar{n}_{i}! \left[\exp(x_{i}^{o})(\sum_{k=0}^{\bar{n}_{i}-1}(-1)^{k} \frac{x_{i}^{o}}{k!}) - 1 \right]$$

et, d'autre part,

$$U_{i}(\bar{n}_{i}+1) = \frac{(\bar{n}_{i}+1)}{x_{i}^{0}} (\exp x_{i}^{0} - U_{i}(\bar{n}_{i}))$$

Nous aurons alors :

$$\text{util}_{\text{ir}} = \sum_{\mathcal{E}_{\text{i2}}} F_{\text{i}}(\overline{N}_{\text{M}_{1}+1} - \overline{n}_{\text{iM}_{1}+1}, \dots, \overline{N}_{\text{M}} - \overline{n}_{\text{iM}}) \frac{n_{\text{ir}}}{\overline{n}_{\text{i}}} \underbrace{v_{\text{i}}(\overline{n}_{\text{i}}) \prod_{\text{s=R}_{1}+1}^{\text{R}} \frac{x_{\text{is}}}{n_{\text{is}}!}} \underbrace{c_{\text{is}}(n_{\text{is}})}$$

Et un calcul analogue à celui d'un réseau fermé en modifiant la fonction associée à la station $(H_{\underline{i}})$.

Nota : Il semble que, d'un point de vue numérique, la formule calculant $\mathbf{U}_{\underline{i}}(\bar{\mathbf{n}}_{\underline{i}})$ par récurrence donne de mauvais résultats.

ii) Station à dépendance globale limitée

Nous traiterons le problème de façon identique en définissant la fonction suivante (pour $\bar{n}_i > 0$) :

$$\mathbf{U_{i}(\bar{n}_{i})} = \frac{\bar{n}_{i}}{\bar{n}_{i}!} \sum_{\mathcal{E}_{i1}} \mathbf{B_{i}(n_{i})} \frac{\mathbf{n_{i}!}}{\mathbf{n_{i}}} \frac{\mathbf{R_{1}}}{\mathbf{n_{i}}} \frac{\mathbf{x_{ir}}}{\mathbf{n_{ir}!}} = \frac{1}{(\bar{n}_{i}-1)!} \sum_{k=0}^{\infty} \mathbf{B_{i}(\bar{n}_{i}+k)} \frac{(\bar{n}_{i}+k-1)}{k!} \mathbf{x_{i}^{\circ}}$$

On montre que :

$$U_{i}(\bar{n}_{i}) = \frac{B_{i}(d_{i}-1)}{(1-x_{i}^{\circ})^{\bar{n}_{i}}} + \begin{cases} 0 & \text{si } \bar{n}_{i} \geq d_{i} \\ d_{i}-\bar{n}_{i}-1 \\ \sum_{k=0}^{\infty} (B_{i}(\bar{n}_{i}+k)-B_{i}(d_{i}-1)) & \frac{(\bar{n}_{i}+k-1)!}{k!(\bar{n}_{i}-1)!} & x_{i}^{\circ} \end{cases}$$

et:

$$\text{util}_{\text{ir}} = \sum_{\boldsymbol{\delta}_{i,2}} F_{i}(\overline{N}_{M_{1}+1} - \overline{n}_{iM_{1}+1}, \dots, \overline{N}_{\widetilde{M}} - \overline{n}_{iM}) \frac{n_{ir}}{\overline{n}_{i}} U_{i}(\overline{n}_{i}) \overline{n}_{i}! \frac{R}{n_{is}!} \frac{x_{is}}{n_{is}!} \text{ } C_{is}(n_{is})$$

III.3.2.2 - Sous-chaînes ouvertes

III.3.2.2.1 - Débits

Pour une classe r appartenant à une sous-chaine ouverte nous trouvons :

$$deb_{ir} = u_{ir}^{0} x_{ir}$$

Soit :

$$lgq_{ir} = \frac{x_{ir}}{C} \sum_{\mathfrak{S}_{i,2}} F_{i}(\overline{N}_{M_{1}+1} - \overline{n}_{iM_{1}+1}, \dots, \overline{N}_{M} - \overline{n}_{iM}) L_{i}(\overline{n}_{i}) \overline{n}_{i} = \frac{R}{n} \sum_{\substack{i \text{s} \\ n_{is}!}} \frac{x_{is}}{n_{is}!} C_{is}(n_{is})$$

avec

$$L_{\underline{i}}(\overline{n}_{\underline{i}}) = \sum_{k=0}^{\infty} B_{\underline{i}}(\overline{n}_{\underline{i}} + k + 1) \frac{(\overline{n}_{\underline{i}} + k + 1)}{k! \overline{n}_{\underline{i}}!} x_{\underline{i}}^{0}$$

Nous pouvons faire deux remarques :

- si r et s sont deux classes appartenant à des sous-chaines ouvertes alors :

$$\frac{\lg q_{ir}}{\lg q_{is}} = \frac{x_{ir}}{x_{is}}$$

Il suffira donc d'effectuer les calculs pour une seule des classes appartenant à une sous-chaine ouverte.

$$= L_{i}(\bar{n}_{i}) = (\bar{n}_{i}+1) \bar{B}_{i}(\bar{n}_{i}+1)$$

i) Station à taux fixe

$$L_{i}(\bar{n}_{i}) = (\bar{n}_{i}+1) \frac{1}{(1-x_{i}^{0})} \bar{n}_{i}+2$$

d'où

$$lgq_{ir} = \frac{x_{ir}}{1-x_i^o} \left(1 + \sum_{s=R_1+1}^{R} lgq_{is}\right)$$

Et un calcul immédiat si l'on connaît le nombre moyen de clients pour les classes appartenant à des sous-chaines fermées.

ii) Station à serveur infini

$$L_{\underline{i}}(\bar{n}_{\underline{i}}) = \frac{\exp(x_{\underline{i}}^{\circ})}{\bar{n}_{\underline{i}}!}$$

dioù

iii) Station à dépendance globale limitée

Dans ce cas nous calculerons les termes $\tilde{L}_i(\bar{n}_i)$ et par un calcul analogue à celui de la constante de normalisation nous en déduirons le nombre moyen de clients.

III.3.2.2.3 - Taux d'utilisation

$$\begin{aligned} \text{util}_{\text{ir}} &= \frac{1}{C} \sum_{\boldsymbol{\delta}_{\text{i}1}} \sum_{\boldsymbol{\delta}_{\text{i}2}} F_{\text{i}}(\overline{N}_{\text{M}_{1}+1} - \overline{n}_{\text{i}M_{1}+1}, \dots, \overline{N}_{\text{M}} - \overline{n}_{\text{i}M}) \frac{n_{\text{ir}}}{n_{\text{i}}} B_{\text{i}}(n_{\text{i}}) n_{\text{i}}! \prod_{\text{s}=1}^{R_{1}} \frac{x_{\text{is}}}{n_{\text{is}}!} \prod_{\text{s}=R_{1}+1}^{R_{1}} \frac{x_{\text{is}}}{n_{\text{is}}!} C_{\text{is}}(n_{\text{is}}) \\ \text{soit}: \end{aligned}$$

$$\operatorname{util}_{\operatorname{ir}} = \frac{x_{\operatorname{ir}}}{c} \sum_{\mathfrak{E}_{\operatorname{i2}}} \operatorname{F}_{\operatorname{i}}(\overline{\mathbb{N}}_{\operatorname{M}_{1}+1} - \overline{\mathbb{n}}_{\operatorname{iM}_{1}+1}, \dots, \overline{\mathbb{N}}_{\operatorname{M}} - \overline{\mathbb{n}}_{\operatorname{iM}}) (\sum_{k=0}^{\infty} \operatorname{B}_{\operatorname{i}}(\overline{\mathbb{n}}_{\operatorname{i}} + k + 1) - \frac{(\overline{\mathbb{n}}_{\operatorname{i}} + k)!}{\operatorname{i!}} x_{\operatorname{i}}^{\operatorname{o}}) \prod_{\mathfrak{S} = \mathbb{R}_{1}+1} \frac{x_{\operatorname{is}}}{\mathbb{n}_{\operatorname{is}}!} c_{\operatorname{is}}(\mathbb{n}_{\operatorname{is}})$$

et de même que précédemment si r et s appartiennent à des sous-chaines ouvertes :

$$\frac{\text{util}_{\text{ir}}}{\text{util}_{\text{is}}} = \frac{x_{\text{ir}}}{x_{\text{is}}}$$

Cette propriété peut être utilisée avec profit si l'on connait les taux d'utilisation pour les classes appartenant à des sous-chaines fermées. En effet :

or : util = 1 - Prob $\{0 \text{ clients dans la station i}\}$

$$= 1 - \frac{\overline{F}_{i}(\overline{N}_{M_{1}+1}, \dots, \overline{N}_{M})}{C}$$

d'où si r appartient à une sous-chaine ouverte :

$$util_{ir} = \frac{x_{ir}}{x_{i}^{0}} \left[1 - \frac{F_{i}(\overline{N}_{M_{1}+1}, \dots, \overline{N}_{M})}{C} - \sum_{s=R_{1}+1}^{R} util_{is}\right]$$

Dans le cas particulier d'une station à taux fixe (pour laquelle nous ne sommes pas supposés connaître la matrice F_i) nous avons :

$$util_{ir} = x_{ir}$$

III.4 - Généralisations

Le but de ce paragraphe est d'indiquer d'une part quelques généralisations possibles des algorithmes réalisés pour QNAP. Ces généralisations concernent les réseaux ouverts (et peuvent s'étendre aux réseaux mixtes), mais présentent des défauts tels que l'on peut douter de l'utilité d'une réalisation pratique. Notons d'autre part qu'un réseau ouvert peut dans certains cas être remplacé par un réseau fermé constitué par le rebouclage des sorties sur les entrées par l'intermédiaire d'une station fictive dont le taux de service est le taux d'arrivée pour le processus d'entrée, et dans lequel le nombre de clients est suffisamment grand pour que la probabilité pour que la station fictive soit inoccupée soit (presque) nulle.

Nous introduisons d'autre part les algorithmes de calcul pour deux résultats dus à Pittel [Pit76] et Lam [Lam77] qui généralisent les théorèmes de Baskett et all.

III.4.1 - Réseaux ouverts à taux d'arrivée externes constants, et à taux de service dépendant des classes

Nous ferons ici l'hypothèse suivante :

 $\ensuremath{\ensuremath{\mathfrak{3}}}$ pour une stationii du type 1, 2 ou 3, le taux de service u pour une classe r est de la forme :

$$u_{ir}(n_{i1},...,n_{iR}) = u_{ir}^{0} b_{i}(n_{i})c_{ir}(n_{ir})$$

avec :

$$b_i(n_i) = 1$$
 si $n_i \ge d_i$
 $c_{ir}(n_{ir}) = 1$ si $n_{ir} \ge d_{ir}$

Nous savons que dans le cadre de l'hypothèse 1

$$C = \prod_{i=1}^{I} C_{i} = \prod_{i=1}^{I} \sum_{\alpha} H_{i}(n_{i1}, \dots, n_{iR})$$

avec

$$\mathcal{E} = \{ n_{ir} / \forall r, n_{ir} \ge 0 \}$$

$$H_{i}(n_{i1}, ..., n_{iR}) = n_{i}! B_{i}(n_{i}) \prod_{r=1}^{R} C_{ir}(n_{ir}) \frac{x_{ir}}{n_{ir}!}$$

$$\mathcal{S}_{-} = \left\{ \begin{array}{l} n_{\text{ir}} / \sum\limits_{r=1}^{R} n_{\text{ir}} < d_{\text{i}} \right\} \\ R & \mathcal{S}_{+} = \left\{ \begin{array}{l} n_{\text{ir}} / \sum\limits_{r=1}^{R} n_{\text{ir}} \geq d_{\text{i}} \right\} \end{array} \right\}$$

Alors $C_i = C_{i1} + C_{i2}$

avec :

$$c_{i1} = \sum_{\mathcal{E}_{-}} H_{i}(n_{i1}, \dots, n_{iR}) - B_{i}(d_{i} - 1) \sum_{\mathcal{E}_{-}} n_{i}! \prod_{r=1}^{R} c_{ir}(n_{ir}) \frac{1}{n_{ir}!} x_{ir}^{n_{ir}}$$
et
$$c_{i2} = B_{i}(d_{i} - 1) \sum_{\mathcal{E}_{-}} n_{i}! \prod_{r=1}^{R} c_{ir}(n_{ir}) \frac{1}{n_{ir}!} x_{ir}^{n_{ir}}$$

 ${
m C_{i1}}$ est la somme d'un nombre fini de termes qui peuvent être calculés de manière analogue à la constante de normalisation d'un réseau fermé (cf. §. III.2.2.2.1.). Le calcul formel de ${
m C_{i2}}$ donne lieu à des développements assez fastidieux au bout desquels nous obtenons le résultat suivant :

si
$$\sum_{r=1}^{R} x_{ir} < 1$$

alors :

$$C_{i2} = B_i(d_{i-1}) \sum_{e \in P(E_R)} C_i(e)$$

avec $\mathbf{E}_{\mathbf{R}}$ l'ensemble des classes du réseau et :

$$C_{\underline{i}}(e) = \frac{\prod_{r \in \overline{e}} (C_{\underline{ir}}(d_{\underline{ir}} - 1))}{1 - x_{\underline{i}}(\overline{e})} \sum_{\mathfrak{S}_{\underline{e}}} n_{\underline{i}}(e)! \prod_{r \in \underline{e}} (C_{\underline{ir}}(n_{\underline{ir}}) - C_{\underline{ir}}(d_{\underline{ir}} - 1) \frac{1}{n_{\underline{ir}}!} [\frac{x_{\underline{ir}}}{(1 - x_{\underline{i}}(\overline{e}))}]^{n_{\underline{ir}}}$$

où:

$$n_{i}(e) = \sum_{r \in e} n_{ir}$$

ē le complémentaire de e

$$x_i(\bar{e}) = \sum_{r \in \bar{e}} x_{ir}$$

et
$$\mathcal{E}_{e} = \{ n_{ir} / \forall r \in e \quad n_{ir} < d_{ir} \}$$

En pratique, nous pouvons calculer les termes $C_i(e)$ de façon analogue à la constante de normalisation d'un réseau fermé. Cependant, le nombre prohibitif de termes à calculer (2^R) rend une telle réalisation assez problématique et explique qu'en l'état elle ne soit pas implantée dans QNAP (bien que nous ne désespérons pas de trouver des améliorations). Un résultat positif néanmoins, la condition de stabilité du réseau est donné par :

$$\forall i \sum_{r=1}^{R} x_{ir} < 1$$

En ce qui concerne les grandeurs élémentaires, on montre les résultats suivants :

i) débit d'une station i pour la classe r :

ii) taux d'utilisation :

$$util_{ir} = x_{ir} \sum_{n_{i1} \ge 0} \dots \sum_{n_{iR} \ge 0} \frac{p_{i}(n_{i1}, \dots, n_{iR})}{b_{i}(n_{i+1})c_{ir}(n_{ir}+1)}$$

iii) nombre moyen de clients :

$$lgq_{ir} = x_{ir} \sum_{\substack{n_{i1} \ge 0}} \cdots \sum_{\substack{n_{iR} \ge 0}} \frac{(n_{i+1})p_{i}(n_{i1}, \dots, n_{iR})}{b_{i}(n_{i+1})c_{ir}(n_{ir}+1)}$$

Et pour les taux d'utilisation et le nombre moyen de clients un calcul analogue à celui des C_i .

III.4.2 - Réseaux ouverts à processus d'arrivée global
Nous admettons ici que :

4 Le taux d'arrivée externe défini par :
$$v(n) = \begin{cases} v_0 & a(n) & \text{si} & n < \mathbb{R} \\ v_0 & \text{si} & n \ge D \end{cases}$$

où n est le nombre de clients total dans le réseau.

III.4.2.1 - Calcul de la constante de normalisation

Posons
$$A(n) = \prod_{k=0}^{n-1} a(k)$$

alors l'hypothèse admise nous permet d'écrire : $A(n) = A(D_0)$ si $n \ge D_0$ soit $\mathcal{E} = \{ n_{ir} / \forall i, \forall r, n_{ir} \ge 0 \}$ alors :

$$C = \sum_{\mathcal{S}} A(n) \prod_{i=1}^{I} H_i(n_{i1}, ..., n_{iR}) \text{ avec } n = \sum_{i=1}^{I} \sum_{r=1}^{R} n_{ir}$$
soit
$$S_1 = \{ n_{ir} / \sum_{i=1}^{I} \sum_{r=1}^{R} n_{ir} < D_0 \}$$

alors :

$$C = \sum_{\sigma_{1}} (A(n) - A(D_{o})) \prod_{i=1}^{1} H_{i}(n_{i1}, ..., n_{iR}) + \sum_{\sigma_{i}} A(D_{o}) \prod_{i=1}^{1} H_{i}(n_{i1}, ..., n_{iR})$$

En conséquence, la constante de normalisation est la somme de deux termes dont l'un :

$$C_{1} = \sum_{\mathscr{E}_{1}} (A(n) - A(D_{0})) \prod_{i=1}^{I} H_{i}(n_{i1}, \dots, n_{iR})$$

est une somme finie, et l'autre :

$$C_2 = \sum_{\mathcal{S}} A(D_0) \prod_{i=1}^{I} H_i(n_{i1}, ..., n_{iR})$$

une somme infinie proportionnelle à la constante de normalisation d'un réseau ouvert à taux d'arrivée constant v_0 . La condition de stabilité du réseau est donc :

R
$$\forall i \sum_{r=1}^{R} x_{ir} < 1$$
 dans le cadre de l'hypothèse 3

Le problème réside dans le calcul de la quantité C_1 . Pour simplifier les notations nous poserons : $\overline{A}(n) = A(n) - A(D_0)$.

Nous aurons donc :

$$C_1 = \sum_{\delta_1} \overline{A}(n) \prod_{i=1}^{I} H_i(n_{i1}, ..., n_{iR})$$

Soit:
$$S(n) = \{ n_{ir} / \sum_{i=1}^{I} \sum_{r=1}^{R} n_{ir} = n \}$$

$$C_{1} = \sum_{n=0}^{D} \overline{A}(n) G(n)$$

$$G(n) = \sum_{s(n)} \prod_{i=1}^{I} H_{i}(n_{i1}, ..., n_{iR})$$

De façon analogue au calcul de la constante de normalisation d'un réseau fermé, nous poserons :

$$g(X) = \prod_{i=1}^{I} g_{i}(X)$$
avec
$$g_{i}(X) = \sum_{\substack{n_{i,1} \geq 0 \\ n_{i,1} \geq 0}} \sum_{\substack{n_{i} \geq 0 \\ n_{i} \neq 0}} \sum_{\substack{n_{i} \geq 0 \\ n_{i} \neq 0}} \sum_{\substack{n_{i} \geq 0 \\ r = 1}} \sum_{\substack{n_{i} \leq 0 \\ r = 1}} \sum_{\substack{n_{i} \geq 0 \\ r = 1}} \sum_{\substack{n_{i} \geq 0 \\ r = 1}} \sum_{\substack{n_{i} \geq 0}} \sum_{$$

G(n) est le coefficient de X^n dans g(X). Le calcul s'effectuera donc de la façon suivante :

étape 1 :

Pour toute station i, calculer les coefficients $H_i(n_{i1},...,n_{iR})$ R

tels que $\sum_{r=1}^{R} n_{ir} < D_0$ à l'aide des procédures appropriées (assgen, assdgl, convtfx ou assdel).

étape 2 :

Pour toute station i, calculer le vecteur K_{ij} défini par

$$K_{i}(n_{i}) = \sum_{i} H_{i}(n_{i1}, ..., n_{iR})$$
 avec $0 \le n_{i} < D_{o}$

$$n_{i1} + ... + n_{iR} = n_{i}$$

étape 3:

Calcul du vecteur G défini par $G(n) = K_1^* \dots * K_I(n)$ pour $0 \le n < D_0^*$.

$$\begin{array}{c|c}
 & \underline{\text{étape 4}} : \\
 & D_{0} - 1 \\
 & C_{1} = \sum_{n=0}^{\infty} \overline{A}(n) G(n)
\end{array}$$

III.4.2.2 - Probabilités marginales

Nous avons :

$$p_{j}(n_{j1},...,n_{jR}) = \frac{1}{C} \sum_{\sigma_{j}} A(n) \prod_{i=1}^{I} H_{i}(n_{i1},...,n_{iR})$$

avec

$$\mathcal{S}_{i} = \{ n_{ir} / \forall r, \forall i \neq j \ n_{ir} \geq 0 \}$$

et

$$p_{j}(n_{j1},...,n_{jR}) = \frac{H_{j}(n_{j1},...,n_{jR})}{C} \sum_{\substack{\delta_{j} \\ i \neq j}} A(n) \prod_{\substack{i=1 \\ i \neq j}} H_{i}(n_{i1},...,n_{iR})$$

$$p_{j}(n_{j1},...,n_{jR}) = \frac{1}{C} g_{j}(n_{j}) H_{j}(n_{j1},...,n_{jR})$$
 ou $n_{j} = \sum_{r=1}^{R} n_{jr}$

d'autre part si $n \ge D_0$

$$G_{j}(n_{j}) = A(D_{0}) \sum_{\substack{\emptyset \\ j \text{ i} \neq j}}^{I} H_{i}(n_{i1}, \dots, n_{iR})$$

En conséquence pour $n_j \geq D_0$ les probabilités marginales s'expriment de façon analogue aux probabilités marginales d'un réseau à taux d'arrivée constante. Le calcul des termes $G_j(n_j)$ pourra donc être réalisé de la façon suivante :

- a) pour les termes tels que $n_{\mbox{\scriptsize j}}$ < D un calcul analogue à celui de la constante de normalisation.
- b) pour les termes tels que $n_j \ge D_o$ le calcul est un sous-produit de calcul de la constante de normalisation (en omettant la j^{ième} convolution dans l'étape 3).

Le calcul des grandeurs élémentaires s'en déduit.

III.4.3 - Réseaux ouverts à processus d'arrivée par sous-chaîne

L'hypothèse retenue ici est la suivante :

5 Il existe un processus d'arrivée par sous-chaine. Le taux d'arrivée est défini par :

où \overline{u}_m est le nombre total de clients dans la sous-chaine S_m . \overline{n}_m-1

Nous noterons
$$A_m(\bar{n}_m) = \prod_{n=0}^m a_m(n)$$
, avec $A_n(\bar{n}_m) = A_m(D_{om})$ si $\bar{n}_m \ge D_{om}$.

La constante de normalisation est définie par :

$$C = \sum_{\delta = 1}^{M} \prod_{m=1}^{A} A_{m}(\overline{n}_{m}) \prod_{i=1}^{I} H_{i}(n_{i1}, \dots, n_{iR})$$

Notons $\mathbf{E}_{\mathtt{M}}$ l'ensemble des sous-chaines, e une partie de $\mathbf{E}_{\mathtt{M}}$ et $\overline{\mathbf{e}}$ le complémentaire de e dans $\mathbf{E}_{\mathtt{M}}$.

Soit :

$$\mathbf{s}_{e} = \left\{ \begin{array}{l} \mathbf{n}_{ir} / \forall \mathbf{S}_{m} \in \mathbf{e}, \sum_{i=1}^{I} \sum_{r \in \mathbf{S}_{m}} \mathbf{n}_{ir} < \mathbf{D}_{om} ; \forall \mathbf{S}_{m} \in \bar{\mathbf{e}}, \forall r \in \mathbf{S}_{m}, \mathbf{n}_{ir} \geq 0 \end{array} \right\}$$

alors

$$C = \sum_{e \in P(E_{\underline{M}})} \sum_{e} C(e)$$

où
$$C(e) = \prod_{\substack{S_m \in e}} (A_m(\overline{n}_m) - A_m(D_{om})) \prod_{\substack{S_m \in \overline{e}}} A_m(D_{om}) \prod_{i=1}^{I} H_i(n_{i1}, ..., n_{iR})$$

notons $S_{m_1}, \dots, S_{m_k(e)}$ les sous-chaines de e.

où:

$$G_{e}(\bar{n}_{m_{1}},...,\bar{n}_{m_{k}(e)}) = \sum_{\sigma_{\sigma}} \prod_{i=1}^{I} H_{i}(n_{i1},...,n_{iR})$$

avec
$$\mathcal{S}_{\overline{e}} = \{ n_{ir} / \forall i, \forall S_m \in \overline{e}, \forall r \in S_m, n_{ir} \geq 0 \}$$

Donc $G_{e}(\overline{n}, \ldots, \overline{n})$ est la constante de normalisation d'un réseau mixte. Le calcul de la constante de normalisation pourra donc s'effectuer de la manière suivante :

étape 1 :

Pour tout élément e de $\mathcal{P}(\mathbf{E_M})$ calculer $\mathbf{G_e}(\mathbf{D_{om}}-1,\ldots,\mathbf{D_{om}}-1)$ comme constante de normalisation d'un réseau mixte. D'évidence nous en déduisons les valeurs de $\mathbf{G_e}(\bar{\mathbf{n}_m},\ldots,\bar{\mathbf{n}_m}_{\mathbf{k(e)}})$ pour $0 \leq \bar{\mathbf{n}_m} \leq \mathbf{D_{om}}-1,\ldots,$ $0 \leq \bar{\mathbf{n}_m}_{\mathbf{k(e)}} \leq \mathbf{D_{om}}-1$.

étape 2

Pour tout élément de $P(E_{\underline{M}})$ calculer :

Calculer :
$$C = \sum \sum_{e \in P(E_M)} S_e$$

III.4.4 - Application des résultats de Pittel à des réseaux de files d'attente à capacité limitée

Le type de réseau dont il est question ici sort du cadre du théorème BCMP. En effet, l'une des hypothèses de ce théorème est que les files d'attente sont à capacité illimitée et plus généralement qu'il n'existe pas de contraintes de capacité dans un sous-ensemble du réseau. Il n'existe que peu de résultats sur les réseaux avec blocage [PuP77, New68] et la plupart ne partent que sur des réseaux particuliers. Seul le résultat présenté par Pittel [Pit76] comporte une certaine généralité et présente d'autre part l'avantage de conduire à une solution sous forme produit. Les conditions d'application sont les suivantes :

i) la structure du réseau est de type BCMP (sans que des changements de classe éventuels soient envisagés).

ii) Un état E du réseau doit vérifier :

$$\forall i, \forall r \quad n_{ir} \geq 0 \quad \forall r \sum_{i=1}^{I} n_{ir} = N_r$$

et un ensemble d'autres conditions portant sur les n_{ir} qui limitent l'espace d'état. Nous noterons & l'ensemble des états possibles du réseau.

- iii) Lorsqu'un client de classe r quitte la station i pour se rendre à une station j (selon la probabilité $p_{ir;jr}$) et que cette dernière station n'est pas libre à cause des contraintes de capacité, deux politiques sont envisagées :
- a le client retourne instantanément à la station i. Cette politique n'est possible que lorsque le réseau vérifie certaines conditions de symétrie :

b le client poursuit son chemin à partir de la station j en accord avec la matrice de transition jusqu'à ce qu'une station puisse l'admettre. On suppose que ce cheminement est instantané.

Ces hypothèses vérifiées et si E est un état admissible alors :

$$p(E) = \frac{1}{C} \prod_{i=1}^{I} f_{i}(N_{i})$$

où $f_i(N_i)$ sont les mêmes fonctions que celles présentées pour les réseaux BCMP

avec
$$C = \sum_{\mathcal{E}} p(E)$$

Une application simple de ce résultat concerne les réseaux de files à capacité limitée lorsque les hypothèses sont vérifiées.

Dans ce cas, les algorithmes décrits pour les réseaux BCMP fermés sont applicables avec :

$$\mathbf{H}_{\mathbf{i}}(\mathbf{n}_{\mathbf{i}1}, \dots, \mathbf{n}_{\mathbf{i}R}) = \begin{cases} \mathbf{n}_{\mathbf{i}}! \mathbf{B}_{\mathbf{i}}(\mathbf{n}_{\mathbf{i}}) & \mathbf{\Pi} & \mathbf{x}_{\mathbf{i}r} \\ \mathbf{n}_{\mathbf{i}}! \mathbf{B}_{\mathbf{i}}(\mathbf{n}_{\mathbf{i}}) & \mathbf{\Pi} & \mathbf{x}_{\mathbf{i}r} \\ \mathbf{n}_{\mathbf{i}r}! & \mathbf{n}_{\mathbf{i}r}! & \mathbf{n}_{\mathbf{i}} \leq \mathbf{L}_{\mathbf{i}} \\ \mathbf{n}_{\mathbf{i}} & \mathbf{n}_{\mathbf{i}} > \mathbf{L}_{\mathbf{i}} \end{cases}$$

où $\mathbf{L}_{\mathbf{i}}$ est la capacité maximale de la station i.

Cependant, il faut noter que les hypothèses de validité du résultat sont très contraignantes, en effet :

- . seule la politique a semble présenter un intérêt pratique,
- . dans ce dernier cas la condition de symétrie impose des réseaux très particuliers par exemple :
 - la matrice de transition est symétrique.
- elle se transforme après permutations de lignes et colonnes en matrice tridiagonales,
 - le réseau est de type serveur central.

<u>III.4.5 - Les extensions de S.S. Lam à des réseaux à contrainte de population</u>

Un grand nombre de problèmes pratiques imposent des limitations sur la taille de la population qui transitent dans un système. Le modèle de noeud de commutation du chapitre I, le problème de limiter le degré de multiprogrammation pour éviter l'écroulement d'un système d'exploitation en sont des exemples.

S.S. Lam [Lam77] a étendu les résultats concernant les réseaux de type BCMP à des réseaux de même structure pour lesquels des contraintes portant sur le nombre de clients dans chaque sous-chaine sont introduites.

Soit E un état du réseau. Nous noterons n(E) le vecteur $(\bar{n}_1,\ldots,\bar{n}_M)$ où \bar{n}_m est le nombre total de clients dans la sous-chaine S_m . Pour chaque sous-chaine S_m on définit les fonctions suivantes :

(a) fonctions de perte :

b fonctions d'injection :

$$T_{m}(n(E)) = \begin{cases} 0 & \text{si le départ d'un client de la sous-chaine } S_{m} \\ & \text{entraîne l'injection immédiate d'un client} \\ & \text{dans } S_{m} \\ 1 & \text{si un départ n'engendre pas d'arrivée} \\ & ((\overline{n}_{1}, \dots, \overline{n}_{M}) \rightarrow (\overline{n}_{1}, \dots, \overline{n}_{M}^{-1}, \dots, \overline{n}_{M})) \end{cases}$$

Soit E un état possible. Le théorème énoncé par Lam statue que :

Si la chaine de Markov définie sur l'ensemble & des états du réseau est ergodique, et si :

$$\forall \text{ S}_{\text{m}} \text{ , } \forall \text{n(E)} \text{ } \text{T}_{\text{m}}((\bar{n}_{1},\ldots,\bar{n}_{M})) \text{ = 1 } \Rightarrow \text{ } \text{L}_{\text{m}}((\bar{n}_{1},\ldots,\bar{n}_{m}-1,\ldots,\bar{n}_{M})) \text{ = 1}$$

alors :

$$p(E) = \frac{1}{C} \quad d(E) \quad \prod_{i=1}^{I} f_i(N_i)$$

avec
$$C = \sum_{E \in \mathcal{S}} p(E)$$

Comme indiqué dans [Lam77] le calcul de la constante de normalisation pourra se dérouler de la manière suivante :

$$G(\overline{N}_{1},...,\overline{N}_{M}) = \sum_{\sigma_{+}}^{\pi} \prod_{i=1}^{H_{i}(n_{i1},...,n_{iR})}$$

Soit la constante de normalisation d'un réseau fermé (ou mixte si l'un des N_m est infini), d'où l'on déduit tous les termes $G(\bar{n}_1, \ldots, \bar{n}_M)$ pour $0 \le \bar{n}_M \le \bar{N}_M$. $\underbrace{\text{étape 2}}_{n_M} : C = \sum_{n_M} d(E) G(\bar{n}_1, \ldots, \bar{n}_M)$ n(E) possible

$$C = \sum d(E) G(\overline{n}_1, ..., \overline{n}_M)$$

$$n(E) possible$$

IV. CONCLUSION

Nous avons décrits dans ce chapitre les algorithmes de calcul de la constante de normalisation et des statistiques élémentaires à l'état station-naire d'un réseau de files d'attente vérifiant les hypothèses des théorèmes de Baskett-Chaudy-Muntz et Palacios. Tous ces algorithmes à l'exclusion de ceux du paragraphe III.4 ont été réalisés dans le cadre du projet QNAP [MeP78].

Deux détails n'ont pas été abordés jusqu'ici et peuvent être matière à problèmes :

- . La résolution du système d'équation (1) du paragraphe II.2.1. (Calcul des taux d'arrivée) relève d'algorithmes classiques tel qu'une méthode itérative de type Gauss-Seidel [Kah58] que nous avons choisi.
- . La détermination des sous-chaines composant le réseau est réalisée à partir d'algorithmes de recherche de composantes connexes dans un graphe [DeP71], cette recherche est mise à profit pour vérifier la cohérence du réseau (les réseaux comportant des états transitoires ou absorbants font l'objet d'un diagnostique et sont éventuellement rejetés).

Même pour des réseaux relativement complexes, le temps de calcul de la constante de normalisation et des statistiques élémentaires est en général très faible et peuvent justifier une utilisation en mode interactif.

Nous concluons ce chapitre par trois exemples de calcul concernant successivement un réseau fermé, un réseau ouvert et un réseau mixte. Ces exemples n'ont qu'une valeur d'école et les paramètres choisis n'ont pas de signification particulière. Les données sont introduites au moyen du langage de description de QNAP. Données et résultats sont produits en annexe II.2.

IV.1 - Exemple de réseau fermé

Cet exemple permet d'illustrer l'utilisation des classes de clients pour modéliser des transitions définissant une chaine de Markov d'ordre supérieur à 1.

Le réseau considéré est de type "serveur central" et comprend quatre stations (figure 1) :

- l'unité centrale : UC ,
- trois stations P₁, P₂, P₃ jouant le rôle de périphériques.

Nous voulons représenter deux types de comportement vis à vis des stations P_1 , P_2 , P_3 :

- i) après une durée de service dans l'UC, un client accède P_1 , P_2 , P_3 ou UC de façon aléatoire. Les clients vérifiant cette condition définissant la classe C_0 .
- ii) les stations P_1 , P_2 , P_3 sont accèdées successivement dans cet ordre. Pour décrire ce processus, nous introduisons trois classes C11, C12, C13 telles que :
- un client de classe C11 (respectivement C12, C13) ayant achevé son service à la station UC se rend à la station P1 (resp. P2, P3) en passant en classe C12 (resp. C13, C11).

Les résultats sont présentés en annexe II.2.1.

IV.2 - Exemple de réseau ouvert

Nous utilisons ici un modèle de CYCLADE [Pou74] qui comporte 7 noeuds et 16 lignes (figure 2).

Les taux d'arrivée des paquets provenant de l'extérieur sont égaux, les destinations équiprobables. Entre le noeud de départ et le noeud d'arrivée on utilise le minimum de lignes, les ambiguités sont levées figure 3.

A chaque ligne correspond une station au sens de QNAP (S1,...,S16). Le problème est de représenter un routage fixe à travers le réseau. Nous ferons donc correspondre chaque noeud d'arrivée à une classe de clients (A,...,G).

Les résultats sont présentés en annexe II.2.2.

IV.3 - Exemple de réseau mixte

Nous considérons un système informatique, dont l'architecture est présentée (figure 4), constitué de :

- l'unité centrale CPU,
- de mémoires auxiliaires, DISK, TAPE,
- d'un disque de swapping, SWAP,

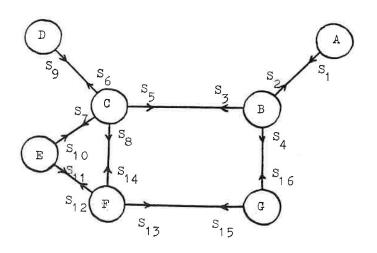


Figure 2

Noeud Source	Noeud de destination	Noeud de transition
A	T	С
В	F	C
C	G	F
D	G	F
F	C, D	В
g G	A,B	С
	B 3	

Figure 3

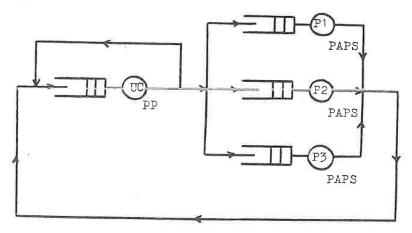


Figure 1

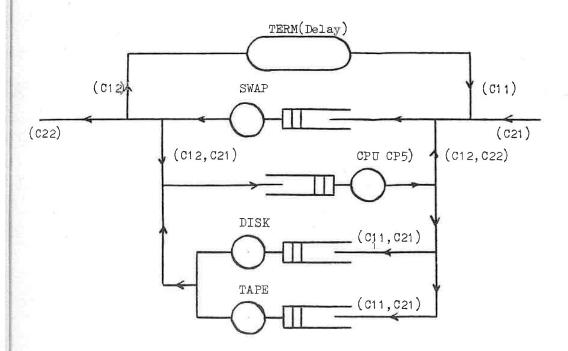


Figure 4

- d'un ensemble de terminaux, TERM, représenté par une station de type délai pur.

Les clients parcourant le réseau proviennent des terminaux, ou de l'extérieur (station source EXT) et constituent deux populations distinctes (classes C1 et C2).

Au niveau de la station SWAP un client issu des terminaux ou de l'extérieur se rend à la station CPU, tandis qu'un client provenant de la station CPU sera dirigé vers les terminaux ou l'extérieur suivant sa classe d'origine. Ce comportement pourra être modélisé en introduisant comme pour l'exemple IV.1 des classes supplémentaires (C11, C12, et C21, C22).

Les résultats sont présentés en annexe II.2.3.

ANNEXE II.1

Calcul de la probabilité qu'un client de classe r soit en cours de service à la station i, si l'état de cette station est (n_{i1}, \dots, n_{iR})

II.1.1 - Cas d'une station de type 1 (PAPS)

Il est nécessaire de recourir à des états plus fins que ceux qu'il suffisait de considérer jusqu'à maintenant. Un état d'une station i, PAPS, est représenté par un vecteur y, tel que :

$$y_i = (y_{i1}, \dots, y_{in_i})$$

où n est le nombre de clients dans la station i et y_{ij} la classe du client j^{ième} dans l'ordre PAPS. Le client en cours de service est de classe x_{ij} .

D'après [BaC75] la probabilité marginale que la station i soit dans un état y, est donnée par :

$$p_{i}(y_{i}) = \frac{1}{K} B_{i}(n_{i}) \left(\frac{1}{u_{i}^{o}}\right)^{n} \stackrel{n_{i}}{\underset{j=1}{\Pi}} e_{iy_{ij}}$$

Notons que si y' est un vecteur dont les composantes se déduisent par permutation des éléments de y_i alors $p_i(y_i) = p_i(y_i)$.

Supposons d'autre part que l'état y corresponde à n clients de classe 1,...,n clients de classe R.

Le nombre de permutations conduisant à des états différents de y est :

$$\begin{pmatrix} n_{i} \\ n_{i1} \end{pmatrix} \begin{pmatrix} n_{i} - n_{i1} \\ n_{i2} \end{pmatrix} \dots \begin{pmatrix} n_{i} - n_{i1} - \dots - n_{iR-1} \\ n_{iR} \end{pmatrix}$$
(1)

(1) Nous rappelons que
$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$
.

On peut vérifier ainsi que :

$$p_{\mathbf{i}}(n_{\mathbf{i}1}, \dots, n_{\mathbf{i}R}) = \frac{1}{K} B_{\mathbf{i}}(n_{\mathbf{i}}) \frac{n_{\mathbf{i}!}}{n_{\mathbf{i}1}! \dots n_{\mathbf{i}R}!} \frac{1}{(u_{\mathbf{i}}^{\circ})} \prod_{r=1}^{n_{\mathbf{i}}} e_{\mathbf{i}r}^{n_{\mathbf{i}r}}$$

Nous en déduisons d'autre part la probabilité qu'un client de classe r soit en cours de service si la station i est dans l'état (n_{i1}, \dots, n_{iR}) :

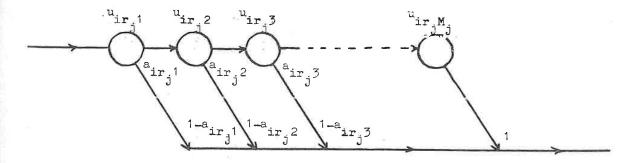
$$\binom{n_{i}-1}{n_{i+1}} \cdots \binom{n_{i}-n_{i+1}-1}{n_{i+1}} \cdots \binom{n_{i}-n_{i+1}-1}{n_{i+1}} \cdots \binom{n_{i}-n_{i+1}-1}{n_{i+1}-1}$$

$$= \frac{n_{i}}{n_{i}} p_{i}(n_{i+1}, \dots, n_{i})$$

$$= \frac{n_{i}}{n_{i}} p_{i}(n_{i+1}, \dots, n_{i})$$

II.1.2 - Cas d'une station de type 2 (DAPSPR) : .

Un état d'une station de ce type peut être défini par :


$$y_i = [(r_1, m_1), ..., (r_{n_i}, m_{n_i})]$$

où: - n. est le nombre de clients dans la station

- r la classe du client j'ème dans l'ordre DAPS

- m l'étape de service dans laquelle se trouve le client.

Rappelons que Cox [Cox55] a montré qu'une distribution à transformée de Laplace rationnelle peut être représentée par le réseau suivant :

- chaque étape est une station exponentielle de taux de service u ir k.

Toujours d'après [BaC75] la probabilité marginale que la station i soit dans l'état y, peut s'écrire :

$$p_{\mathbf{i}}(y_{\mathbf{i}}) = \frac{1}{K} \left(\prod_{j=1}^{n_{\mathbf{i}}} \frac{e_{\mathbf{i}r_{\mathbf{i}}} \prod_{j=1}^{k} j}{u_{\mathbf{i}r_{\mathbf{j}}} \prod_{j=1}^{m} j} - \right) B_{\mathbf{i}}(n_{\mathbf{i}}) \prod_{r=1}^{R} C_{\mathbf{i}r}(n_{\mathbf{i}r})$$
avec
$$A_{\mathbf{i}r_{\mathbf{j}}} = \prod_{k=1}^{m_{\mathbf{j}}} a_{\mathbf{i}r_{\mathbf{j}}k}$$

La probabilité marginale $P_i(Y_i)$ avec $Y_i = (r_1, ..., r_{n_i})$ est donnée par :

$$P_{i}(Y_{i}) = \sum_{m_{1}=1}^{M_{1}} \cdots \sum_{m_{n_{i}}=1}^{M_{n_{i}}} \frac{1}{K} \left(\prod_{j=1}^{n_{i}} \frac{e_{ir_{j}} A_{ir_{j}m_{j}}}{u_{ir_{j}m_{j}}} \right) B_{i}(n_{i}) \prod_{r=1}^{R} C_{ir}(n_{ir})$$

$$= \frac{1}{K} \left(\prod_{j=1}^{n_{i}} \frac{e_{ir_{j}}}{u_{ir_{j}}^{0}} \right) B_{i}(n_{i}) C_{ir}(n_{ir})$$

En effet, on montre très simplement que $u_{ir_j}^0 = \sum_{m_j=1}^{M_j} \frac{A_{ir_jm_j}}{u_{ir_jm_j}}$

Nous sommes donc ramenés à un problème tout à fait analogue au précédent.

II.1.3 - Cas des stations de type 3 (PP) et de type 4 (SI)

Dans le cas d'une station PP, chaque client est servi alternativement avec un taux $\frac{1}{n_i}$ si la station est dans l'état (n_i, \ldots, n_{iR}) . Donc la proportion de temps pendant laquelle les clients de classe r reçoivent du service est :

$$\frac{\mathbf{n_{ir}}}{\mathbf{n_{i}}} p_{i}(\mathbf{n_{i1}, \dots, n_{iR}})$$

Pour une station serveur infini, il y a autant de serveurs que de clients dans la station. Si cette station est dans l'état (n_{i1},\dots,n_{iR}) il y a n. serveurs actifs dont n. dévolus à la classe r. Donc des clients de classe r utilisent une "fraction" $\frac{ir}{n_i}$ de la station et suivant notre définition le taux d'utilisation d'une station SI sera donné par :

$$\sum_{\text{états possibles}} \frac{n_{ir}}{n_i} p_i(n_{i1}, ..., n_{iR})$$

ANNEXE II.2

II.2.1 - Réseau fermé

a) Données

```
MODELE DE RESEAU SERVEUR CENTRAL:
     - 4 STATIONS,
Ė
     - 4 CLASSES,
Ė
     - 2 SOUS-CHAINES (CLASSE C0,CLASSES C11,C12,C13)
/DECLARATION/QUEUE UC,P1,P2,P3;CLASS C0,C11,C12,C13;
/STATION/NAME=UC:SCHED=PS:
..... SERVICE(C0)=EXP(1.0);
         SERVICE=EXP(2.0);
         LOAD=1.0,1.0,1.0,1.0,10.0;
   TRANSIT(C0)=P1,1.0,P2,1.0,P3,1.0,UC,1.0;
   TRANSIT(C11)=P1,0.5,UC;
   TRANSIT(C12)=P2,0.5,UC;
   TRANSIT(C13)=P3,0.5,UC;
VSTATION/NAME=P1;
         SERVICE=EXP(20.0);
   TRANSIT(C0)=UC;
   TRANSIT(C11)=UC(C12);
/STATION/NAME=P2:
         SERVICE=EXP(25.0);
   TRANSIT(C0)=UC;
   TRANSIT(C12)=UC(C13);
/STATION/NAME=PS;
         SERVICE=EXP(30.0);
   TRANSIT(C0)=UC;
   TRANSIT(C13)=UC(C11);
/COMPUTE/INIT(C0)=2;
         INIT(C11)=5,10;
/EXEC/COMPUTE:
```

b) <u>Résultats</u>

**** ANALYTIC RESOLUTION ****

	4 4644	LUNDED OF O	UCZONEDE-				
****SUBCHAIN		HUMBER OF C		2 5			
****5UBCHAIN				_	Long to the sign of the sign of the sign of	o alo alo alo alo alo alo alo alo alo	edo edo ede
*	****	****	*****			****	*
*QUEUE UC	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CYCLE	*
*CLASS CO	.9963	.3495E-01	.4884E-01	1.392	.3508E-01	55.62	4
*CLASS C11	1.996	.8306E-01	.1110	2.666	.4161E-01	117.5	*
*CLASS C12	1.996	.8306E-01	.1110	2.666	.4161E-01	117.5	*
*CLASS C13	1.996	.8306E-01	.1110	2.666	.4161E-01	117.5	*
#GLOBAL	1.777	.2841	.3817	2.387	.1599	41.39	*
*							*
*QUEUE P1	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CYCLE	*
*CLASS C0	20.00	.1754	.3744	42.69	.8770E-02	185.4	*
*CLASS C11	20.00	.4161	.8926	42.90	.2081E-01	197.4	*
*GLOBAL	28.00	.5915	1.267	42.84	.2958E-01	193.8	*
*							*
*QUEUE P2	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CYCLE	*
*CLASS C0	25.00	.2192	.6069	69.20	.8770E-02	158.9	*
*CLASS C12	25.00	.5202	1.450	69.78	.2081E-01	170.6	*
*GLOBAL	25.00	.7394	2.057	69.55	.2958E-01	167.1	*
* *QUEUE P3	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	CYCLE	*
*CLASS CO	30.00	.2631	.9699	110.6	.8778E-02	117.5	*
*CLASS C13	30.00	.6242	2.324	111.7	.2081E-01	128.6	*
*GLOBAL	30.00	.8873	3.294	111.4	.2958E-01	125.3	*
*	36.66	. 6673	3.274	111.4	. 29362-01	123.3	*
*****	the six six the the six the si	* * * * * * * * * * * * * * * *	also also also also also also also also	and the site site site site site site site sit	ale		
				2			
****SUBCHAIN	1 TOTAL	NUMBER OF C	USTOMERS=				
****SUBCHAIN	1 TOTAL 2 TOTAL	NUMBER OF C	USTOMERS= USTOMERS=	2 10			
****SUBCHAIN ****SUBCHAIN	1 TOTAL 2 TOTAL	NUMBER OF C	USTOMERS= USTOMERS=	2 10			
****SUBCHAIN ****SUBCHAIN *******	1 TOTAL 2 TOTAL	NUMBER OF C	USTOMERS= USTOMERS=	2 10			***
****SUBCHAIN ****SUBCHAIN ***********	1 TOTAL 2 TOTAL ********	NUMBER OF C HUMBER OF C	USTOMERS= USTOMERS= ******	2 10 *******	******	*****	***
*****SUBCHAIN *****SUBCHAIN ************************************	1 TOTAL 2 TOTAL ************************************	NUMBER OF C HUMBER OF C ************************************	USTOMERS= USTOMERS= **************	2 10 ***********************************	**************************************	CYCLE	***
****SUBCHAIN ****SUBCHAIN ********* *QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12	1 TOTAL 2 TOTAL ************************************	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ************************************	2 10 ***********************************	**************************************	CYCLE 89.54 185.5 185.5	***
****SUBCHAIN ****SUBCHAIN ********* *QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13	1 TOTAL 2 TOTAL ************************************	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ************************************	2 10 ***********************************	**************************************	CYCLE 69.54 185.5 185.5	***
****SUBCHAIN ****SUBCHAIN ********* *QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12	1 TOTAL 2 TOTAL ************************************	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ************************************	2 10 ***********************************	**************************************	CYCLE 89.54 185.5 185.5	***
****SUBCHAIN ****SUBCHAIN ********** ** **QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *CLASS C13 *CLASAL	1 TOTAL 2 TOTAL ************************************	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= *********** CUST NB .3249E-01 .1531 .1531 .1531 .4917	2 10 ***********************************	**************************************	CYCLE 89.54 185.5 185.5 185.5	***
****SUBCHAIN ********* **QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1	1 TOTAL 2 TOTAL ************************************	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= *********** CUST NB .3249E-01 .1531 .1531 .4917 CUST NB	2 10 ***********************************	**************************************	CYCLE 89.54 185.5 185.5 185.5 63.51	****
****SUBCHAIN *****SUBCHAIN ********** *QUEUE UC *CLASS C11 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1 *CLASS C0	1 TOTAL 2 TOTAL ************************************	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ************ CUST NB .3249E-01 .1531 .1531 .1531 .4917 CUST NB .2871	2 10 ***********************************	**************************************	CYCLE 89.54 185.5 185.5 185.5 63.51 CYCLE 311.8	***
****SUBCHAIN ****SUBCHAIN ********** *QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1 *CLASS C0 *CLASS C1	1 TOTAL 2 TOTAL ************************************	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ************************************	2 10 ***********************************	**************************************	CYCLE 69.54 185.5 185.5 185.5 63.51 CYCLE 311.8 324.5	****
****SUBCHAIN ****SUBCHAIN ********** ** **QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * **QUEUE P1 *CLASS C0 *CLASS C13 *GLOBAL * *GLOBAL * *GLOBAL	1 TOTAL 2 TOTAL ************************************	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ************ CUST NB .3249E-01 .1531 .1531 .1531 .4917 CUST NB .2871	2 10 ***********************************	**************************************	CYCLE 89.54 185.5 185.5 185.5 63.51 CYCLE 311.8	****
****SUBCHAIN ********* **QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1 *CLASS C0 *CLASS C0 *CLASS C13 *GLOBAL *	1 TOTAL 2 TOTAL ************************************	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ******** CUST NB .3249E-01 .1531 .1531 .1531 .4917 CUST NB .2871 1.389 1.676	2 10 ***********************************	*********** THRUPUT .21976-01 .5308E-01 .5308E-01 .5308E-01 .1812 THRUPUT .5493E-02 .2654E-01	CYCLE 89.54 185.5 185.5 185.5 63.51 CYCLE 311.8 324.5 322.3	***
****SUBCHAIN ********* **QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1 *CLASS C0 *CLASS C0 *CLASS C0 *CLASS C0 *CLASS C0 *CLASS C1	1 TOTAL 2 TOTAL ************* SERVICE .9909 1.986 1.986 1.986 1.865 SERVICE 20.00 20.00 SERVICE	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ******* CUST NB .3249E-01 .1531 .1531 .4917 CUST NB .2871 1.389 1.676 CUST NB	2 10 ***********************************	*********** THRUPUT .21976-01 .5308E-01 .5308E-01 .5308E-01 .1812 THRUPUT .5493E-02 .2654E-01 .3203E-01 THRUPUT	CYCLE 89.54 185.5 185.5 185.5 63.51 CYCLE 311.8 324.5 322.3 CYCLE	***
****SUBCHAIN ****SUBCHAIN ********** *QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1 *CLASS C0 *CLASS C11 *GLOBAL * *QUEUE P1 *GLOBAL * *QUEUE P2 *GLOBAL *	1 TOTAL 2 TOTAL 2 TOTAL ************* SERVICE .9909 1.986 1.986 1.986 1.865 SERVICE 20.00 20.00 20.00 SERVICE 25.00	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ************* CUST NB .3249E-01 .1531 .1531 .1531 .4917 CUST NB .2871 1.389 1.676 CUST NB	2 10 ***********************************	*********** THRUPUT .2197E-01 .5308E-01 .5308E-01 .1812 THRUPUT .5493E-02 .2654E-01 .3203E-01 THRUPUT .5493E-02	CYCLE 89.54 185.5 185.5 185.5 63.51 CYCLE 311.8 324.5 322.3 CYCLE 264.2	***
****SUBCHAIN ****SUBCHAIN ********** **QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1 *CLASS C0 *CLASS C11 *GLOBAL * *QUEUE P1 *CLASS C11 *GLOBAL * *QUEUE P2 *CLASS C0 *CLASS C12	1 TOTAL 2 TOTAL 2 TOTAL ************** SERVICE .9909 1.986 1.986 1.986 1.865 SERVICE 20.00 20.00 20.00 SERVICE 25.00	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ************ CUST NB .3249E-01 .1531 .1531 .4917 CUST NB .2871 1.389 1.676 CUST NB .2871 676	2 10 ***********************************	*********** THRUPUT .21976-01 .5308E-01 .5308E-01 .1812 THRUPUT .5493E-02 .2654E-01 .3203E-01 THRUPUT .5493E-02	CYCLE 69.54 185.5 185.5 185.5 63.51 CYCLE 311.8 322.3 CYCLE 264.2 276.7	***
****SUBCHAIN ****SUBCHAIN *********** ** **QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1 *CLASS C0 *CLASS C11 *CLASS C11 *CLASS C0 *CLASS C11 *GLOBAL * *QUEUE P2 *CLASS C12 *GLOBAL	1 TOTAL 2 TOTAL 2 TOTAL ************* SERVICE .9909 1.986 1.986 1.986 1.865 SERVICE 20.00 20.00 20.00 SERVICE 25.00	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ************* CUST NB .3249E-01 .1531 .1531 .1531 .4917 CUST NB .2871 1.389 1.676 CUST NB	2 10 ***********************************	*********** THRUPUT .2197E-01 .5308E-01 .5308E-01 .1812 THRUPUT .5493E-02 .2654E-01 .3203E-01 THRUPUT .5493E-02	CYCLE 89.54 185.5 185.5 185.5 63.51 CYCLE 311.8 324.5 322.3 CYCLE 264.2	***
****SUBCHAIN ******** **QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1 *CLASS C0 *CLASS C0 *CLASS C11 *CLASS C0 *CLASS C11 *GLOBAL * *QUEUE P2 *CLASS C0 *CLASS C12 *GLOBAL *	1 TOTAL 2 TOTAL 2 TOTAL *************** SERVICE .9909 1.986 1.986 1.986 20.00 20.00 20.00 20.00 SERVICE 25.00 25.00	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ******* CUST NB .3249E-01 .1531 .1531 .4917 CUST NB .2871 1.389 1.676 CUST NB .2876 2.657 3.206	2 10 ***********************************	*********** THRUPUT .2197E-01 .5308E-01 .5308E-01 .5308E-01 .1812 THRUPUT .5493E-02 .2654E-01 .3203E-01 THRUPUT .5493E-01 .3203E-01	CYCLE 89.54 185.5 185.5 185.5 63.51 CYCLE 311.8 324.5 322.3 CYCLE 264.2 276.7 274.5	******
****SUBCHAIN ****SUBCHAIN ********** **QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1 *CLASS C0 *CLASS C11 *GLOBAL * *QUEUE P2 *CLASS C0 *CLASS C12 *GUEUE P2 *CLASS C0 *CLASS C12 *QUEUE P2 *GUEUE P2 *GUEUE P3	1 TOTAL 2 TOTAL 2 TOTAL ************* SERVICE .9909 1.986 1.986 1.986 20.00 20.00 20.00 SERVICE 25.00 25.00 SERVICE	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ************** CUST NB .3249E-01 .1531 .1531 .1531 .4917 CUST NB .2871 1.389 1.676 CUST NB .5466 2.657 3.206 CUST NB	2 10 ***********************************	**************************************	CYCLE 89.54 185.5 185.5 185.5 63.51 CYCLE 311.8 324.5 322.3 CYCLE 264.2 276.7 274.5	******
****SUBCHAIN ****SUBCHAIN ********** **QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1 *CLASS C0 *CLASS C11 *GLOBAL * *QUEUE P2 *CLASS C12 *GLOBAL * *QUEUE P2 *CLASS C12 *GLOBAL * *QUEUE P3 *CLASS C0	1 TOTAL 2 TOTAL 2 TOTAL ************* SERVICE .9909 1.986 1.986 1.986 1.865 SERVICE 20.00 20.00 20.00 20.00 SERVICE 25.00 25.00 25.00 SERVICE 30.00	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ************ CUST NB .3249E-01 .1531 .1531 .1531 .4917 CUST NB .2871 1.389 1.676 CUST NB .2466 2.657 3.206 CUST NB 1.132	2 10 **************** RESPONSE 1.479 2.884 2.884 2.713 RESPONSE 52.26 52.33 52.32 RESPONSE 99.86 100.1 100.1 RESPONSE 296.0	************ THRUPUT .2197E-01 .5308E-01 .5308E-01 .5308E-01 .1812 THRUPUT .5493E-02 .2654E-01 .3203E-01 THRUPUT .5493E-02 .2654E-01 .3203E-01 THRUPUT .5493E-02	CYCLE 69.54 185.5 185.5 185.5 63.51 CYCLE 311.5 322.3 CYCLE 264.2 276.7 274.5 CYCLE 158.0	******
****SUBCHAIN ****SUBCHAIN *********** **QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1 *CLASS C0 *CLASS C11 *GLOBAL * *QUEUE P2 *CLASS C12 *GUEUE P2 *CLASS C12 *GUEUE P3 *CLASS C12 *GUEUE P3 *CLASS C0 *CLASS C13	1 TOTAL 2 TOTAL 2 TOTAL ************* SERVICE .9909 1.986 1.986 1.986 1.986 20.00 SERVICE 20.00 20.00 SERVICE 25.00 25.00 25.00 SERVICE 30.00 SERVICE 30.00	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ******* CUST NB .3249E-01 .1531 .1531 .1531 .4917 CUST NB .2871 1.389 1.676 CUST NB .5466 2.657 3.206 CUST NB .132 5.495	2 10 ***********************************	*********** THRUPUT .21976-01 .5308E-01 .5308E-01 .5308E-01 .1812 THRUPUT .5493E-02 .2654E-01 .3203E-01 THRUPUT .5493E-02 .3203E-01 THRUPUT .5493E-02 .2654E-01 .3203E-01	CYCLE 89.54 185.5 185.5 63.51 CYCLE 311.8 322.3 CYCLE 264.7 274.5 CYCLE 276.7 274.5	*******
****SUBCHAIN ****SUBCHAIN ********** **QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1 *CLASS C0 *CLASS C11 *GLOBAL * *QUEUE P2 *CLASS C12 *GLOBAL * *QUEUE P2 *CLASS C12 *GUEUE P3 *CLASS C0	1 TOTAL 2 TOTAL 2 TOTAL ************* SERVICE .9909 1.986 1.986 1.986 1.865 SERVICE 20.00 20.00 20.00 20.00 SERVICE 25.00 25.00 25.00 SERVICE 30.00	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ************ CUST NB .3249E-01 .1531 .1531 .1531 .4917 CUST NB .2871 1.389 1.676 CUST NB .2466 2.657 3.206 CUST NB 1.132	2 10 **************** RESPONSE 1.479 2.884 2.884 2.713 RESPONSE 52.26 52.33 52.32 RESPONSE 99.86 100.1 100.1 RESPONSE 296.0	************ THRUPUT .2197E-01 .5308E-01 .5308E-01 .5308E-01 .1812 THRUPUT .5493E-02 .2654E-01 .3203E-01 THRUPUT .5493E-02 .2654E-01 .3203E-01 THRUPUT .5493E-02	CYCLE 69.54 185.5 185.5 185.5 63.51 CYCLE 311.5 322.3 CYCLE 264.2 276.7 274.5 CYCLE 158.0	******
****SUBCHAIN ****SUBCHAIN ********** **QUEUE UC *CLASS C0 *CLASS C11 *CLASS C12 *CLASS C13 *GLOBAL * *QUEUE P1 *CLASS C0 *CLASS C11 *GLOBAL * *QUEUE P2 *CLASS C12 *GLOBAL * *QUEUE P2 *CLASS C12 *GLOBAL * *QUEUE P3 *CLASS C0 *CLASS C13 *GUEUE P3 *CLASS C0 *CLASS C13 *GUEUE P3 *CLASS C0 *CLASS C13 *GLOBAL	1 TOTAL 2 TOTAL 2 TOTAL *********** SERVICE .9909 1.986 1.986 1.986 1.986 20.00 20.00 20.00 20.00 SERVICE 25.00 25.00 25.00 SERVICE 30.00 30.00 30.00 30.00	NUMBER OF C NUMBER OF C ************************************	USTOMERS= USTOMERS= ************* CUST NB .3249E-01 .1531 .1531 .1531 .4917 CUST NB .2871 1.389 1.676 CUST NB .5466 2.657 3.206 CUST NB 1.132 5.495 6.627	2 10 ***********************************	THRUPUT .2197E-01 .5308E-01 .5308E-01 .5308E-01 .5308E-01 .1812 THRUPUT .5493E-02 .2654E-01 .3203E-01 THRUPUT .5493E-02 .2654E-01 .3203E-01	CYCLE 89.54 185.5 185.5 185.5 63.51 CYCLE 311.8 324.5 322.3 CYCLE 264.2 276.7 274.5 CYCLE 158.0 169.8 167.8	*******

**** END OF ANALYTIC RESOLUTION ****

/START/ *** CPU TIME = 1.568

II.2.2 - Réseau ouvert

a) Données

```
MODELE DE CYCLADE: OUVERT
    7 HOEUDS (CLASSES A,B,C,D,E,F,G)
16 LIGNES (STATIONS S1,...,S16)
    1 SOURCE (EXT)
/DECLARATION/QUEUE $1,52,53,54,55,56,57,58,59,510,
                     $11,$12,$13,$14,$15,$16,EXT;
              CLASS A, B, C, D, E, F, G;
& LIGNES ...
/STATION/NAME=S1:SERVICE=EXP(0.3);
   TRANS(B)=OUT ;TRANS(C)=S3;TRANS(D)=S3;TRANS(E)=S3;TRANS(F)=S3;TRANS(G)=S4;
/STATION/NAME=S2; SERVICE=EXP(0.3);
   TRANS(A)=DUT ;
/STATION/NAME=S3; SERVICE=EXP(0.3);
   TRANS(C)=OUT | TRANS(D)=S6|TRANS(E)=S7|TRANS(F)=S8|
/STATION/NAME=S4; SERVICE=EXP(0.4);
   TRANS(G)=OUT:
/STATION/NAME=S5;SERVICE=EXP(0.3);
   TRANS(A)=S2; TRANS(B)=OUT ;
/STATION/NAME=56; SERVICE=EXP(0.4);
   TRANS(D)=OUT ;
/STATION/NAME=S7;SERVICE=EXP(0.4);
   TRANS(E)=OUT ;
/STATION/NAME=S8; SERVICE=EXP(0.4);
TRANS(F)=OUT ;TRANS(G)=S13;
/STATION/NAME=S9;SERVICE=EXP(0.4);
   TRANS(A)=55; TRANS(B)=55; TRANS(C)=OUT ; TRANS(E)=57; TRANS(F)=58; TRANS(G)=58;
/STATIOH/NAME=S10; SERVICE=EXP(0.4);
   TRANS(A)=55; TRANS(B)=55; TRANS(C)=OUT ; TRANS(D)=56;
/STATION/NAME=S11; SERVICE=EXP(0.4);
   TRANS(F)=OUT | TRANS(G)=S13;
/STATION/NAME=S12; SERVICE=EXP(0.4);
   TRANS(E)=OUT;
/STATION/NAME=S13;SERVICE=EXP(0.4);
   TRANS(G)=OUT;
/STATION/NAME=S14; SERVICE=EXP(0.4);
   TRANS(A)=55; TRANS(B)=55; TRANS(C)=OUT; TRANS(D)=56;
/STATION/NAME=S15; SERVICE=EXP(0.4);
   TRANS(E)=512; TRANS(F)=0UT;
/STATION/NAME=S16; SERVICE=EXP(0.4);
   TRANS(A)=52; TRANS(B)=OUT; TRANS(C)=53; TRANS(D)=53;
& SOURCE ...
/STATION/NAME=EXT; TYPE=GEN; SERVICE=EXP(1.0/7);
   TRANS=51(B),1.0,51(C),1.0,51(D),1.0,
        $1(E),1.0,$1(F),1.0,$1(G),1.0,
        52(A),1.0,53(C),1.0,53(D),1.0,
        53(E),1.0,54(G),1.0,55(A),1.0,
        55(B),1.0,S6(D),1.0,S7(E),1.0,
        $8(F),1.0,58(G),1.0,59(A),1.0,
        59(B),1.0,59(C),1.0,59(E),1.0,
        59(F),1.0,59(G),1.0,510(A),1.0,
        $10(B),1.0,$10(C),1.0,$10(D),1.0,
        Si1(F),1.0,S11(G),1.0,S12(E),1.0,
        $13(G),1.0,$14(A),1.0,$14(B),1.0,
        514(C),1.0,514(D),1.0,515(F),1.0,
        515(E),1.0,516(A),1.0,516(B),1.0,
        $16(C),1,0,53(F),1,0,$16(D),1,0;
/EXEC/COMPUTE;
```

nte sie nie nie nie nie nie nie nie nie nie	*******	is tale tale tale tale tale tale tale tale	and the site site site site site site site sit	ne ale são são são são são são são são	ter tille tale, tale tale tale tale tale tale tale	take ale
*						*
*QUEUE 51	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	*
*CLASS B	.3000	.5000E-01	.7143E-01	.4286	.1667	*
*CLASS C	.3008	.5008E-01	.7143E-01	.4286	.1667	sie
*CLASS D	.3000	.5000E-01	.7143E-01	.4286	.1667	Me
*CLASS E *CLASS F	.3000 .3000	.5000E-01 .5000E-01	.7143E-01 .7143E-01	.4286	.1667	*
*CLASS G	. 3000	.5000E-01	.7143E-01	.4286 .4286	.1667	*
*GLOBAL	.3000	.3000	.4286	.4286	.1667	*
*	. 3000	. 3666	. 4200	. 4200	1.0000	*
*QUEUE S2	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	344
*CLASS A	.3000	.3000	.4286	.4286	1.000	*
*GLOBAL	.3000	.3899	.4286	.4286	1.000	*
*						*
*OUEUE S3	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	*
*CLASS C	.3000	.1500	.3000	.6000	.5000	*
*CLASS D	.3000	.1500	.3000	.6000	. 5000	*
*CLASS E *CLASS F	.3000	.10000	.2000	.6000	.3333	*
*GLOBAL	.3000	.18000	.2000 1.000	.6999	.3333 1.667	*
*GEODRE	. 3000	. 3666	7.000	. 6666	1.007	*
*QUEUE S4	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	286
*CLASS G	.4000	.1333	.1538	. 4615	.3333	*
*GL OBAL	.4889	.1333	.1538	.4615	.3333	*
*						4
*QUEUE S5	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	*
*CLASS A	.3000	. 2000	.3333	.5000	.6667	*
*CLASS B	.3000	. 2000	.3333	.5000	.6667	*
*SLOBAL	.3000	.4000	.6667	.5000	1.333	**
# #00505 64	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	*
*QUEUE S6 *CLASS D	,4000	.4000	.6667	.6667	1.000	*
*GLOBAL	.4000	.4666	.6667	.6667	1.000	*
*						*
#QUEUE S7	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	*
*CLASS E	.4000	. 2667	. 3636	.5455	.6667	*
*GLOBAL	. 4999	.2667	.3636	.5455	.6667	361
*						*
*@UEUE S8	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	*
*CLASS F	.4888	.2667	. 4444	.6667	.6667	364
*CLASS G	.4000	.1333	.2222	.6667	.3333	*
*GLOBAL	.4000	.4000	.6667	.6667	1.0000	*
*QUEUE 59	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	*
*CLASS A	.4000	.6667E-01	.1111	.6667	.1667	*
*CLASS B	.4000	.6667E-01	.1111	.6667	.1667	*
*CLASS C	. 4000	.6667E-01	.1111	.6667	.1667	*
*CLASS E	. 4888	.6667E-01	.1111	. 6667	.1667	*
*CLASS F	. 4000	.6667E-01	.1111	. 6667	.1667	*
*CLASS G	. 4000	.6667E-01	-1111	.6667	.1667	*
*GLOBAL	.4000	. 4000	.6667	.6667	1.6666	*
* *QUEUE 510	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	*
*CLASS A	.4000	.6667E-01	.9091E-01	.5455	.1667	*
*CLASS B	.4000	.6667E-01	.9091E-01	.5455	.1667	*
*CLASS C	.4008	.6667E-01	.9891E-01	. 5455	.1667	*
*CLASS D	.4000	.6667E-01	.9091E-01	.5455	.1667	*
*GLOBAL	.4000	. 2667	.3636	.5455	.6667	*
*						*
*GUEUE S11	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	zặc
*CLASS F	.4000	.6667E-01	.7692E-01	.4615	.1667	*
*CLASS G	.4999	.6667E-81	.7692E~01	.4615		*
*GLOBAL *	.4606	.1333	.1538	. 4615	.3333	*
**************************************	SERVICE	BUSY PCT	CUST NB	RESPONSE	THRUPUT	*
*CLASS E	.4000	.1333	.1538	.4615	.3333	*
*GLOBAL	.4000	.1333	.1538	. 4615	.3333	*
*						*
*GUEUE S13		BUSY PCT		RESPONSE	THRUPUT	*
*CLASS G	.4000	. 2667	.3636	.5455	.6667	**
*GLOBÁL	.4000	.2667	.3636	.5455	.6667	*
***	CERUSOF	DUCH COT	OUCT UP	nrenewer	THE	*
*QUEUE S14 *CLASS A	SERVICE .4000	BUSY PCT	CUST NB	RESPONSE 5455	THRUPUT .1667	*
*CLASS B	.4000	4447E-01	.9091E-01 .9091E-01	5455		*
*CLASS C	. 4000	.6667E-01	.9091E-01	.5455	.1667	*
*CLASS C *CLASS D	.4000	.6667E-81		.5455	.1667	*
*GLOBAL	.4000	.2667	.3636	.5455	.6667	*
**						*
*QUEUE 515	SERVICE .4000	BUSY PCT	CUST NB	RESPONSE	THRUPUT	*
*CLASS E	. 4000	.6667E-01	.7692E-01	.4615	.1667	*
*CLASS F	.4999	.6667E-01				Me.
*GLOBHL	. 4000	.1333	.1538	.4615	.3333	*
* *QUEUE S16	SERVICE	BUSY PCT	CUST HB	RESPONSE	THRUPUT	
*CLASS A	.4000	.6667F-01	.9091E-01	.5455	.1667	*
*CLASS B	. 4000	.6667E-01	.9091E-01	.5455	.1667	144
*CLASS C	.4000	.6667E-01	.9091E-01		.1667	*
*CLASS D	. 4000	.6667E-01	.9091E-01	.5455	.1667	*
*GLOBAL	.4000	.2667	.3636	.5455	.6667	*
*	COURSE TO	i enemnasire i	NATE			*
*WUEUE EXT	SOURCE OF AL	L SUBCHAIRS F	(HIE∓ 7.896	שפ		*
****	*****	****	ing and		*****	
		**********				~ ~

**** END OF ANALYTIC RESOLUTION **** /START/ *** CPU TIME = 4.129

II.2.3 - Réseau mixte

a) Données

```
& EXEMPLE DE RESEAU MIXTE
& 1 SOUS-CHAINE FERMEE (CLASSES C11, C12)
& 1 SOUS CHAINE OUVERTE (CLASSES C21, C22)
/DECLAR/QUEUE EXT, TERM, SWAP, CPU, DISK, TAPE;
         CLASS C11, C12, C21, C22;
ě.
& SOURCE EXTERIEURE
Ė.
/STATION/NAME=EXT; TYPE=GEN;
          SERVICE=EXP(1000.0);
          TRANSIT=SWAP(C21);
& STATIONS
/STATION/NAME=TERM; TYPE=DELAY;
         SERVICE=EXP(1000.0); TRANSIT(C12)=SWAP(C11);
/STATION/NAME=SWAP;
         SERVICE=EXP(50.0);
         TRANSIT(C11)=CPU; TRANSIT(C12)=TERM;
         TRANSIT(C21)=CPU;TRANSIT(C22)=OUT;
/STATION/NAME=CPU; SCHED=PS;
         SERVICE(C11)=EXP(10.0); SERVICE(C21)=EXP(25.0);
         TRANSIT(C11)=SWAP(C12),1,DISK,10,TAPE,2;
        .TRANSIT(C21)=SWAP(C22):1:DISK:10:TAPE:2;
/STATION/NAME=DISK;
         SERVICE=EXP(20.0);
         TRANSIT(C11)=CPU;
         TRANSIT(C21)=CPU;
/STATION/NAME=TAPE;
         SERVICE=EXP(60.0);
         TRANSIT(C11)=CPU;
         TRANSIT(C21)=CPU;
/COMPUTE/INIT(C11)=10; INIT(C12)=0;
ZEXECZCOMPUTE;
```

b) Résultats

*** ANALYTIC RESOLUTION .NETWORK IS MIXED ***

```
SUBCHAIN
        1 IS CLOSED CUSTNB= 10
SUBCHAIN
        2 IS OPEN
*QUEUE EXT
           SOURCE OF SUBCHAIN
                             2 RATE= .1000E-02
*QUEUE TERM
            SERVICE
                      BUSY PCT
                                 CUST NB
                                            RESPONSE
                                                        THRUPUT
                                                                  CYCLE
*CLASS 012
                      .9756
                                                       .3523E-02
                                                                 1839.
           1000.0
                                 3.523
                                           1000.0
                                                                 1839.
                                           1000.0
                                                       .3523E-02
                       .9756
                                 3.523
           1000.0
*GLOBAL
                                                                  CYCLE
                      BUSY PCT
                                 CUST NB
                                            RESPONSE
                                                        THRUPUT
*QUEUE SWAP
            SERVICE
                                 .3079
                      .1761
                                            87.39
                                                       .3523E-02
                                                                  2751.
            50.00
*CLASS C11
                       .1761
                                 .3079
                                            87.39
                                                       .3523E-02
                                                                 2751.
                                                                          *
            50.00
*CLASS C12
                                                       .1000E-02
            50.00
                      .5000E-01
                                 .8976E-01
                                            89.76
                                                                   UDEF
*CLASS C21
                                                                   UDEF
                                                                          *
*CLASS C22
            50.00
                       .5000E-01
                                 .8975E-01
                                            89.76
                                                       .9999E-03
                                                       .9046E-02
                                                                   UDEF
                                                                          *
                                            87.91
            50.00
                       .4523
                                 .7952
*GLOBAL
                                 CUST NB
                                                                  CYCLE
                                            RESPONSE
                                                        THRUPUT
                      BUSY PCT
*QUEUE CPU
            SERVICE
                                 1.694
                                            37.00
                                                       .4580E-01
                                                                  161.4
                       .4580
*CLASS C11
           10.000
                                 1.297
                      .3250
                                            99.79
                                                                   UDEF
                                                       .1300E-01
*CLASS C21
            25.00
                                 2.991
                                            50.88
                                                       .5880E-01
                                                                   UDEF
                                                                          *
            13.32
                      .7829
*GLOBAL
                                                                  CYCLE
                      BUSY PCT
                                 CUST NB
                                            RESPONSE
                                                        THRUPUT
*QUEUE DISK
            SERVICE
                                                                  190.0
                                                       .3523E-01
                      . 7046
                                 3.307
                                            93.87
*CLASS C11
            20.00
                                                                   UDEF
                                            107.7
                                                       .9999E-02
            20.00
                      . 2000
                                 1.077
*CLASS C21
                                                                   UDEF
                                                       .4523E-01
            20.00
                       . 9046
                                 4.363
                                            96.92
*GLOBAL
                                            RESPONSE
                                                        THRUPUT
                                                                  CYCLE
                                                                          *
                      BUSY PCT
                                 CUST NB
            SERVICE
*QUEUE TAPE
                                 .8601
                                            122.1
                                                       .7046E-02
                                                                  1297.
                                                                          *
            60.00
                       .4228
*CLASS C11
                                                                   UDEF
            60.00
                       .1260
                                 .2536
                                            126.8
                                                       .2000E-02
                                                                          *
*CLASS C21
                                                                   UDEF
                                                                          *
                                                       .9046E-02
*GLOBAL
                                 1.114
                                            123.1
            60.00
                       .5427
```

*** END OF ANALYTIC RESOLUTION ***

/START/

*** CPU TIME = 2.775

CHAPITRE III

I - INTRODUCTION

Ce Chapitre est destiné à illustrer les domaines d'activité principaux de QNAP que nous avons indiqués en conclusion du Chapitre I :

- i) étude de propriétés des réseaux de files d'attente et comparaison des méthodes de résolution,
- ii) conception et évaluation des systèmes informatiques.

Nous proposons donc, au paragraphe II de ce Chapitre, deux études de robustesse des hypothèses du théorème de Baskett-Chandy-Muntz et Palacios. La première porte sur l'approximation qui consiste à substituer une station de type "processeur partagé" à une station PAPS, lorsque les clients susceptibles d'entrer dans cette station ont des temps de service différents. La deuxième série d'expériences examine l'influence de services exponentiels corrélés (les hypothèses du théorème BCMP stipulent que les temps de service sont indépendants). Ces deux études seront menées à l'aide de réseaux très simples afin de limiter le nombre de paramètres et de permettre des expériences assez systématiques.

En ce qui concerne le deuxième point, nous avons disposé de mesures sur le système GCOS-64 permettant d'alimenter des modèles globaux de l'architecture de ce système. Ces modèles sont présentés au paragraphe III. Cependant, nous avons pu conduire à terme le processus d'évaluation faute de données suffisantes pour conduire correctement le processus de validation. Néanmoins nous pouvons tirer de ces expériences quelques informations sur la validité de certaines hypothèses exigées par les modèles analytiques en comparant les résultats obtenus au moyen de modèles de simulation dont les propres hypothèses sont moins restrictives. D'autre part, nous dégageons certains points qu'il serait intéressant d'approfondir pour obtenir un modèle dont les résultats se rapprocheraient de la réalité, et les mesures ou informations qu'il resterait à recueillir.

II - ETUDE DE ROBUSTESSE DE CERTAINES HYPOTHESES DU THEOREME BCMP

Nous avons présenté au Chapitre II les hypothèses de validité du théorème BCMP, et mis l'accent sur certaines de ses lacunes. Cependant, la relative généralité des réseaux pris en compte et les avantages qu'ils présentent (facilité de mise en oeuvre, rapidité d'exécution) ont conduit à de nombreuses expériences de modélisation les utilisant [Ros76, RoD72, VrG77], avec des résultats parfois excellents et le plus souvent suffisants lorsqu'une très grande précision dans les prédictions effectuées n'est pas requise, ce qui est le cas dans la phase de conception d'un système informatique par exemple.

La surprenante adéquation des résultats de certains modèles est l'objet d'explications d'ordre théorique ou heuristique [DeB77, Sto77]. Notre propos est ici de quantifier l'erreur commise en utilisant des réseaux qui se prettent à une résolution mathématique BCMP à la place de réseaux dont les hypothèses sont moins restrictives :

- i) au paragraphe II.1, nous assimilons une station PAPS, à la loi de service exponentielle avec deux classes de clients, à une station PP,
- ii) au paragraphe II.2, une station à loi de service exponentielle corrélée, à une station PAPS exponentielle à services indépendants.

La méthode suivie est analogue à celle utilisée par J.P. Buzen et D. Potier pour l'étude des stations PAPS à loi de service générale où les résultats, obtenus pour un réseau constitué de deux stations (dont l'une M/M/1) en tandem, sont supposés généralisables à un réseau quelconque [BuP77].

II.1 - Stations PAPS avec classes de clients

II.1.1 - Le modèle considéré (cf. Figure 1)

Le modèle est constitué par deux stations (SI, S2) en tandem. La politique de rangement dans les files respectives est PAPS. La distribution des temps de service est exponentielle. Les clients qui transitent par la station S2 appartiennent à la classe Cl. A`la sortie de cette station, les clients restent en classe Cl avec la probabilité PROB, passent en classe C2 avec la probabilité 1-PROB. Donc, si 0 < PROB < 1 et si les temps de service à la station S1 sont différents les

hypothèses du théorème BCMP ne sont pas vérifiées. Le réseau ainsi défini (réseau 1) sera traité par analyse numérique markovienne. Les résultats obtenus, en ce qui concerne les taux d'utilisation et le nombre moyen de clients des stations S1 et S2 seront comparés à ceux obtenus pour un réseau identique (réseau 2) où la station S1 est de type PP (processeur partagé).

Les paramètres du réseau sont les suivants :

- R1, R2 : rapport des temps moyen de service à la station S1 et à la station S2 pour des clients de classe C1 et C2 respectivement.
- PROB : probabilité qu'un client de classe Cl à la station S2 reste dans cette classe après achèvement de son service.
- N : nombre total de clients dans le réseau.

Quelques remarques peuvent être faites à propos du réseau 1 :

- Le nombre d'états est égal à 2^{N+1} -1. En pratique, pour des raisons de taille mémoire disponible et de temps de calcul, l'étude sera effectuée pour un maximum de 7 clients (soit 255 états).
- Le nombre d'éléments non nuls de la matrice de transition est $4(2^{N}-1)$. Soit à peu près le double du nombre d'états (ce rapport est intéressant pour optimiser l'espace mémoire réservé pour une résolution numérique).
- Les solutions obtenues pour le réseau 1 et le réseau 2 coı̈ncident pour N=1.

Le fichier de données en langage de QNAP est donné ci-après. Le paramètre OUTPUT dans la commande COMPUTE permet d'introduire l'étiquette logique d'un fichier sur lequel les paramètres de la fonction PRINT dans la commande /EXEC/sont écrits. Ce fichier est utilisé ensuite pour éditer tableaux et courbes.

```
& ETUDE DE ROBUSTESSE , PAPS AVEC PLUSIEURS CLASSES ...
REAL TR2(4)=0.5 1.0 5.0 10.0;

REAL TR2(4)=0.5 1.0 5.0 10.0;

REAL TPROB(5)=0.1 0.3 0.5 0.7 0.9;

REAL P(6)=5 0 1000 0 3 0.0005;
          REAL AUS1, ALS1, AUS2, ALS2, SUS1, SLS1, SUS2, SLS2;
          REAL R1, R2, PROB;
/STATION/NAME=S1; SCHED=FIFO;
           SERVICE(C1)=EXP(R1);
           SERVICE(C2)=EXP(R2);
            TRANSIT=52(C1);
           INIT(C1)=Ni
/STATION/NAME=S2; SCHED=F1F0;
SERVICE=EXP(1.0);
           TRANSIT(C1)=51, PROB, S1(C2);
/COMPUTE/PARAM=P;
           OUTPUT=7;
/EXEC/
 BEGIN
 1:=1;
 WHILE IK=5 DO
         BEGIN
         R1:=TR1(I);FRINT(R1);
         J:=I;
         WHILE J <= 4 DO
                BEGIN
R2:=TR2(J);PRINT(R2);
K:=1;
                WHILE K <= 5 DO
                        BEGIN
                        PROB: =TPROB(K); PRINT(PROB);
                        N:=1;
                        WHILE N <= 7 DO
                                BEGIN
                                PRINT(N);
                                COMPUTE:
                                AUS1:=51.MBUSY; ALS1:=51.MCUST;
AUS2:=52.MBUSY; ALS2:=52.MCUST;
                                PRINT(AUS1, ALS1, AUS2, ALS2);
                                SUS1:=S1.MBUSY; SLS1:=S1.MCUST;
SUS2:=S2.MBUSY; SLS2:=S2.MCUST;
                                PRINT(SUS1.SLS1,SUS2,SLS2);
                                N:=H+1;
                                END:
                        K_1 = K + 1
                        END;
                 J:=J+1;
                END:
        I:=I+1;
        END:
 END;
/END/
```

II.1.2 - Résultats

Les calculs sont effectués avec les valeurs des paramètres suivants :

N =: 1, 2, 3, 4, 5; PROB : 0.1, 0.3, 0.5, 0.7, 0.9;

RA		R	.2	
0.1	0.5	1.0	5.0	10.0
0.5	1.0	5.0	10.0	
1.0	5.0	10.0		
5.0	10.0			

Nous comparons les réseaux 1 et 2 relativement aux taux d'utilisation et au nombre moyen de clients en calculant l'écart absolu et l'écart relatif sur ces quantités. Ces résultats sont présentés par les tableaux de l'annexe III.1. Les courbes portent pour chaque valeur des paramètres les écarts relatifs sur :

- a) les taux d'utilisation des stations SI ou S2,
- b) le nombre moyen de clients dans la station SI,
- c) le nombre moyen de clients dans la station S2.

On montre simplement que les écarts relatifs sur les taux d'utilisation des stations S! et S2 sont égaux en utilisant la relation de Chang-Lavenberg [ChL72]:

Cette relation lie les taux d'utilisation des stations d'un réseau à l'intensité de trafic à ces stations soit :

$$\frac{U_{i}}{U_{j}} = \frac{x_{i}}{x_{j}}$$

moyennant des hypothèses générales que vérifient les réseaux 1 et 2. En notant $U_{\bf i}^k$ (i=1, 2; k=1,2) le taux d'utilisation pour le réseau k et la station i, $x_{\bf i}$ l'intensité de trafic à la station i nous aurons :

$$\frac{\mathbf{U}_{1}^{1}}{\mathbf{U}_{2}^{1}} = \frac{\mathbf{x}_{1}}{\mathbf{x}_{2}} = \frac{\mathbf{U}_{1}^{2}}{\mathbf{U}_{2}^{2}}$$

d'où

$$\frac{v_1^1 - v_1^2}{v_1^1} = \frac{v_2^1 - v_2^2}{v_2^1}$$

Les conclusions que nous pouvons tirer de cette étude sont les suivantes :

i) taux d'utilisation

- L'écart relatif est maximum lorsque l'écart entre R1 et R2 est grand et lorsque PROB*R1 = (1 - PROB)*R2 (égalité des intensités de trafic par classe), ce qui est intuitivement normal.

- Les résultats obtenus par la méthode analytique BCMP dans l'hypothèse processeur partagé sont toujours optimistes.
- L'écart relatif croît avec le nombre de clients dans le réseau si c'est la station SI qui est la plus chargée.
- De façon générale, les résultats restent le plus souvent acceptables et même bons si R1/R2 < 10.

ii) Nombre moyen de clients

- Les écarts sur cette quantité pour les stations S1 et S2 sont de signes opposés. De façon générale cet écart est positif pour la station la plus chargée.
- Cet écart augmente toujours en valeur absolue avec le nombre de clients dans le réseau.
- Il est quelquefois important (50 %), mais le plus souvent lorsque le nombre de clients dans la station considérée est assez faible. De même que pour les taux d'utilisation les résultats sont correctes lorsque R1/R2 < 10.

En conclusion, et en supposant que les résultats globaux énoncés ci-dessus se généralisent à des réseaux quelconques, l'heuristique, consistant à substituer une station PP (ou DAPS-PR) à une station PAPS dans laquelle transitent des clients appartenant à plusieurs classes, semble donner d'assez bons résultats en ce qui concerne les taux d'utilisation des ressources, et si l'on se contente d'un ordre de grandeur pour la charge des ressources.

II.2 - Stations PAPS à temps de service corrélés

II.2.1 - Le modèle considéré

Nous considérons deux stations S1 et S2 en tandem (figure 1) telles que la politique de mise en queue soit PAPS, les distributions de temps de service exponentielles. Ces temps de service sont indépendants dans le cas de la station

S2, corrélés pour la station S1 suivant le modèle de Jacobs et Lewis [JaL76, Bad77].

Soit T_n une variable aléatoire, distribuée suivant une loi exponentielle, représentant le $n^{i\`{e}me}$ temps de service à la station SI et t_n une réalisation de T_n . Si l'on tire t_{n+1} de la façon suivante :

$$t_{n+1} = \begin{cases} rt_n & probabilité r \\ rt_n + s_n & probabilité 1-r \end{cases}$$

alors on montre que si (s_n) est une suite de réalisation indépendante d'une variable aléatoire S, exponentielle de même moyenne que les \mathbf{T}_n :

$$Corr(T_n, T_{n+1}) = r$$

et

$$Corr(T_n, T_{n+p}) = r^p$$

Cette méthode permet donc d'obtenir un cas particulier de temps de service distribués suivant une loi exponentielle dont le coefficient de corrélation est r.

Le réseau défini ci-dessus (réseau 1) sera comparé a un réseau de deux stations PAPS dont les temps de service suivent des lois exponentielles et sont indépendants, donc vérifient les hypothèses du théorème BCMP (réseau 2).

Les paramètres du modèle sont :

R1 : rapport des temps moyen de service des stations S1 et S2,

CORR : coefficient de corrélation des temps de service successifs à la station !,

N: nombre de clients dans le réseau.

Le réseau l'est résolu en simulation, la méthode de tirage des temps de service de SI étant programmée directement au niveau du paramètre SERVICE de cette station en introduisant un nouvel attrîbut QTIR de la classe QUEUE. Le client de la file de SI est, pour le premier service, en classe CI pour une question d'initialisation du processus de tirage, le reste de la simulation s'effectue avec des clients en classe C2. Le fichier de données est le suivant :

```
& ETUDE DE ROBUSTESSE ,LOI DE SERVICE CORRELEE ...
/DECLAR/QUEUE REAL GTIR;
         QUEUE 51,52;
         CLASS C1: C2;
         REAL TCORR(5)=8.1 0.3 0.5 0.7 0.9;
REAL TSERV(6)=0.1 0.5 1.0 2.5 5.0 10.0;
REAL CORR, SERV, U1, L1, U2, L2;
         INTEGER N. I. J. N1;
/STATION/NAME=S1;
          SERVICE(C1)=BEGIN
                        QTIR:=EXP(SERV);
                        CST(QTIR);
                        END;
          SERVICE(C2)=BEGIN
                        QTIR:=QTIR*CORR;
                        IF RANDU >= CORR THEN QTIR:=QTIR+EXP(SERV) ;
                        CST(QTIR);
                        END;
          TRANSIT(C1)=52(C2);
          TRANSIT(C2)=S2;
          INIT(C1)=1; INIT(C2)=N1;
/STATION/NAME=S2;
          SERVICE=EXP(1.8);
          TRANSIT=S1;
/SIMUL/TMAX=15000;
        NESURE=100;
/COMPUTE/OUTPUT=7;
/EXEC/BEGIN
       I:=1;
       WHILE I <= 5 DO
              BEGIN
              SERV:=TSERV(I);PRINT(SERV);
              J:=1;
              WHILE J <= 5 DO
                    BEGIN
                    CORR:=TCORR(J);PRINT(CORR);
                     N: =1;
                     WHILE N<= 10 DO
                           BEGIN
                           PRINT(N)
                           H1:=H-1;
                            SIMUL;
                            U1:=S1.MBUSY;L1:=S1.MCUST;
                            U2: =52. MBUSY: L2: =52. MCUST:
                           PRINT(U1, L1, U2, L2);
                           H:=H+1;
                           END;
                     J:=J+1;
                    END;
              I:=I+1;
              END;
VEND/
```

II.2.2 - Résultats

Nous avons considéré les valeurs de paramètres suivantes :

R1: 0.1, 0.5, 1.0, 2.5, 5.0, 10.0; CORR: 0.1, 0.3, 0.5, 0.7, 0.9; N: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;

Les tableaux et courbes recouvrent les mêmes quantités que précédamment (avec en sus la visualisation des écarts relatifs sur les taux d'utilisation de S2, les équations de Chang-Lavenberg n'étant pas a priori vérifiées) et sont présentés en annexe III.2.

Le problème essenciel rencontré dans cette étude est dû à l'utilisation d'une simulation pour résoudre le réseau 1. Les résultats obtenus sont tels que l'intervalle de confiance sur les taux d'utilisation est de l'ordre de 2 %. Leur interprétation doit donc tenir compte de fluctuation possible des résultats de simulation dans cet intervalle, d'autant que nous ne disposons pas des intervalles de confiance sur le nombre moyen de clients dans une station.

En fonction de ces restrictions nous tirerons les conclusions suivantes :

i) taux d'utilisation

- l'écart relatif semble passer par un maximum lorsque les deux stations sont équilibrées (RI = 1.0) et croître avec le coefficient de corrélation et dans une certaine mesure avec N (cette dernière assertion devant être prise avec prudence, dans certains cas l'état semble croître puis décroître ensuite).
- l'écart relatif est négatif (les fluctuations annoncées ci-dessus peuvent expliquer certaines valeurs positives mais non significatives).
- les résultats sont très acceptables surtout si l'on s'éloigne de R1 = 1.0 (Maximum pour R1 = 1.0, CORR = 0.9).

ii) nombre de clients

- Sauf pour RI = 0.1 l'écart relatif semble décroître pour la station SI lorsque RI augmente, avec changement de signe au passage de RI = 1.0. Ce résultat est inversé pour S2 où l'écart décroît lorsque RI diminue à partir de 5.0.
- De même que pour le taux d'utilisation l'écart croît avec le coefficient de corrélation, et, bien que pour la majorité des cas considérés cet écart croisse avec N, il est difficile de tirer une conclusion générale à ce propos.
- Comme pour l'étude précédante l'écart est important lorsque la station considérée est peu chargée, et reste modéré lorsque les stations sont équilibrées (de l'ordre de 10 %).

En conséquence, l'approximation faite ici paraît être raisonnable et conduire dans la majorité des cas à des résultats acceptables.

III - ETUDE D'UN MODELE DE SYSTEME INFORMATIQUE

III.1 - Introduction

Une expérience de modélisation d'un système informatique peut schématiquement se décomposer en les phases suivantes :

- i) étude du système réel d'un point de vue fonctionnel (gestion des processus à l'unité centrale, files d'attente du système, gestion des entréessorties),
- ii) élaboration d'un modèle du système, ce qui implique la détermination des entrées et des résultats prédits par ce modèle, ainsi que le choix d'une ou plusieurs méthodes de résolution,
 - iii) programmation du modèle,
 - iv) recueil de mesures sur le système réel, dans le but de fournir :
 - des données,
 - des mesures de comparaisons,

- v) validation par comparaison entre les résultats du modèle et des mesures sur le système réel,
- vi) utilisation du modèle validé avec pour objectif de comprendre le fonctionnement du système étudié et éventuellement de prédire les performances d'un système extrapolé (conception d'une nouvelle architecture, évaluation d'une nouvelle configuration).

Remarquons tout d'abord que ces phases sont liées et doivent conduire à des itérations de l'ensemble du processus (par exemple, la phase de validation peut entraîner la redéfinition du modèle et rendre nécessaire des mesures complémentaires). D'autre part, l'activité d'un système est mesurée relativement à une charge donnée qui lui est soumise (programmes synthétiques ou charge réelle) et dont la représentativité doit être précisée. Aussi l'étude d'un système doit débuter par l'analyse de cette charge, le plus souvent par des méthodes statistiques [Sch78].

Dans l'étude présentée, nous utilisons une chaîne de programmes qui représentent une charge classique du système étudié.

Les modèles que nous construisons sont des modèles sous forme de réseau de files d'attente fréquemment utilisés dans le cadre de la modélisation des performances globales d'un système informatique.

Le système étudié et les mesures disponibles sont brièvement décrites au paragraphe III.2, en ne présentant que les points particuliers qui nous intéressent. Le paragraphe III.3 est consacré aux différents modèles que nous avons envisagés et aux résultats obtenus. Nous concluons par le paragraphe III.4 en indiquant quelles sont, à notre sens, les informations et mesures qu'il serait nécessaire de recueillir pour élaborer un modèle conduisant à de meilleurs résultats. Nous indiquons néanmoins deux types d'utilisation possibles des modèles construits au paragraphe III.3, dans le but de prédire les performances de systèmes dérivés de celui que nous avons considéré.

III.2 - Le système étudié

III.2.1 - Architecture globale

Le système GCOS-64 [CII76] des ordinateurs CII-HB-64 est un exemple de système multiprogrammé à mémoire virtuelle segmenté dont l'architecture présente certaines analogies avec le système MULTICS [CoV65] (segmentation, protection en anneaux, etc...). Un schéma de configuration classique est spécifié figure 2.

Au niveau de l'unité centrale (CPU), les tâches actives sont servies suivant une politique DAPS avec préemption si elles sont des priorités différentes (16 niveaux de priorités), PAPS si elles sont de même priorité. Les synchronisations sont assurées par des opérations P et V sur sémaphores.

En ce qui concerne les entrées-sorties il existe trois types de contrôleurs gérant les disques (MSC), bandes magnétiques (MTC) et périphériques lents (URC). Chaque contrôleur est connecté par l'intermédiaire d'un canal physique à un contrôleur d'entrées-sorties central (IOC). L'IOC maintient une file d'attente (canal logique) pour chaque périphérique. Les contrôleurs ont la charge d'assurer le partage des canaux physiques entre les divers canaux logiques.

Dans la version étudiée, le système GCOS-64 n'effectue que du traitement par lots avec un degré de multiprogrammation faible (quatre, dans notre exemple).

III.2.2 - Mesures disponibles

Un certain nombre de campagnes de mesures sur GCOS-64 ont été réalisés par le service évaluation des performances de CII-HB (P. de Rivet). Les mesures dont nous avons disposé ont été réalisées par M. Cardaillac, J.P. Corré et J. Oliveira sur un ensemble de programmes caractéristique d'une charge type du système [Car77, Cor77, Oli77]. Ces mesures sont recueillies par un outil logiciel (ASTRE [Cor76]) et un outil matériel (noté HM) qui permettent d'obtenir, entre autres, les renseignements suivants :

i) ASTRE

- le nombre d'entrées-sorties (E/S),
- l'histogramme des temps de réponse des périphériques, et par la suite leur moyenne,

- l'histogramme des temps de calcul entre deux entrées-sorties,
- les transitions entre périphériques : pour un périphérique i on mesure le nombre d'E/S sur un périphérique j sachant que l'E/S précédante a eu lieu sur le périphérique i.

ii) HM

- la durée total d'exécution d'un programme, et le temps CPU correspondant. Ces données permettent de calculer le taux d'utilisation de l'unité centrale,
 - le nombre d'E/S,
- le temps d'occupation du contrôleur de disque, ce qui fournit son taux d'utilisation.

Notons que les mesures réalisées conjointement par HM et par ASTRE coıncident de façon satisfaisante, ce qui nous conduit à négliger l'influence de l'outil logiciel sur les performances du système.

La charge mesurée est constituée de six chaînes programmes de gestion (compilations et éditions de liens COBOL, tris, traitements de fichiers, etc...) qui font intervenir de nombreux périphériques à l'exclusion des périphériques lents. Cette charge est mesurée en monoprogrammation puis en multiprogrammation. Les mesures en monoprogrammation permettent de constituer un jeu de données pour nos modèles comme nous l'indiquons au paragraphe suivant. Les mesures en multiprogrammation fournissent les données de comparaison avec les résultats de ces modèles.

III.2.3 - Problèmes posés pour la modélisation

Notre but est de construire puis de valider un modèle analytique simple de type BCMP capable de prédire les performances du système. Les caractéristiques de GCOS-64 et les conditions d'obtention des mesures laissent présager un certain nombre de difficultés :

- Dans le cadre de l'étude considérée, le système GCOS-64 effectue du traitement pas lots à degré de multiprogrammation faible. Notons que la version du système étudiée ici est relativement ancienne et qu'en conséquence les résultats obtenus ne sont pas nécessairement applicables à la version actuelle.

- En multiprogrammation, les programmes appartiennent à quatre classes, de priorités différentes. On conçoit bien que, suivant les caractéristiques de ces programmes l'influence de ces priorités va être grande. Par exemple, le débit global du système sera certainement accéléré si les programmes effectuant des E/S nombreuses sont prioritaires par rapport à ceux qui sont plutôt des consommateurs de temps CPU.
- Les mesures en monoprogrammation sont conduites avec une configuration mémoire de 1024 K tandis que celles réalisées en multiprogrammation le sont avec 160 K. En conséquence, nous pouvons prévoire une augmentation du nombre des E/S en multiprogrammation en raison de défauts de segment supplémentaires.
- Pour la deuxième série de mesures, le degré de multiprogrammation n'est pas en réalité constant. En effet les mesures débutent avec le premier programme entré dans le système, et s'achèvent avec le dernier programme terminé, et les durées d'exécution pour chaque voie de multiprogrammation sont très différentes.
- Enfin, les mesures disponibles en multiprogrammation ne concernent que les taux d'utilisation CPU et MSC principalement, ce qui limite les possibilités de validation.

III.3 - Les modèles étudiés

III.3.1 - Utilisation des données brutes

En monoprogrammation, les données dont nous disposons portent sur chacun des programmes (notés p_1 , p_2 , p_3 , p_4 , p_5 , p_6) qui composent la charge mesurée. Il s'agit de modéliser le système en quadriprogrammation avec quatre niveaux de priorité (notés c_1 , c_2 , c_3 , c_4). Les priorités des programmes sont les suivantes :

Programmes	Priorité
P ₁ , P ₂	c ₁
P3, P4	c ₂
P ₅	c ₃
^Р 6	c ₄

ordre des priorités :

Les programmes \mathbf{p}_1 et \mathbf{p}_2 sont lancés séquentiellement, de même pour \mathbf{p}_3 et \mathbf{p}_4 .

Les données et les caractéristiques globales du système nous permettent d'élaborer initialement deux modèles à réseau de files d'attente de type serveur central.

i) Modèle A

Schématisé figure 3, ce modèle est constitué d'une unité centrale (CPU) et d'un ensemble de stations qui correspondent à chacuns des périphériques utilisés (DSYS, DK1, DK2, DK3, TP1, TP2, TP3, TP4, TP5). Le réseau est parcouru par 4 clients appartenant à 4 classes différentes (c₁, c₂, c₃, c₄). Les paramètres du modèle sont déterminés pour chaque classe de la façon suivante :

- a) temps moyen de service à l'unité centrale pour une classe c (noté $t_{CPII}^{\hat{1}}$) :
- ti CPU = temps de calcul total pour les programmes de priorité c; nombre total d'E/S pour les clients de priorité c;
- b) temps moyen de service pour un périphérique j et les programmes de priorités c_i (noté t_i^i) :
- t_i^i = temps de réponse du périphérique j

En réalité ce temps de réponse représente la durée moyenne d'une E/S pour le sous-système canal-périphérique et ne comprend pas la durée d'attente au niveau canal logique. Cependant en monoprogrammation, et avec un seul tampon d'E/S, il n'y a pas d'attente au niveau canal logique.

- c) probabilité de transition de l'unité centrale vers le périphérique j pour des programmes de priorité c_i (p_j^i) :
- $p_{j}^{i} = \frac{\text{nombre d'E/S réalisées sur le périphérique j par les programmes de priorité } c_{j}^{i} = \frac{\text{nombre total d'E/S effectuées par les programmes de priorité } c_{j}^{i}$

ii) Modèle B

Ce deuxième modèle comporte une unité centrale (CPU) et les contrôleurs de disques et bandes (MSC, MTC) utilisés (figure 4). Les 4 clients appartiennent à quatre classes principales (C1, C2, C3, C4) subdivisées à la sortie de l'unité centrale en fonction du périphérique utilisé pour tenir compte des différents temps de réponse :

Classes	Périphériques
C1 → C11	CPU → DSYS
C12	DK1
C2 → C21	CPU → DSYS
C22	DK2
C23	TP1
C24	TP2
C25	TP3
C3 → C31	CPU → DSYS
C32	DK3
C33	TP4
C34	TP5
C4 → C41	CPU → DSYS
C42	DK3
C43	DK2

Paramètres du modèle :

- a) le temps moyen de service à l'unité centrale est défini comme pour le modèle A.
- b) les probabilités de transition p_{ij} de la classe c_i vers la classe c_{ij} sont tels que : $p_{ij} = p_j^i$.
- c) le temps moyen de service au contrôleur correspondant pour la classe c_{ij} , soit t_{ij} est défini par l'égalité : $t_{ij} = t_{j}^{i}$.

Les données du modèle A et du modèle B exprimées dans le langage de QNAP sont présentés en annexes III.3.1 et III.3.3.

Notons que ces modèles ne tiennent pas compte des transitions entre périphériques. En effet, s'il est très simple de modéliser ce processus en introduisant des classes supplémentaires comme pour l'exemple du paragraphe IV.1 Chapitre II, nous n'avons aucun renseignement sur les temps de réponse des périphériques concernés ou du temps de calcul à l'unité centrale après une telle transition. En conséquence, pour un modèle analytique de type BCMP, la modélisation de ces transitions n'apporte pas de résultats supplémentaires (pour s'en convaincre, le lecteur pourra comparer les résultats des modèles A et Abis en annexes III.3.1 et III.3.2).

Au niveau de la station CPU, des contrôleurs pour le modèle B, et de certains périphériques pour le modèle A, les temps de services pour chaque classe sont différents. En conséquence, pour une modélisation à l'aide d'un réseau vérifiant les hypothèses BCMP, la politique de rangement dans la file ne pourra pas être celle du système réel mais sera DAPS-PR (ou, ce qui revient au même du point de vue des résultats, la politique de service sera processeur partagé). Nous examinerons l'impact de ce choix à l'aide de modèles simulés, avec les mêmes paramètres que les modèles analytiques à l'exception des politiques de service :

- priorités et préemption pour CPU (SCHED = FIFO, CLASS, PREEMPT)
- PAPS pour les périphériques ou contrôleurs (SCHED = FIFO)

L'hypothèse de base du modèle A est qu'il n'existe pas de conflit d'accès au niveau des canaux physiques, ce qui est vrai en monoprogrammation, mais faux en multiprogrammation. A l'inverse le modèle B suppose que lorsque des E/S sont en cours, le canal physique est toujours occupé.

Les résultats complets sont présentés en annexes III.3.1 et III.3.3, et sont résumés ci-dessous.

	utilisation CPU	nb moyen de clients CPU	utilisation MSC	nb moyen de clients MSC	utilisation MTC	nb moyen de clients MT(
Modèle A			_	_	-	-
analytique	.962	2.676	-	-	-	-
simulé	.962	2.527	-	-	_	_
E	0 %	6 %	-	-	-	
Modèle B				1		
analytique	. 865	2.145	.755	1.553	.280	.302
simulé	.837	1.864	.865	1.932	.192	.204
E	3 %	15 %	13 %	20 %	46 %	48 %
Mesures	.752	-	.462		_	_

$E = \frac{\text{M\'ethode analytique - Simulation}}{\text{Simulation}}$

Conclusions:

- les écarts observés entre les modèles analytiques ou simulé et les mesures réelles sont très importantes pour les résultats que nous pouvons comparer :

	taux d'utilisation CPU	taux d'utilisation MSC
Modèle A analytique	- 28 %	-
Modèle B. analytique	- 15 %	- 60 %

(les écarts indiqués ci-dessus représentent la quantité :

Mesures - Méthode analytique y Mesures

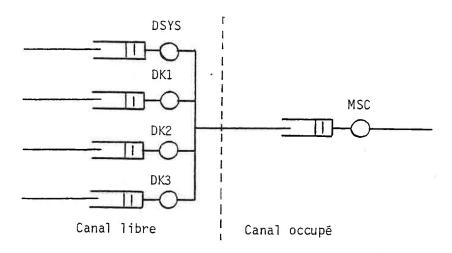
- les politiques de service ne semblent pas avoir une influence prépondérante sur les résultats en particulier en ce qui conserne les taux d'utilisation à l'unité centrale.
- pour le modèle B, le taux d'utilisation du canal disques est sur-évalué Ce dernier point peut être interprété en remarquant que ce canal, ainsi que le canal bandes n'est pas occupé pendant la durée totale d'une entrée-sortie.

Schématiquement :

- le canal bandes est occupé pendant le transfert des informations,
- le canal disques est occupé pendant le temps de latence et le temps de transfert.

Pour tenir compte de ces considérations, nous pouvons, en fonction des données disponibles, construire un modèle où le sous-système canal-disques est mieux représenté.

iii) modèles C et D


Soit T la durée moyenne d'une entrée-sortie, \mathbf{T}_1 la durée moyenne canal libre, \mathbf{T}_2 la durée moyenne canal occupé. Les mesures par HM des programmes en monoprogrammation nous permettent de disposer du temps d'occupation total du contrôleur de disques, et connaissant le nombre d'E/S sur disques nous pouvons calculer \mathbf{T}_2 .

Priorités	Temps total d'occupation MSC	Nombre total d'E/S disques	Temps moyen MSC par E/S disques
C1	388s	26927	14.4 ms
C2	446s	39931	11.2 ms
C3	91.4s	5857	15.6 ms
C4	623s	42363	14.7 ms

En supposant d'autre part que pour les disques concernés, et relativement à chaque voie de multiprogrammation la durée d'occupation du canal est la même, nous en déduisons \mathbf{T}_1 :

-
-
5.4
5.8

L'ensemble canal-disques sera représenté de la manière suivante :

Ne disposant pas d'information sur le taux d'utilisation du canal-bandes nous résolvons les modèles C et D pour lesquels le sous-système canal-bandes est modélisé comme pour les modèles A et B respectivement (cf. figures 5-6). De même que pour les modèles A et B nous comparerons avec les modèles simulés associés. Les résultats complets des modèles analytiques sont présentés en annexes III.3.4 et III.3.5, d'où nous tirons le tableau suivant :

	Taux d'utilisation CPU	Taux d'utilisation MSC	Taux d'utilisation MTC
Modèle C			
analytique	.930	.551	-
simulé	.940	.691	_
écart	1 %	20 %	-
Modèle D			
analytique	. 928	.550	.276
simulé	. 920	.677	.145
écart	1 %	18 %	90 %
Mesures	.752	.462	_

Conclusions:

- Les écarts sur les taux d'utilisation entre méthode analytique et simulation sont très faibles pour le CPU, acceptables pour le MSC, tout à fait prohibitifs pour le MTC tout en remarquant que pour ce dernier cas la valeur trouvée est, en simulation, peu élevée ce qui explique la valeur de l'écart relatif.
- En ce qui concerne les comparaisons entre modèle analytique et mesures réelles, nous observons bien une amélioration pour le taux d'utilisation du contrôleur disque, mais une dégradation pour le CPU:

	Taux d'utilisation CPU	Taux d'utilisation MSC
Modèle C	- 24 %	- 19 %
Modèle D	- 23 %	- 19 %

- Notons enfin que les résultats obtenus par les deux modèles analytiques sont à peu près identiques, l'avantage du modèle D étant de fournir directement un ordre de grandeur du taux d'utilisation du contrôleur bandes.

III.3.2 - Données corrigées

Comme nous l'avons indiqué, ces modèles ne tiennent pas compte des défauts de segments supplémentaires causés par la diminution de taille mémoire en quadriprogrammation. Nous disposons de mesures (par HM) sur le nombre de défauts de segments pour des tailles mémoires différentes :

programme taille	p ₁	P ₂	P ₃	P ₄	P ₅	P ₆	Total
1024 K m on o	5490	1012	279	146	427	491	7855
96 K mono	7046	3490	998	725	983	1056	14298
160 K quadri	-	-	-	3	-	: 	19800

En supposant en première approximation qu'en quadriprogrammation les programmes se partagent équitablement la mémoire (soit 40 K), nous ajustons le nombre de défauts de segments en utilisant pour chacun d'entre eux un modèle du type :

$$d = am^k$$
 (cf. [BeK69, BuJ77])

où d est le nombre de défauts de segments, m la taille mémoire disponible, a et k deux coefficients à déterminer en fonction des mesures disponibles. Nous obtenons alors :

-	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆	Total
Modèle 160 K quadri	7730	5520	1600	1280	1340	1400	18870

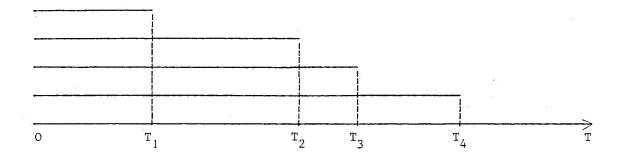
soit un total assez proche des mesures sur le système réel.

Ces entrées-sorties vont s'effectuer sur le disque système (DSYS). Si d'autre part, nous supposons que le temps CPU total n'est pas trop perturbé par l'augmentation du nombre d'E/S, le temps moyen de calcul entre deux E/S sera modifié de la manière suivante :

Priorités	C1	C2	С3	C4
Temps moyen de calcul par E/S	27.5	8.4	15.9	14.3

En fonction de ces nouvelles données nous obtenons :

	Taux d'utilisation CPU	Taux d'utilisation MSC	Taux d'utilisation MTC
Modèle C analytique	.913	.587	-
Modèle D analytique	.910	.586	.278
Mesures	.752	. 462	-
Ecart	- 21 %	- 27 %	-


Conclusions:

- là encore l'écart entre les modèles C et D est négligeable,
- l'écart avec les mesures réelles n'est que peu modifié et la différence de taille mémoire n'explique pas, à l'évidence, la différence observée.

III.3.3 - Influence de la durée d'exécution des programmes en guadriprogrammation

La dernière cause apparente de surévaluation des taux d'utilisation des ressources est l'hypothèse selon laquelle le degré de multiprogrammation reste constant. En effet si l'on peut considérer que le processus de mesure débute avec les 4 niveaux de priorité actifs, ce n'est plus le cas même approximativement lorsque le processus est clos. Nous pouvons envisager une procédure d'ajustement des taux d'utilisation des ressources à condition de pouvoir prédire la durée d'exécution de chacun des programmes en multiprogrammation, ou tout au moins le

rapport de leur durée et de celle du plus long des programmes. Soient T_1 , T_2 , T_3 , T_4 , la durée d'exécution totale des programmes de priorités C1, C2, C3, C4:

dans notre exemple la durée d'exécution total est \mathbf{T}_L . Nous avons :

Pegré de multiprogrammation	, Fraction du temps total d'exécution
4	$t_4 = \frac{T_1}{T_4}$
3	$t_3 = \frac{T_2 - T_1}{T_4}$
2	$t_2 = \frac{T_3 - T_2}{T_4}$
1 .	$t_1 = \frac{T_4 - T_3}{T_4}$

et si \mathbf{U}_1 , \mathbf{U}_2 , \mathbf{U}_3 , \mathbf{U}_4 sont les taux d'utilisation de la ressource considérée avec un degré de multiprogrammation de 1, 2, 3 et 4 respectivement et les programmes correspondants, nous prendrons comme taux d'utilisation global la quantité :

$$U = U_1 t_1 + U_2 t_2 + U_3 t_3 + U_4 t_4$$

les rapports de durée que nous avons cités dépendent du programme considéré, mais aussi des programmes avec lesquels il est en concurrence et en particulier de leurs priorités relatives.

Faute d'un modèle permettant de déterminer ces rapports, nous avons utilisé les résultats recueillis en multiprogrammation à l'aide de la comptabilité du système. Il ne s'agit donc pas d'une validation mais bien plus modestement d'une vérification de l'importance du point que nous considérons ici.

Programmes	Durée totale d'exécution
p ₁ + p ₂	2626.8 s
P ₃ + P ₄	2759.4 s
P ₅	3643.2 s
P ₆	1389.4 s

Modèle C

Programmes concurrents	utilisation CPU ,	utilisation MSC
p ₁ + p ₂ , p ₃ + p ₄ , p ₅ , p ₆	.913	.587
p ₁ + p ₂ , p ₃ + p ₃ , p ₅	.869	.470
P ₃ + P ₄ , P ₅	.687	.378
P ₅	.490	.065

Modèle D

Programmes concurrents	utilisation CPU	utilisation MSC	utilisation M TC
p ₁ + p ₂ , p ₃ + p ₄ , p ₅ , p ₆	.910	.586	.278
p ₁ + p ₂ , p ₃ + p ₄ , p ₅	.863	. 466	.329
P ₃ + P ₄ , P ₅	.666	.367	. 414
p ₅	.490	.065	.418

En fonction de la pondération proposée nous avons :

	Taux d'utilisation CPU	Taux d'utilisation MSC	Taux d'utilisation MTC
Mesures	.752	.462	_
Modèle C analytique écart	.787 - 4.7 %	.413	- -
Modèle D analytique écart	.783 - 4.1 %	.411 11.8 %	.332

les résultats concordent alors avec une approximation très acceptable à la fois sur les taux d'utilisation CPU et MSC.

Les mêmes modèles traités en simulation donnent les résultats suivants :

	Taux d'utilisation CPU	Taux d'utilisation MSC	Taux d'utilisation MTC
Mesures	.752	.462	-
Modèle C simulé écart	.789 - 4.9 %	.477 - 3.2 %	-
Modèle D simulé écart	.785 - 4.4 %	.469 - 1.4 %	.271

Ces résultats sont satisfaisants globalement et en particulier en ce qui concerne les taux d'utilisation du contrôleur de disques, et restent proches de ceux obtenus à l'aide des modèles analytiques.

III.4 - Conclusion

L'étude qui précède, si elle n'a pas débouché sur une validation complète d'un modèle analytique du système concerné a tout au moins permis de relever quelques points importants pour une itération éventuelle du processus de modélisation :

- i) L'influence des politiques de service est peu sensible en ce qui concerne le taux d'utilisation à l'unité centrale, et ne conduit pas à des différences excessives en ce qui concerne les contrôleurs.
- ii) Les défauts de segments induits par la diminution de la taille mémoire perturbe très peu les résultats pour la charge considérée (ce qui ne préjuge pas des conséquences pour une charge plus importante).
- iii) La validation du modèle est conditionnée par la mise au point d'un modèle permettant de déterminer les durées d'exécution des programmes en multiprogrammation.

Si une étude plus approfondie des deux premiers points pouvait contribuer à l'amélioration d'un modèle, seul le dernier point paraît prépondérant et pose a priori des difficultés importantes exigeant un travail considérable de recueil de mesures en raison du nombre de paramètres qui semblent régir les phénomène (temps d'exécution en monoprogrammation, priorités relatives et caractéristiques des programmes concurrents, distribution des temps de calcul et des temps de réponse des périphériques, etc...). Un modèle statistique pourrait alors être construit.

Notons par ailleurs que la signification des mesures sur le système réel en multiprogrammation est discutable suivant le type d'enseignement que l'on compte en tirer. En particulier, ces mesures ne donnent pas un reflet exact de l'engorgement du système. En effet si, globalement, le taux d'utilisation CPU par exemple est égal à .752 ce qui correspond à un système modérément chargé, ce taux d'utilisation est élevé (de l'ordre de .90) lorsque quatre programmes sont en concurrence, et c'est ce dernier résultat qu'il faudrait retenir dans le cadre d'un problème de dimensionnement du système.

Tous les problèmes de modélisation étant supposés résolus, nous pouvons envisager une phase de prédiction des performances du système pour des configurations légèrement modifiées. Considérons à titre d'exemple les deux cas suivants :

i) adjonction d'un deuxième canal disques

On peut espérer améliorer les performances du système en doublant le canal disques dans le but de diminuer les blocages à ce niveau. Nous supposerons que les entrées-sorties se répartissent également sur chacun des canaux et que les paramètres du modèle restent inchangés, en particulier les rapports de durée d'exécution des programmes.

Le modèle C est modifié de façon à représenter cette nouvelle configuration en remplaçant la station MSC par deux stations identiques MSC1 et MSC2 (cf. annexe III.3.6 et figure 7).

Les résultats calibrés par la méthode indiquée en III.3.3 font ressortir un taux d'utilisation pour la station CPU de .803 soit un gain mineur de 2.4 % par rapport au même modèle avec un seul canal. Pour justifier la remarque faite précédamment quant à la signification des résultats pour la chaine prise dans son ensemble nous noterons que le programme p_5 s'exécute seul pendant 24 % du temps total d'exécution de la chaine avec 6 % d'utilisation pour le canal disque.

En quadriprogrammation pure, le taux d'utilisation pour la station CPU est de .944 soit 3.3 % de mieux par rapport au modèle avec un canal. En conséquence, pour la charge considérée, l'adjonction d'un canal disques supplémentaire parait inutile, ce qui était d'ailleurs prévisible à priori en considérant le taux d'utilisation très modéré de ce canal.

ii) augmentation de la vitesse de l'unité centrale

Nous supposerons que l'augmentation de la vitesse de traitement d'un facteur \mathbf{x} se traduit par une diminution égale de la **c**onsommation CPU moyenne par E/S des programmes, et que les autres paramètres du modèle restent inchangés.

Le critère de performance auquel nous nous intéressons ici est le débit du système en terme de nombre de programmes terminés par unité de temps. La fin d'exécution d'un programme est modélisé par un rebouclage sur la station CPU afin de conserver un degré de multiprogrammation constant dans le système. La probabilité de transition correspondante est donnée par :

Le débit recherché est le débit dans la branche CPU-CPU (auquel nous avons accès en introduisant une station fictive à taux de service infini).

Nous obtenons les résultats suivants :

·	Taux d'util	isation CPU	Taux d'utili	sation MSC	Débit (prog/100s)		
X	calibré quadri d		calibré quadri		calibré quadri		
1.	.787	.913	.413	.587	.1167	.13 9 3	
1.25	.730	.857	.472	.673	.1343	.1618	
1.5	.676	.798	.518	.738	.1482	.1793	
1.75	.625	.741	.553	.786	.1591	.1928	
2.	.580	.687	.580	.822	.1679	.2032	
2.25	.539	.638	.601	.849	.1749	.2114	
2.5	.502	.594	.618	.870	.1806	.2179	
2.75	.470	.555	.631	.886	.1853	.2223	
3.	.441	.519	.642	.899	.1892	.2273	

Comme prévu, le taux d'utilisation CPU diminue lorsque x augmente et c'est le canal disques qui devient le point de blocage. Le débit du système croît mais il est intéressant de noter que le gain marginal obtenu en augmentant x de .25 décroît lorsque x croît (ce gain est calculé par $\frac{\text{débit}(x+.25) - \text{débit}(x)}{\text{débit}(x+.25)}$).

Facteur d'accroissement vitesse U.C.	1.25	1.5	1.75	2.	2.25	2.5	2.75	3.
Gain sur le débit;:								
calibré	13.1	9.4	6.7	5.2	4.0	3.2	2.5	2.1
en quadriprogrammation	13.9	9.8	7.0	5.1	3.9	3.0	2.3	1.9

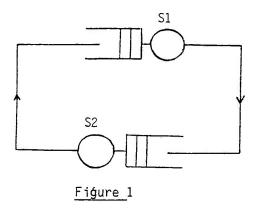
CONCLUSION

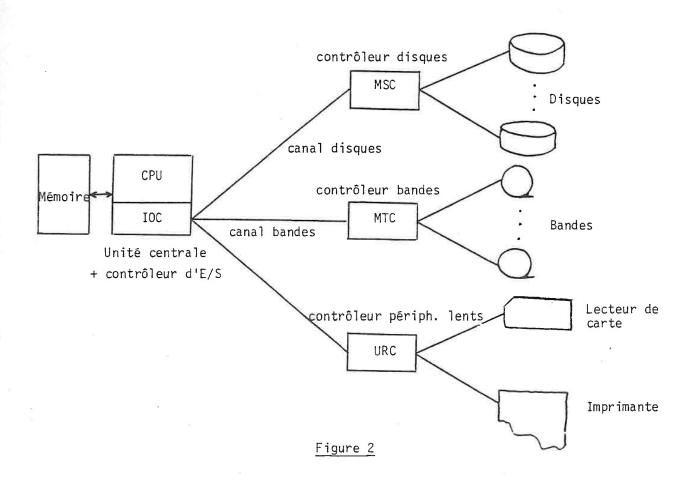
Nous avons présenté dans la première partie de ce mémoire un outil logiciel qui automatise la résolution des modèles de systèmes informatiques lorsque ces modèles sont mis sous la forme de réseaux de files d'attente généraux. Ces réseaux sont décrits et paramétrés à l'aide d'un langage de description spécifique qui, joint à la possibilité d'utiliser conjointement différentes techniques de résolution, permet de traiter des modèles très complexes.

Les prolongements éventuels de l'étude qui a conduit à la réalisation de QNAP sont d'une part d'améliorer la version actuelle en ce qui concerne les algorithmes qu'elle incorpore (rapidité d'exécution, contrôle de la précision des résultats de simulation, ajout de sorties graphiques, etc...) et d'autre part d'élaborer une méthodologie d'utilisation en particulier sous la forme d'un ensemble de cas typiques étudiés à l'aide de QNAP. Un domaine d'application très riche est dans doute celui des modèles hiérarchique où des sous-réseaux sont analysés de façon approfondie et les résultats injectés dans un modèle global (cf. [BrC75] par exemple). L'étude de méthodes de résolution approchées du type itératif, telles que celle introduite par Chandy et al. [ChH75], peuvent se rattacher à ce genre de préoccupations.

La seconde partie de ce mémoire décrit en détail les algorithmes de calcul relatifs à la méthode analytique BCMP. Cet ensemble constitue l'un des modules de résolution de QNAP. Ce module permet de traiter la presque totalité des réseaux vérifiant les hypothèses du théorème BCMP avec cependant quelques restrictions. Certaines des limitations introduites peuvent être éliminées à peu de frais, (C'est en particulier le cas pour les réseaux ouverts à processus d'arrivée unique dépendant du nombre de clients dans le réseau dont les algorithmes sont en cours d'implantation), tandis que tenter de s'affranchir d'autres semble conduire à des calculs inextricables hors de proportion en général avec l'intérêt que nous pouvons en attendre.

Comme nous pouvons le constater sur les exemples présentés en annexe II.2, les temps de calcul nécessaires pour cette méthode sont le plus souvent très faibles,


ce qui en constitue d'ailleurs l'avantage fondamental. Il paraît donc tout à fait raisonnable d'envisager la réalisation d'un outil interactif limité à la méthode analytique BCMP, dont le langage de description de réseaux serait dérivé de celui de QNAP et pour lequel serait adjoint un programme de modification des paramètres (un tel programme a d'ailleurs existé pour une première version de l'outil).


Enfin, nous avons présenté des exemples d'application qui illustrent la mise en oeuvre de QNAP dans les deux domaines d'activité que nous avons cités en conclusion du chapitre I :

- Recherche en modélisation,
- étude et évaluation des performances des systèmes informatiques.

Les résultats des deux études de robustesse que nous avons entreprises montrent que, pour une assez large plage de valeurs et dans les cas traités, un réseau vérifiant les hypothèses du théorème BCMP constitue une bonne approximation d'un réseau plus général, en particulier en ce qui concerne les taux d'utilisation. Cette approximation peut être utilisée, avec précaution néanmoins, dans le cadre d'applications n'exigeant pas une très grande précision dans les résultats. Nous avons d'autre part étudié un modèle du système d'exploitation GCOS-64, en essayant de bien distinguer les étapes qui mènent à sa validation et en examinant l'influence de différentes hypothèses simplificatrices permettant de traiter le modèle au moyen de la méthode analytique BCMP.

Ces deux dernières applications ainsi que les exemples traités tout au long de ce mémoire montrent bien l'intérêt et la souplesse d'emploi de QNAP. Il est cependant clair que cet outil ne résoud pas dans son intégralité, et n'en a d'ailleurs pas en l'état l'ambition, le problème de la modélisation et ne dispense pas de l'étude préalable du système concerné et de la conception du modèle. Le rôle principal de QNAP est de permettre à l'utilisateur de se consacrer à ces étapes fondamentales.

MODELE A

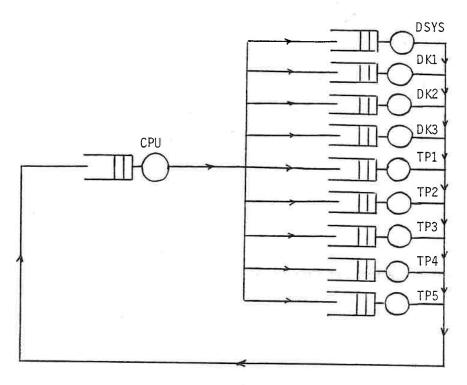


Figure 3

MODELE B

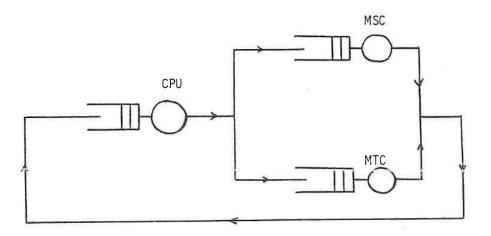


Figure 4

MODELE C

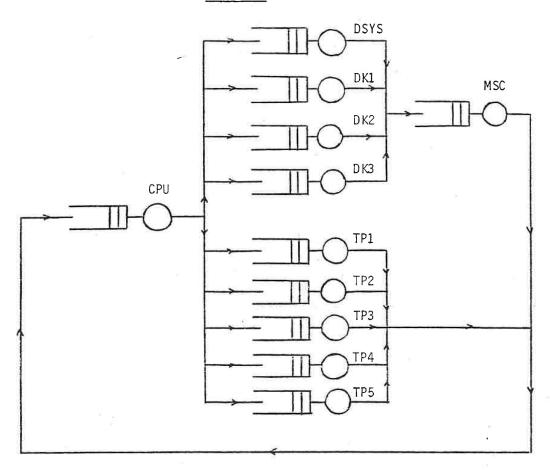


Figure 5

MODELE D

MODELE C (deux canaux disques)

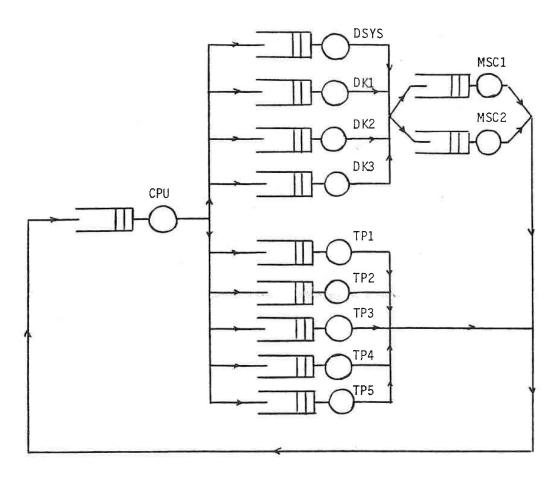
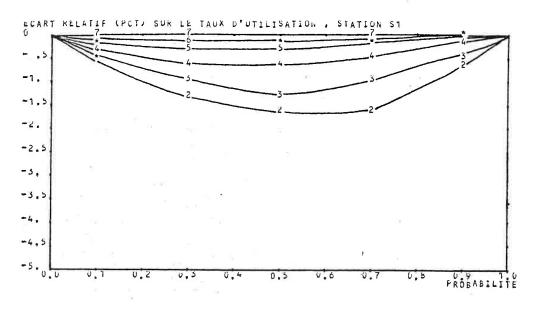
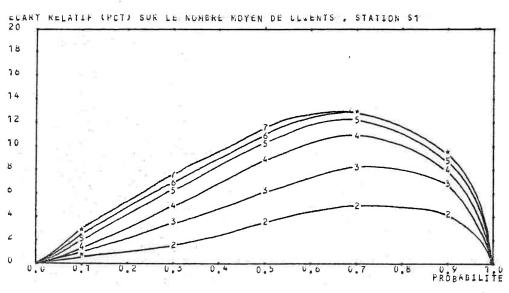
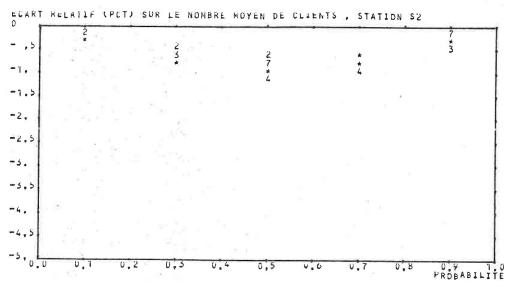


Figure 7


ANNEXE III.1

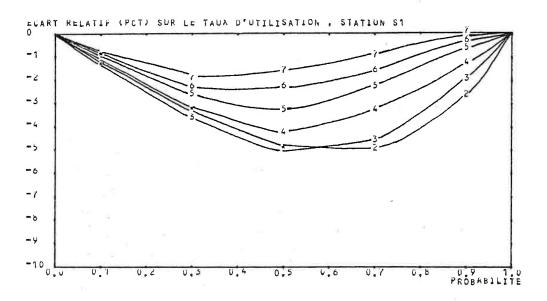

Station PAPS avec 2 classes de clients

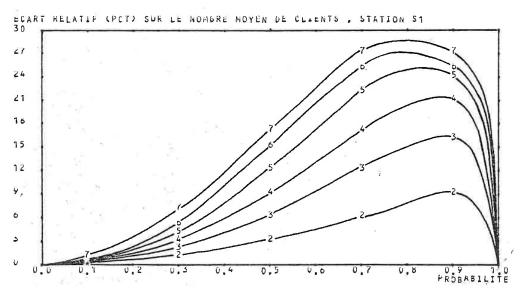


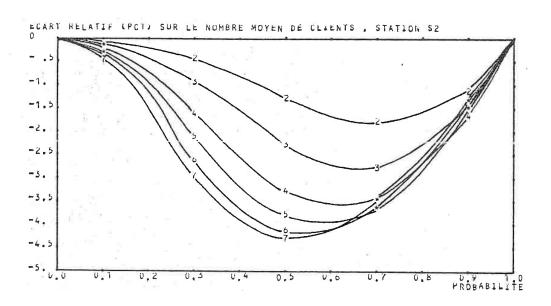
PROBABILI	DE TRANSITION = .1	
STATIONS		
INBI MARC	SATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L BCMP I MARCA BCMP	I
1 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 MARCA BEMP 1 315	0040437
STATION S		
INBI HARC	SATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L BCMP I MARCA BCMP	1 1
11 688	00000000000000000000000000000000000000	1 10419688
PROGABILI STATION S	DE THANSITION = .3	
INBI MARC	SATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L BCMP I MARCA BCMP	1 I
11111111111111111111111111111111111111	275 000 1 275 275 000 058 344 - 0004 - 1 005 1 446 439 0007 1 6395 67 - 0004 - 1 0444 1 643 573 0039 66 96 3778 - 0001 - 0444 1 650 605 0035 6 98 378 - 0001 - 079 1 659 609 0049 7 48	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
STATION SE		
	SATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L BCMP I MARCA BCMP	1 I
7787878 787878 7878 7878 7878 7878 787		1 - 00333319

PROBABILITE DE TRANSITION = ,5

INBI MARCA BCMP I MARCA BCMP I MARCA BCMP I MARCA BCMP I 1 231	5	TA	T	0		51	 I S	A 1	·	0 N			IJ,	1 -	112		113	-	112	71	11	 I	 N		D E		L	F	 N 3	5		 L	1	-1	2		L 1	-	 L 2	71	
STAILON S2 INDI UTILISATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI MARCA BCMP U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI MARCA BCMP U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI MARCA BCMP U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI UTILISATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI MARCA BCMP U1-U2 U1-U2/U1 I NB DE CLIENTS L	I		ī.	H	-													-			00	- <u>I</u>	- M	AR	CA	-			-		 1		-		-	0		-		01	0 (
STAILON S2 INDI UTILISATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI MARCA BCMP U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI MARCA BCMP U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI MARCA BCMP U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI UTILISATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI MARCA BCMP U1-U2 U1-U2/U1 I NB DE CLIENTS L	i					279	6			222	81				000	542		-	1	727	0330	1		:	35 42 45	725				9	5 6			000	123	1 6 8			6.	100	9 6
STAILON S2 INDI UTILISATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI MARCA BCMP U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI MARCA BCMP U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI MARCA BCMP U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI UTILISATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 INDI MARCA BCMP U1-U2 U1-U2/U1 I NB DE CLIENTS L	I	10.07	1		:	290	900			3	660			:	000	000			= :	3	55	Î		:	47	197			. 4	2	Ž 7		9	000	45	Ž		7 1	0	980	300
	-						<u> </u>									ž-		-						- :				-		-			-	-		-			-	-	
INBI MARCA BCMP	5		-															-		7.																			2	/1	
PRUBABILITE DE TRANSITION = ./ STATION S1 INSI MARCA BCMP	I	N B	Ī.		A R	C A			В	CM	P -									_			M	ĄR	CA			В	Ct	IP.						_					
PRUBABILITE DE TRANSITION = ./ STATION S1 INSI MARCA BCMP	I	23	Ī			76 91	9			90	35		:		01	200		_	1:	77.2	20	I		1:	5457	338		1 2	. 6	5	5		-	000	2	200		- 1	1:	7	3 (
PRUBABILITE DE TRANSITION = ./ STATION S1 INSI MARCA BCMP	1	456	I			98	8 8		7	ģ	99				0000	3			-:	25	2	I		4.	525	91		345		7	63		-	000	5	9 7 2		-	٦.	03	38
STATION S1 INTILISATION	1	-7	1.	:	-	99				. 0	00			::	00	7-		-		~ -	50	- <u>-</u>		5 .	<u>> 1</u>	7 -		6	• 5	7	2 -		-	. 0	5	2 -			-	84	
STATION S1 INTILISATION														,x,																											
INDI NARCA BOMP	۲۱	ĸυ	5 A	B J	L	1 1 2		DÈ	1	IR.	Ak	SI	11	0 1	Ŋ	=			. /																						
1-11	5 1	ΥA	TI	01	- 1	51.																						_						-							
1 1 21 20 8 20 - 000 - 1000 1 1 88 20 - 0012 - 1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	V B	ī		(R	CA	I S	A T	В	C M	P 						U1	- (. ~			I	N E				LI	В	Ľ	Ρ.		L 					L1	-1	. 2	/1	. 1
STATION 52 1	1	1 2	İ			401	B		1	12	80		-	. (000	03		=:	:	008	044	1		:	18	02		0	1	80)		:	000	000	2		4		55) (
STATION 52 1	1	345	I			21			4	22.20	200		-		000	1				502	3300	I			31	30		į	222	0000	5			000	33	3		10		94	
I UTILISATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L7 INBI MARCA BCMP	<u>I</u>	7	<u>I</u> 		:	521	0 -			, 2	20		-:	-	00	0		-:	:	04	5	Ī		· :	32	<u> </u>		-	2	8	-			0	4 2	-		12	2:	95	5 (
The Marca BCMP	S	TΑ	TI	UN	. :	52														_								_				_				_					
1 11				MA	TR	IL:	S	A T	B	O N C M	₽		U1	-1	u2	_	U1	-(12	/ [11	I	N I	R	DE	Ç	LI	ЕВ	V T	S		L	1 •	· L	2	_	L1	-1	. 2	71	. 1
PROBABILITE DE TRANSITION = .9 STATIUN S1 1	Î	1 2	I I			021	7		9	85	20		3		00	9		_ ′	:	900	06	I			82	08		1	.87	20)		_ :	00	000	2			-:	000	7
PROBABILITE DE TRANSITION = .9 STATIUN S1 1	1	345	I			98	3		1	. 9	92 98 00				01	0 5 2		- 1		550	0 3	I		3	70 68 68	3 7 0		234	777	2	7			000	3439	5		-		8898	3072
STATION S1 1	I	67	Ĭ			599 000	0 -		1	.00	00				00	1 0 -	-	-		04	0	Ī			67 67	7 6 		5	7	18	3 -		-	00	44	-			:	72	5
STATION S1 1																														-											
STATION S1 1	P.																																								
I		k n	8.4	ı B		τſΙ	Ė.	DE		ſĸ	AH	SI	11	. 0 i	ì.	=			9																						
1 1 1 123 123 000 000 1 123 123 000 3.007 1 123 123 123 000 3.007 1 123 123 123 123 123 123 123 123 123 1	c ·						Ė –	DE		ſĸ	ΑH	\$ 1	11	: 0	ì.	=			9											•											
STATION SZ 1 I UTILISATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2/L INBI MARCA BCMP	-	TA	T	וטו	i T	S 1				 O N		\$ I	U 1	-		=-	U1			7.	1		ti M	 3 R	D E C		L					 L	1.	- L	2		 L 1	-1	L 2	71	
STATION SZ 1 I UTILISATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2/L INBI MARCA BCMP	1	T A	1	וטו	JT AR	S1 IL	I S		B	O N C M	P		U 1	-	U 2		U1		J 2			-1	M.	٩R	CA		L I	В	C N	P.	35	 L			_		L 1				
STATION SZ 1 I UTTLISATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2/L INBI MARCA BCMP I MARCA BCMP	1	T A	1	וטו	JT AR	S1 IL	I S		B	O N C M	P		U 1	-	U 2		บา		J 2			-1	M.	٩R	CA		:[.]	В	C N	P.	35134	 L			_		L 1				
TATION S2	1	TA B 1123456	T I HIMMINGHAMIN	וטו	JT AR	S1 IL	I S	A]	B		P 234444		U 1	-	U 2		บา		J 2	1024.400		-1	M.	٩R	CA		L	В	Ch	P - 256666	3513333			000000	1000	061466	 L1		36889		
INBI MARCA BCMP	INHIHITATI	TA B 1234567	T HIMMMANNIN	LOI M	TR	STILAT 23344444	I S 3790000	A T	B	- NM - 1111111	P 2360000		U 1	-	U 2		บา		J 2	1024.400		-1	M.	٩R	CA		L	В	Ch	P - 256666	3513333			000000	1000	061466	L1		36889		
1 21	I I I I I I I I I I I I I I I I I I I	TA B 1234567 A	TI HIMMINIMINI TI	LOI M	TR	STILAT 23344444	I S 3790000	A T	B	- NM - 1111111	P 2360000		נו		0 00000000	0110000			J2	1024.40001	0215110	- I I I I I I I I I I I I I I I I I I I	_M	AR	C-126777778	3137890		В	Ch 1	P 2566666	<u>-</u> -		-	0000000	10011111	0614667	5		368899	0001000	0704555
1 51 1000 1000001070 1 4.821 4.837016020 1 5.837016020 1 5.837016020 1 5.837017	I I I I I I I I I I I I I I I I I I I	TA B 1234567 A	T HALIMANAMAN TIME	N/	T T N T T N T T A R	STILA 23344444 21LA	15 37900000	AT	TI B	DOC	P 23600000		U 1		02 000000000	0110000			J2	074.0000	002151770		_M	BAR	C-110777778	3137890		B	C N C I	P 2566666			- 1	0000000	10011111	0614667	5		368899	0001000	0704555
	I I I I I I I I I I I I I I I I I I I	TA B 1234567 A	T HALIMANAMAN TIME	N/	T T N T T N T T A R	STILA 23344444 21LA	15 37900000	AT	TI B	DOC	P 23600000		U 1		02 000000000	0110000			J2	074.0000	002151770		_M	BAR	C-110777778	3137890		B	C N C I	P 2566666			- 1	0000000	10011111	0614667	5		368899	0001000	0704555


* R1= .100 R2= 1.00 * PROBABILITE DE TRANSITION = L1-L2 L1-L2/L1 I .476 1.382 1.822 1.22 1.010 .0001 .0002 .0004 .0018 05440854 STATION 52 -000 -0100 -0100 -0008 -0008 - 0001 - 0004 - 0004 - 0018


ITITITI


PROBABILITE DE TRANSITION = .3

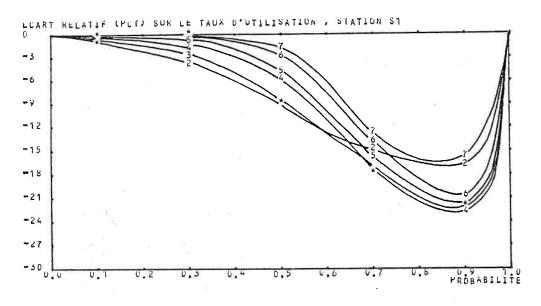
STATION ST I UTILISATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 I NB DE CLIENTS L1-L2/L1 I NB DE STATION 52 L1-L2 L1-L2/L1 I 05070418 05070418 111222 - 0060 - 00241 - 007065

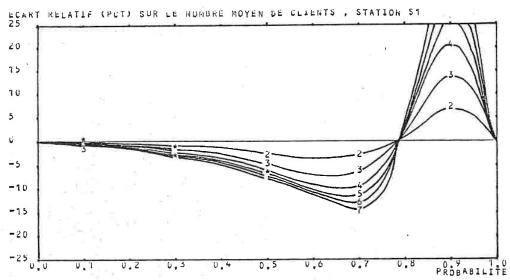
PROB	ABI	LII	E	٤	1	RA	141 5	I	H	. 0	14	=			٠	>																									
STAT I I I NBI	U	TYL	īs	 A T	I 0	N HP			U 1	~	U Z	2	U						I I	N B	R	DECA	-	C L	1	E N	T	S P					_					2/	L	1	I
I - 1 1 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3480N33	00000000			3455555				-	~ .	0251730			454321		0701490	03N9@N@1	I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3680134	5193910			1111	3680001	52157145		0		0000112	0459494	0806B75		777	259257	0770700	0759420	0.628470	ILILILI
STAT I I I N B I	:	7 7 1	I S	 A T	10	N N			บา	-	Ų.	2	 U	1 -	- U	2/	- ' U	- 1	<u>.</u>	N B	- R	DE			1	EN	- T	Sp		 L	 1 -	- L	<u>-</u> 2		L 1	-	 L:	2/	L'		I
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6777 8999 999	573864			68915789						0059137			454327				ILILILIA				5917190					4784484				0000112	10150404	D806B75			123344	Chichenter	0245907	0468415	- IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
PROB	۷R۲I	_11	É	DE	1	κA	is S	51) I	0	iv	=			•	7	-		,								_					_									
I I	ION UN MAR		. -	- - А Т	10	N MP		-	u 1	-		- - ·	U	1 -	·U	2/	u	 1	I	N B	R	DE	-	C L	1 6	E N	T	5		L	1 -	- L	2		 L 1	-	Lã	2/	L	 1	1
111111111111111111111111111111111111111		7245666	٦.			23333333	00000000					00000000	.		54527	0724444	ONOSMIT	0512313	HHHHHHH			2456778	0510000		- :		2455555	70712215785				10001110	0271591	0307717		21222	627147	0104571	10507962	DITEMATO	пининины
STAT		s2		4							11.2		~	1 -	- 11				,	N B	_	D F	_	 c i	- ·	- N				 L	1 -					-					. <u>-</u>
INBI 1-11 121 134	MAR	RCA			ÞГ	M 799999				-	0.7		U			11.4.4	0M8447	0474	HIHHHHHHH	MA	R	CA	105077881			1234	M1754444	P 3784211		-	_	10000	027159	080771		1 1 1 1 1 1 1 1	_		Ξ.		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
FKO8/	ABIL	.ITE) E	ſ	КA	Iŧ S	17	ΤŢ	O i	N	=			•	Į																									
STATE INBI		S1 ILI	5	A T	10	N M P		- 1	J1	- (12	-	U	-	U	2/	Ū	1	I I	N B M A		DE	- 1	CL	I E	NC	T	5		L	i –	L	2		L 1		LZ	7	L 1		I
1234567		16888889		N Section 4		168899999	04900000				00000000	0542770			227	0012740	1 ONONANO!	0387230	ILLILILIA			16379012	04247421				1222222	0493445	-			10000000	0246778	1		12222	85035i~	0887620	0252305	737102-	IIIIIIII
STAT										_				-			-					-	_			- 41	_					_									-
B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MAH	LA 447789999	_	THE TWO	ΒĻ	NM 4799000	101400		11	-	000000	06127	U'		221				THILITIES.	NBA 1234	R	0 87776667	105000	C L				0617666 6666										-	0974		HILLITILLI

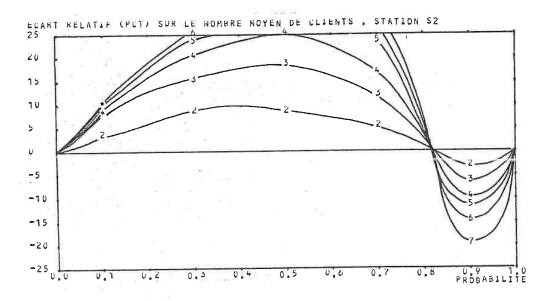
PROBABILITE DE TRANSITION = .1

STATION ST			
I I UTILISATION INBI MARCA REMP	U1-U2 U1-U2/U1	I NB DE CLIENTS' I MARCA BCMP	L1-L2 L1-L2/L1 I
1 11	- 000 - 012 - 008 - 002 - 002 - 000 - 040 - 040 - 040	1 2.695 2.725 1 3.695 3.718 1 4.669 4.716	

STATION SZ 1 1 UTILISATION	U1-U2	u1-u2/u1	NB DE MARCA	CLIENTS	L1-L2	L1-L2/L1 I
NB	2 - 003 - 003 - 0001 - 0002	11.0816934	MARCA 1860451199111991119911199111991119911199111	. 284	0099 002236 00234	3059221 3059221 70552300221 70557525291


PROBABILITE DE TRANSITION = .5


I UTILISATION INBI MARCA BCMP	U1-U2 U1-U2/U1	NB DE CLIENTS MARCA BCMP	L1-L2	L1-L2/L1 I
779 1 21	0000 - 42441	779 1 1.646 1 2.561 2 3.516 3 3.614 4 4.488 4 6.086 6 4.63 6 6.605	002708042 1142	1.7.7.8.7.4 1.7.8.7.4 1.7.8.7.4


STATION SZ

I UTILISATION INBI MARCA BCMP	U1-U2	U1-U2/U1	NB DE CLI MARCA	I ENTS BCMP	L1-L2	L1-L2/L1 I
1 1 221 .22679 1 21 .755 .22679 1 31 .7771 .22823 1 41 .7777 .22823 1 51 .7882 .2283 1 71 .2883 .2283	000000000000000000000000000000000000000	0.000000000000000000000000000000000000	25 38 4 2887 23 4 4 5 5 5 5	221 3269 3886 3892 3994 395	.009 .009 .009 .1134 .142	0117972 0117972 01723326 01723326 01723326

No.	11	TATION ST	NB 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
	1	TION 51	B-1123456	
### AREA BLAP	100 1	10N S1		B 1 12345
NARCA BLAN	1	ON 51	-	
## CAL ## BLAP	611	51	-	M
THE DETINANTION =	611	s1	U.	
A B EAP	11	1	7 1	
BEST	1		LA	128255
RATION U1 - U2 U1 - U2 / U1 NB DE CLIENTS L1 - L2 L1 - L2 / L1	.611		Ī	857517
BLAP	### 100		5	5
	10		A 1	A 1
NAME	1			T]
NAME	611		Ç	
	11	_	M 233333	
	1	_	P 857899	
	1 10 1 10 10 10 10 10	N 5	1237701	
		1	_	
				-
	- 0000			
1	000			
	000			
	1		0000000	1000000
U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 NB CA CA CASA I 1-2-10-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	U1-U2/U1 I NB DE CLIENTS L1-L2 L1-		023271	077643
	1 1 000 1 1 1 000 000 000 000 000 000 0	-	090472	056041
	-15.1773	-		-
MARCA		17	-	
	000	-	-	
MARCA BLMP	1			_
	CO	-		_
MARCA SUMP	I		_	_
MARCA BLMP	1 1 NB DE LIENTS L1-L2 L1-		-,	-
T	I 1 1 2 2 2 3 3 4 4 7 5 0 6 1 1 1 2 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2	-		
MARCA BLMP 1000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		_
NB DE CLIENTS	NB DE LLIENTS L1-L2 L1-MARCA BCMP		-	_
TARLA BLMP 1.718	00000000000000000000000000000000000000			
TARLA BLMP 1.3702 1.547 -045 -2.986 1.502 1.547 -025 -5.2986 1.502 1.547 -025 -5.2986 1.502 1.547 -025 -6.9796 1.502 1.547 -0285 -6.9796 1.502 1.547 -0285 -6.9796 1.502 1.547 -0285 -6.9766 1.502 1.547 -0285 -6.9766 1.502 1.548 1.27 1.2 1.1 1.2 1.2	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N		
ARCA BLMP 1.502 1.547 -0045 -2.988 1.502 1.547 -0145 -2.988 1.502 1.547 -0145 -2.988 1.502 1.547 -0145 -2.988 1.502 1.547 -0145 -2.988 1.502 1.547 -0145 -2.988 1.502 1.547 -0145 -2.988 1.502 1.548 -1285 1.502 1.548 -1285 1.502 1.548 -1285 1.503 1.503 -00437 1.503 1.503 1.503 -0038 1.5044 1.548 -1285 1.5044 1.548 -1285 1.504 1.548 -1285 1	00000000000000000000000000000000000000	- 8	N. I	Μ.
TO STATE AND STA	611	-	A I	12345
718	11 1 000 0052448501 1 0052448501 1 0052448501 1 0052448501 1 1 0052448501 1 1 0052448501 1 1 0052448501 1 1 0052448501 1 1 0052448501 1 1 0052448501 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C	R	
A BLMP 18	1 1000 1 1000		01245800	253100
BLMP 1.718	00000000000000000000000000000000000000		A 897006	11000991
1	11		281565	829525
##	1000 1100		_	_
1.547 - 0.045 - 2.090	11	.]	_ _	_
### ### #### #### ####################	0032448501 0032448501 0032448501 0032448501 1032485		1 -	
Table	0011	Į.	В	12345
7547 - 045 - 2-2879 -	005724890	V	c	· · · · · · ·
P1	0032449 003244	T	M	M-754433
8772	11	5	P	P1145076
00000000000000000000000000000000000000	008544908 00124851 00324851 1 - L 00324851 00124851 1 - L 00436101 1 - L 00436101 1 - L 2 L 1 -		_	872275
	L1-L2 L1- .0085 1 1223 .0085 1 1223 .0085 1 1223 .0085 1 1223 .0095 1 1233 .0095 1 1233 .0095 1 1233 .0095 1 1233 .0095 1 1233		-	_
	1-L2 L1- 0032449 0032449 001248501 1-L2 L1- 0043330164616 1-L2 L1-	·	-	_
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- L 2	.1		_
000000000000000000000000000000000000	L 1 - 11234 - 11234 - 1 - 1234 - 1 - 1 - 1234 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			_
00000000000000000000000000000000000000	2 0304851 1 1 1 1 1 1 1 1 1			
04208500 2 04208500	085549 085 L 1 - 11234 L 1 - 11234 L 1 - 1			
05377503 L1-L2	L1-	2		
006195066 11 006324490 10 017824190 11 006324490 11 0063246901 11 004080571 12 007758266 11 004080571	112004			_
0061945966 11 0063249761 00724976766 11 0063249776 11 0063249771 11 007364971 11 007364971 11 007364971 11 00736666 11 007366666 11 007366666 11 007366666 11 007366666 11 007366666 11 0073666666 11 00736666666 11 007366666666666666666666666666666666666	1 - 12003 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
0.06195966	11223	-1		
09619596 09876766 1 006324990 1 007324990 1 00736966 1 007369666	1 4 6:35	-		
06195966	L 517271	- L		_
098776766 1 1 005324990 1 1 005324997 1 1 005324997 1 1 005324997 1 1 005325555 1 1 00450656 1 1 004506591 1 1 00450656 1 1 1 00450656 1 1 1 00450656 1 1 1 00450656 1 1 1 00450656 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2			
10619596 11 0632490 11 0736266 11 0406571 11	1/101426507	7		
0639596	L 0236991	_ L		
	1 0408571	- 1		
		-		

PROBABILITE DE TRANSITION = .1

STATION ST

I I UTIL INBI MARCA	1 SATION BCMP	U1-U2	U1-U2/U1 I	NE DE CI	IENTS BCMP	L1-L2	L1-L2/L1 I
111 90 9999 121 1000 151 1000 171 1000	9 1.000 0 1.000 0 1.000	000000000000000000000000000000000000000	0051 H 0051 H 00724500 H 00724500 H 00724500 H	98886656 1233456	1.879 2.876 3.875 4.875 6.875	- 007 - 0011 - 0014 - 0029	0.744 H 0.744 H 0.745.64 H 1.338.844 H 1.342.44 H

STATION S2

I I UTILISATION INBI MARCA BCMP	U1-U2	U1-U2/U1	I NO DE CLI I MARCA	ENTS BCMP	L1-L2	L1-L2/L1 I
1 11 100 100 1 21 100 110 1 21 110 1111 1 41 1111 1111 1 51 1111 1111 1 61 1113 1111	001 000000 000000 000000	- 362	100 12356 13356 133544 11544	100 1122 1222 1222 1225 1225	.0001 00011 000114 00000	00000000000000000000000000000000000000

PROBABILITE DE TRANSITION = .3

STATION ST

STATION ST							
I I UTIL	ISATION BCMP	U1-U2	U1-U2/U1	NB DE CL MARCA	I ENTS BCMP	L1-L2	L1-L2/L1 I
111 1234567 1 101 101 101 101 101 101 101 101 101 1	3 1.000 8 1.000 9 1.000	00056270	006664 0955641 0955641 09756410 09756410	876 1.819 2.791 3.774 5.770 6.770	87636 1.888334 23.888334 5.88334	04540 00000000 11111	0929795 0312504 03642504 03642504

STATION SZ

I I UTILISATION INBI MARCA BCMP	U1-U2 U1	-U2/U1 I	NB DE CL	I ENTS BCMP	L1-L2	L1-L2/L1 I
11 124 1240 1240 1240 1240 1240 1240 124	- 0004 - 0002 - 0001 - 0001 - 0001	04656100 0460425	280020600 112222233	124 157 164 165 166	00454045 0000000	01159509 04433086 034476886 11146886

STATION S	3

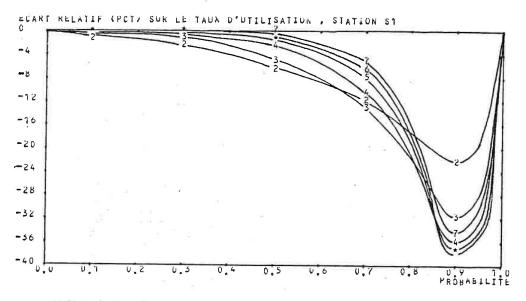
916								
INB	I UTILISA 1 MARCA	ATION BCMP	U1-U2	U1-U2/U1	NB DE CI MARCA	LIENTS BCMP	L1-L2	L1-L2/L1
1234567	1 971 1 983 1 990	83684 9999 1 0000 1 000	0085870 000000000 1-1-00	0425893 -4421-	\$7.665 \$7	877553 1.77553 2.77553 4.77553 6.75	-007 -0141 -11780 -1200	23.33.09 - 23.33.09 - 23.33.09 - 23.33.09 - 23.33.09 - 23.33.09

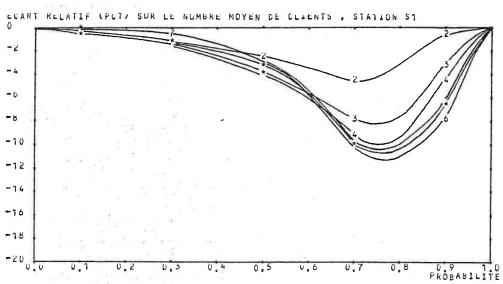
STATION SZ

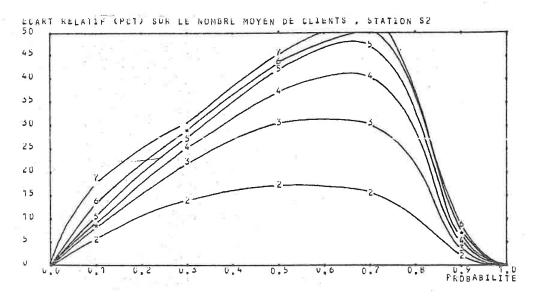
I 1 UTILISATION U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 INBI MARCA BCMP	~
Yan Tanana and Anna	L1-L2/L1 I
1 11	7 17.351 I 1 29.488 I 2 36.704 I 0 40.849 I 9 43.316 I

PROBABILITE DE TRANSITION = .7

2 1 M I	201 31						
INBI	UTTLISATION MARCA BEMP	U1-U2	U1-U2/U1	I NB DE C I MARCA	LIENTS 6CMP	L1-L2	L1-L2/L1
111111111111111111111111111111111111111	7526 8655 97986 88726 9733 1	04267 	0595509 059578864 11108644	7544 755773 1 2 3 2 1 1 0 0 2 5 1 1 5 5 9 2 5	7524 762637221 1234555555555555555555555555555555555555	007824 	050942 -790020 -10000 -10000


STATION S2				4.			
I I UTILISAT	TION BCMP	U1-U2	U1-U2/U1	NB DE CL	I ENTS BCMP	L1-L2	L1-L2/L1
24682220660 2468220060 256820060 26820060	246 3028 31225 32226	0333222 	01258 02299676 22298676 11208676	246 4621 767 8993 1.075	246 376 438 465 4770 482	0070 0780 1341 155	0757273 08545595 12396615 12396615


PROBABILITE DE TRANSITION = .9


I UTILISATION INBI MARCA BCMP	U1-U2 U1-U2/U1	I NB DE CLIENTS I MARCA BCMP	L1-L2 L1-L2/L1 I
111 .526 .6981377 526945 .88696 56357 .8896 56357 .8967	000 -1120 000 -112188 -221344 -221348 -221347 -231347	521 1.527 1.627 1.	0000 - 4400755 - 4402 - 4666 - 1000 - 10007420755 - 10007420755 - 10007420755 - 10007420755 - 10007420755

STATION S2

INBI	UTILISA MARCA	TION BCMF	V 1- U2'	ען-ט2/טן	NR DE CI	LIENTS BCMP	L1-L2	L1-L2/L1 I
1 11 21 31 1 51 1 7 1	92544209 452444209 556869	7317458 73174584	01620385	02646326 02646326 02646326 02646326 026646326 0266666	47532 1.47532 1.4738 1.4908 223.2	74992555 11,22555 12,23	.001 001 004 004 005 1065 1065 1065 1065 1065 1065 1065	11.300 H 11.300 H 11.

PROBABILITE DE TRANSITION = .1

5	T	Α	Ŧ	1	ON	51

SIM	110N 21							
INB	UTILISA MARCA	TION BCMP	U1-U2	U1-U2/U1	NB DE C MARCA	LIENTS BCMP	L1-L2	L1-L2/L1 I
1234567	84877929 770334	,487 ,6430 ,771 ,8351	00000000 00000000	00209445 0000665 00007777777	487 1.897 2.3793 2.32	.4876 1.8951 2.7951 2.7951	00000	0000M3001

STATION S2

01/1.2011	3-						
INBI MAR	ILISATION CA BCMP	V1-U2 (∪1-U2/U1 I	NB DE CL	I ENTS BCMP	L1-L2	L1-L2/L1 I
1 31 1 41 1 51 1 61	56866 5686 5686 56866 56866 56866 56866 56866 56866 56866 56866 56866 56	00000000000000000000000000000000000000	0.643 0.643	5134 1.5505 1.55	1.5134 1.56429 1.56429 1.6425 1.769	.000 .000 .0001 .0001	00000000000000000000000000000000000000

PROBABILITE DE TRANSITION = .5

STATION S1

17,100,00						
I UTILISATION	U1-U2	U1-U2/U1	NB DE MARCA	CLIENTS BCMP	L1-L2	L1-L2/L1 I
11	004666555	02346580	4693 1 1 6999 1 63383 2 686	.460 .4898 1.698 1.634 2.364	.0001 .0001 .0004 .0004 .0016	00079696 00071979696 11979

STATION SZ

OTATION SE			
I I UTILISATION INBI MARCA BEMP	U1-U2 U1-U2/U1	I NB DE CLIENTS I MARCA BEMP	L1-L2 L1-L2/L1 I
1 11 .540 .540 1 21 .714 .88059 1 341 .8852 .885959 1 51 .8887 1 51 .928 .934	000 - 0007 - 0007 - 0007 - 0007 - 0006 - 614	540 1540 1 1107 1.108 1 1.701 1.702 1 2.319 2.921 1 2.962 2.963 1 3.627 3.636 1 4.314 4.330	- 000 - 000 H - 001 - 000 H - 001 - 059 H - 002 - 0586 H - 004 - 135 H - 016 - 371 H

STATION	

I I UTILISATION INBI MARCA BCMP	ป1-U2 บ1-U2/U1	I NE DE CLIENTS I MARCA BOMP	L1-L2 L1-L2/L1
11	.000 -005 -005 -1107 -1063 -007 -006 -005 -739	1	.000 .009 .0023 .2551 .0008 .8745 .0015 .8336

STATION SZ

I I UTILISATION INBI MARCA BCMP	U1-U2 U1-U2/U1	I NB DE CLIENTS I MARCA BCMP	L1-L2 L1-L2/L1 I
1		1.571 1.5788 1.1888 1.85569 1.8488 1.85569 1.8488 2.2686 2.2686 1.8488 2.2686 1.8488 2.2686 1.8488 1.8488 2.2686 1.8488 1	0001 - 0084 - 0001 - 016147 - 0005 - 34547 - 0015 - 6445 - 00240 - 8646

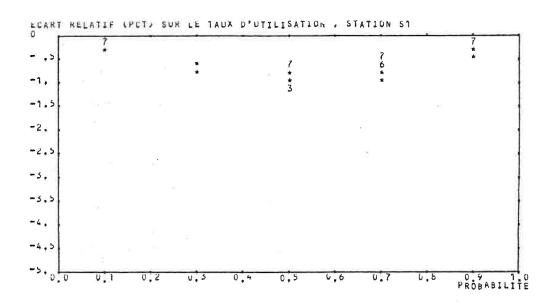
PROBABILITE DE TRANSITION = ,7

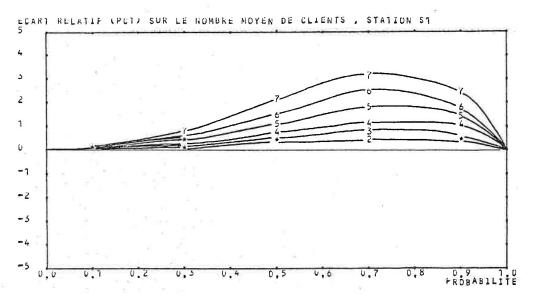
STATION ST

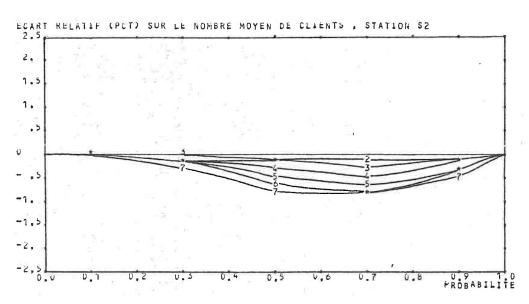
I I UTILISATION INBI MARCA BCMP	U1-U2	U1-U2/U1	NB DE CL	IENTS BCMP	L1-L2	L1-L2/L1 I
111 94 9774 9774 9774 9774 9774 9774 977	004665554	0813633 0800736 11-1-21-21-11-11-11-11-11-11-11-11-11-11	77924 1125 1125 1125 1125 1125 1125 1125 11	3721 7728 1.268 1.368 1.494	00000000000000000000000000000000000000	.989 I

STATION S2

I I UTILISATION	U1-U2	U1-U2/U1	I NB DE CI I MARCA	LIENTS BCMP	L1-L2	L1-L2/L1 I
11 .606 608396 67874 .88695 11 411 .9955 11 411 .99465 11 561 .9957 11 71 .99	000000000000000000000000000000000000000	034 86618	606 276 2.76 2.787 2.787 3.610 4.469 5.357	1.079 2.79 2.79 3.6504 5.406	000012359 	025991 H 025991 H 1


PROBABILITE DE TRANSITION = ...,9


STATION ST

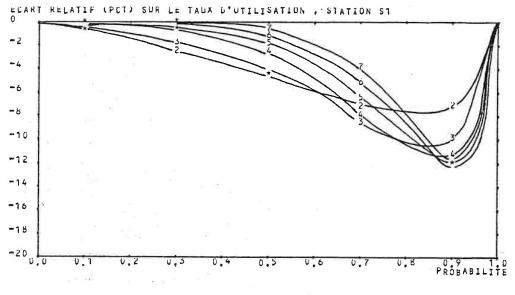

INBI	UTILISA MARCA	TION BCMP	U1-U2	บ1-บ2/บ1	NB DE C MARCA	LIENTS BCMP	L1-L2	L1-L2/L1 I
12341	3582 450245 55345 5545	3455555 505674736	002 002 002 002 002	017884 017884 11443773	368905543 1.11	35239 - 68157 1,0115	00000400 00000400	00080547 024961667 1123

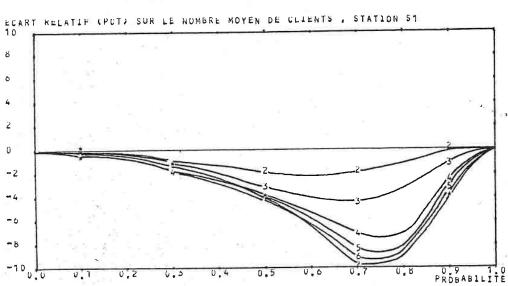
STATION S2

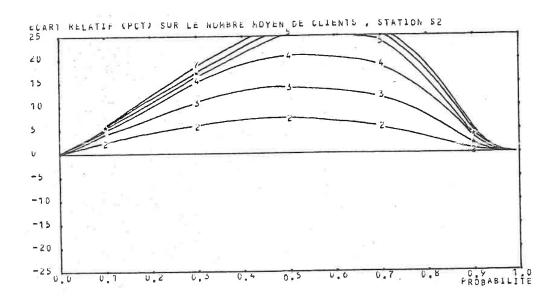
INB	I UTILISAT I MARCA	ION BCMP	ม1-ช2	U1-U2/U1 I	NB DE CI	IENTS BCMP	L1-L2	L1-L2/L1 I
1234567	833 8152 9573	68999999999999999999999999999999999999	.000 003 004 004 003	06832054 04457954 1-4437954	127755 637755 109.886 123345	6457 1.3781 3.9849 4.8845		01484 0148666 1128511 11444 11481

PROBABILITE DE TRANSITION = STATION ST U1-U2 U1-U2/U1 I NB DE CLIENTS BCMP

.000 .000 I .820 .820
-.007 ...775 I 1.745 1.750
-.004 ...374 I 2.716 2.728
-.001 ...140 I 3.706 3.721
-.000 ...01 4.702 4.719
-.000 ...01 I 5.701 5.718
-.000 ...010 I 6.701 6.718 INBI 820 1.750 2.728 3.721 4.719 5.718 - 000 - 005 - 015 - 017 - 017 STATION S2 I NB I MARCA BCMP U1-U2/U1 I NB DE CLIENTS BCMP L1-L2/L1 I NB I MARCA BCMP I 1 NB DE CLIENTS BCMP I 1 NB DE CLIENT 0034171 0034177 0232771 2455555 8819 PROBABILITE OF TRANSITION = STATION ST I UTILISATION U1-U2 U1-U2/U1 INBI MARCA BCMF I-II .785 .785 .000 .2000 I 31 .968 .985 .017 -1.735 I 41 .987 .996 .009 .891 I 51 .995 .996 .009 .891 I 51 .995 .996 .009 .891 I 51 .998 1.000 .002 .180 I 71 .999 1.000 .001 .008 I -.018 -.043 -.061 -.073 -.079 STATION SZ U1-U2 U1-U2/U1 I NB DE CLIENTS BCMP


1 MARCA BCMP


- 000 - 2.000 I .275 .215
- 0005 - 1.734 I .3597 .3570
- 0000 - 1.734 I .448 .3777
- 0000 - 1483 I .456 .3777
- 0000 - 037 I .460 .3777 I UTILISATION
NBI MARCA BCMP


1 11 .215
1 21 .252 .2759
1 31 .2702 .274
1 51 .272 .274 L1-L2 L1-L2/L1 I .000 .017 .0432 .007 .0083 50.777 I 14.3777 I 16.3777 I 17.4470 I 18.040 I

- 160 -

		ī	-	STILLILLI	-	PIPERING PRINCES	ī	٢	I	1	A Part of the Control	1
-	-	-	R	N -	-	N .	-	K!	-	-		-
-	6-1234567-	-	0	ī	_:	123456	- 1	J 6	011234567	A - B	1234557	A B
ī	I I I I I I I I I I I I I I I I I I I	ī	В	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		I٠	ī	3 4	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ī	ILILITIE	7
10			4 5	1 G		-	0	Ь		10		1 (
•		L	1	-	-		U	1		٠.	-	- [
I		T	Ļ	TR	÷		- T	L	-	17		17
51 10156677781	- 46667777-	-	ï	ST 1013444455	Y	678879	I	I	1733355	_	78999999	I
LA		Ē	1	L A	-:			r t	6	Ē	3626789	LA
1 3874130	TOMONNO!	I	E	1381686	-	92300	S	=	76000501	1	3880773	_
5 #		5 A	ı	5 A		-	A	U		s ,		Si
4.1		. 7	ı E	1			T	E		Α '	-	Α .
			-	I	-	0	I		- :	T		T :
30			Į	000	:	_	100	ī		1 (10
The work	4677000	N N	6	NM 3445555	99-		- IM	ĸ		10		١,
1862579	-	i P	A	P 1559-2777	89	14425780	 D	Ā	2333366	1	77	1 1
349040	7000141	-	i	114000547	84-	91198	-	N			314555	
		_	5		-	-	-	5	7		2000	
		-	1	-	-	-	-	ĭ				-
U	_	Ū	ĭ		-	-	-	γ				
		7	1				7	I		1 1		11
		-	2	_	:		-	0	٠,			
	100000000	Ų	L fix	_	00	1,00000	U	N		- [0000000	
2 0478999	0468899	2		2 0333322	43	0576643	2		10000	12	000000) 2
0516356	0381811	_	==	1 0N98N7-1	9-	09390	-	=	10651742	-	03098	
	-	-		_	-	_	-			-		-
- U		_ U		U	2	_	J.	_	-	U	_	u
1		1		_					-	1	_	1
-	1	_					- [1		<u>-</u>	1 1 1 1 1	-
-	701221	÷	•			7876	1	, 1	- 44311-	U	443111	U
-		2	y				2 /	7		2		2
-	10026120	7			-	30.000	· 1	_	10930916	7	09308761	-/-
-	0935619	-			3	0321353	J .	-	0750146		0750948	U
-	0123637	-1		11 100107091	9	054440	1	-	0146325	1	0510355	1
-	-			-	-	- 1	1	_	-	-		-
- HILITITITE	ITITITITITI	- I		ILILITITITI	I I		[-	ITITITITI	- I	TITITITI	I
-	-	-						_	-	_		_
NM	-	N M			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-	1 6		-	NA I	_	NM
11223	1122	B		1			-		_	В	234	BA
R	4000000			1000	473	6	DC			R		Ŕ
000000000000000000000000000000000000000		0 8			55		E		245677	0.0	7543221	0.
333333	7888562	 E		1158745	5		-		6487370	E	3512029	E A
					_	-	c		771.55		4	(
		L		L	-	•	L					
1	_	I		I	-	-	_ I			. 1		. 1
EB 112233	11223	EB		В	5	_	EB				Course Land	
	-	1 20		Ü	-		N C		-	N		N
TM15051627	-	TM		M-368900	8	6310998	T	_		- T	7554444	T
	8639593	SP		٢	8		S		620356	Sp	3806433	SP
134429591	7668151	_		114353181	2.	967570		_	7009869	_	24	_
	_,			-		-			-	-	_	-
		1			-	-	L		_	-		-
- 1		- 1		. 1	-	1 1 1 1	1			L		L .
		-			-		-		,	1 -		1 -
	10000011	L			45	- COTUM	L	•	0000		0000	·
_	100158001	2		_	2	COUDDIN	2	, _	0283713	. 2	0222777	. 2
000000099	ONWOON	_		- 0723437	7	07234	-		0714813	-	0715803	
-	_	-		-	-	_	_			-		-
_ _ _	-	L		L'1	- 1		L 1		ت.	L	_	L
1 -		1					-		_	1		1
		- 1		117223	Ś	14789	L		11222	- 1		-
		. 2		-	-		2		530	- 2	13.44.3	
_	10007601-1	7		_	100	10000540	/		0189710	. 7	0730107	: /
1 L 1 09300001	1 0M 601551	L		1010702	4	086970	L	_	0472258	L	0345725	L
_	1 0000-04-00-1	1			1	0753281	1		10773246	1	00000400	1
					1	111111111111111111111111111111111111111	I		-	-		_
		- 1								I	IIIIIIII	I

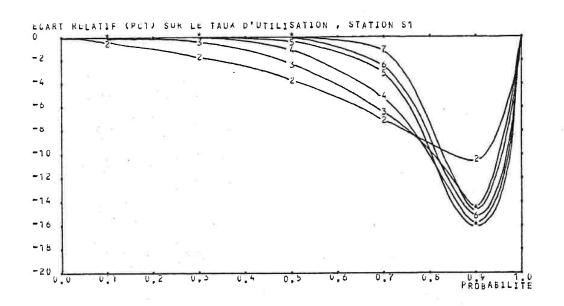
PROBABILITE DE TRANSITION = .1

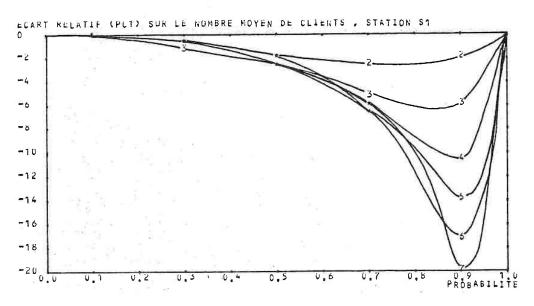
5 .	4.1	т :	n	N	C 7

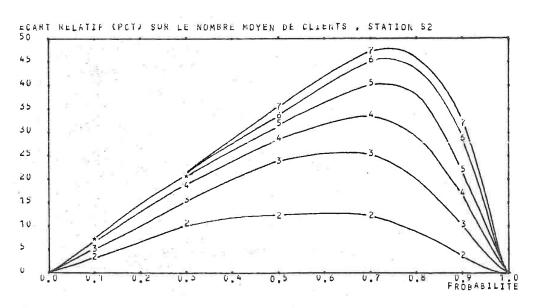
3 1 A	1104 31						
INB	I UTILISATION I MARCA - BCM	, U1-U2	U1-U2/U1	I NB DE C I MARCA	LIENTS BCMP	L1-L2	L1-L2/L1 I
1234567	1.000 1.00 1.000 1.00	59 - 005 - 005 - 000 - 000	- 010	1 1 875 1 1 866 1 2 866 1 4 866 1 4 866 1 5 866 1 6 868	900 1.8876 3.876 4.876 5.876	000000000000000000000000000000000000000	0064471

STATION 52

I I UTTLISATION INBI MARCA ECMP	- U1-U2 U1-U2/U1	I NB DE CLIENTS I MARCA BEMP	L1-L2 L1-L2/L1 I
1 11 100 10 1 21 109 10 1 21 110 11 1 341 110 11 1 51 110 11 1 71 110 11	0 - 000 - 0552 0 - 0000 - 1091 0 - 0000 - 1091 0 - 0000 - 1091 0 - 0000 - 1091	1 100 100 1 125 120 1 1331 124 1 1333 124 1 1333 124 1 1333 124	.000 3.7649 .005 3.7649 .005 5.1327 1 .008 6.3387 .008 6.1287 1


PROBABILITE DE TRANSITION = .3


STATION ST


I I UTILISATION INSI MARCA BCMP	U1-U2	บ1-ช2/ช1	I NB DE CI I MARCA	LIENTS BCMP	L1-L2	L1-L2/L1 I
1 11 .877 .877 1 21 .964 .983 1 31 .989 1.000 1 51 .997 1.000 1 51 .999 1.000 1 61 .000 1.000		000000000000000000000000000000000000000	8/77 1 1.8630 1 2.8601 1 4.798 1 5.797	877 1.88439 2.88387 5.8837 6.8837	0013379 	07483308 07483308 -1.097308 -1.55
STATION 52						

I UTILISATION U1-	U2 -U1-U2/U1 I NB DE I MARCA	CLIENTS L1-L2 BCMP	L1-L2/L1 1
11 123 1237 1 1 21 1338 1440 1 1 241 1338 1440 1 1 51 140 140 1 1 71 140 140	000 1 230 003 -1927 1 170 003 -1927 1 170 000 -287 1 199 000 -143 1 203 000 000 200 1 203	123 000 154 016 161 030 162 037 163 039	00040000 000560000 000560000 000560000 000560000 000560000 000560000 000560000 000560000 000560000 000560000 000560000 0005600000 0005600000 0005600000 0005600000 0005600000 0005600000 0005600000 0005600000 0005600000 0005600000 0005600000 00056000000 00056000000 000560000000 0005600000000

STATION ST I I UTILISATION UTINBI MARCA BEMP	U2 U1-U2/U1 I	NB DE CLIENTS U	1-L2 L1-L2/L1 I
NBI MARCA 6470	0000 -4.04221 00000 -2.44211 00000 -2.44211 00000 -2.44211 00000 -2.44211 00000 -2.44211 00000 -2.44211 00000 -2.44211 00000 -2.442111	. 840 1.7886 2.7655 2.7665 4.7655 4.7655 5.6644 5.7655	0000 1000 11 -031 -1.55638 -0295 -2.55638 -1119 -2.5667 -1124 -1
1 71 .998 1,000			
STATION S2 I I UTILISATION U1. INBI MARCA BCMP	-U2 U1-U2/U1 I	NB DE CLIENTS MARCA BCMP	L1-L2 L1-L2/L1 I
	0007 -3206 H 0007 -3206 H 0005 -1-0686 H 0001 -1-316 H	160 16140 12456 12456 12456 12456 12456 12456 12456 12576 12	000 0001 0001 0001 0001 0001 0001 0001
1 71 .190 .191 -	000 - 158 I	*254 *525	1124 34,437 1
PROBABILITE DE TRANSITI	Y. = NC		
STATION ST	-U2 U1-U2/U1 I		L1-L2 L1-L2/L1 Į
INBI MARCA BCMP	i	220 770	000 045 -2.793 I
770 77361 77728 998944 998944 99894 1000 1000 1000 1000 1000 1000 1000 10	0000 0004 17.887787 18.00388 1.0048	1.6606697 1.6608775 2.555775 2.55775 4.55775 4.55775 4.55775 4.55775 4.55775	004271245418 00427125448 00427125448 00427125448 00427125448 00427125448
STATION S2			
I I UTILISATION U1 INBI MARCA BCMP	-U2 U1-U2/U1 I	NB DE CLIENTS MARCA BCMP	L1-L2 L1-L2/L1 I
30 20 37937 30 20 20 20 20 20 20 20 20 20 20 20 20 20	0019 - 6335560000 0019 - 6335560000 0019 - 6335560000 0019 - 6335560000 0019 - 6335560000 0019 - 63355600000	3521 5225 6225 67060 7760	000 11.54776 11.54776 11.282 40.0627 12.336 44.0221 1
1 71 .294 .299		, , , or or , , , , , , , , , , , , , ,	
PROBABILITE DE TRANSITI	0 N = - NO		
STATION ST	-112 111-112/111 1	NB DE CLIENTS	11-12 11-12/11 I
I I UTTLISATION UT	.000 .000	MARCA BCMP_	-
20067 9861464 9861467 99058 99058 99058 99058 99058 99058	00000000000000000000000000000000000000	592 1.2427 1.2427 1.4468 4.5013 2.339 4.339	0000 -10.007 11.000 -0023 -10.4213 11.135 -1.4233 -14.1139 -1.4338 -17.6692 1
STATION SZ			
I I UTILISATION UT	-02 01-02/01	NB DE CLIENTS MARCA BCMP	L1-L2 L1-L2/L1 I
1 1 408 408 1 1 486 5508 2 1 486 6552 1 41 544 6552 1 51 575 6673	000 053 053 0578 0578 0578 0578 0578 0578 0578 0578	NB DE CLIENTS MARCA 8 .4088 .7080 .7	00310 00310 00310 00310 00310 00444756 10441554 10441554 10441564 10441554 10441564 10441564 10441564 10441564 10441564 10441666 10441666 10441666 10441666 10441666 10441666 10441666 104416666 10441666 10441666 10441666 10441666 10441666 10441666 104416666 10441666 10441666 10441666 10441666 10441666 10441666 10441666 10441666 10441666 10441666 10441666 10441666 10441666 104416666 1044166 1044166 1044166 10441666 1044166

PROBABILITE DE TRANSITION = .1

TATION ST

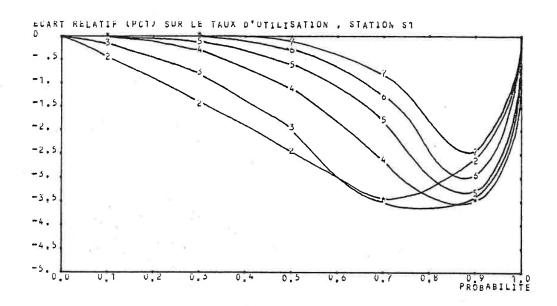
AIC	ION ST							
INB	UTILISA MARCA	TION BCMP	U1-U2	U1-U2/U1	NB DE MARCA	CLIENTS BCMP	L1-L2	L1-L2/L1 I
12345	.995	8299980 10000 10000	0000000	0.420 0.420 0.420 0.000 0.000	1.724 2.724 3.713 4.713 6.712	2,731 3,725 4,723 5,722	- 0000 - 0000 - 0000 - 0010 - 0010	01772259 07772259 077724179

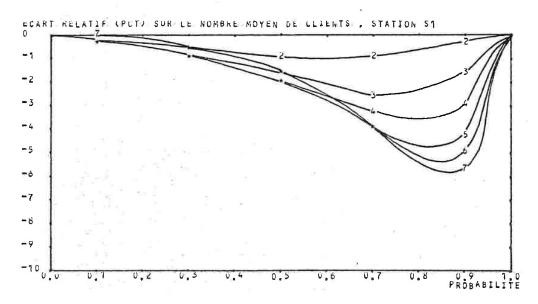
STATION S2

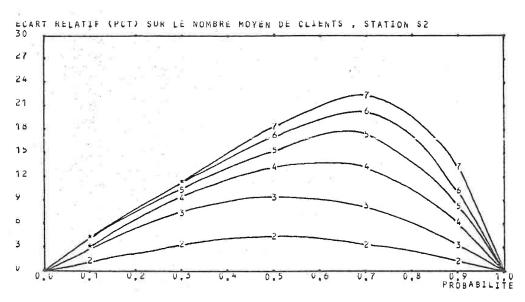
INBI	UTILISATION MARCA BCMP	U1-U2 U1	U2/U1 I	NB DE CLI MARCA	ENTS BCMP	L1-L2	L1-L2/L1 I
12341	179 179 208 2016 217 217 217 217 217 217 217 217	0000000	000000 I	75788888 127222222	179 247 2469 2777 2778 278	.0037 .00079 .0010	10030340 0670647 09570647

PROBABILITE DE TRANSITION = .3

STATION ST


I I UTILISATION INBI MARCA BCMP	U1-U2 U1-U2/U1	NB DE CLIENTS MARCA BCMP	L1-L2 L1-L2/L1 I
792 79487 79378 98487 1 31 97978 98799 1 41 99990 1 99900 1 1 61 99990 1 10000	0000 0000	792 1.6999 29992 79838 2.666495 4.66695 4.66695 4.66695 4.66695 4.66695 6.6643	-0000 -0000 H -0010 -00910 H -0024 -09800 H -0034 -09849 H -00440 -098657 H -00442 -0667 H


STATION S2


I I UTILISAT INBI MARCA	TION U1-U2 BCMP		NB DE CLIENTS MARCA BCMP	L1-L2 L1-L2/L1 I
204501 20	2008 - 0004 - 0004 - 00001 - 00000 - 00000 - 00000	044450 044980 0469850 04691570	233351 233351 233351 233351 233351 23351 23351 23351 2351 2	000 3.010 H 010 3.210 H 024 6.735 1 025 8.947 H 040 10.147 H 043 10.928 H

PROBABILITE DE TRANSITION =

STA			5 1	_						_			-	- ~	-			-		-		-		_	·· •	-		-		-			-								-		
INB	M.	JT	L.	S	A T	BO	M C	P		¹ تا	1 -			ا 	_			_	U 1		I I	N I	A R	DL	E A	(L I	EB	N T C M	S		ا 	. 1	-	L 2		۲,	-	L		L		
11 23 45 67			7500					03527990				00000000	0702072					0507037	06788436				100000000000000000000000000000000000000	654444	500505107			123456	7655555	5152000	0501831		111111		00147900	55102	. · ·		ו דיייייייייייייייייייייייייייייייייייי	. 970087	0395360	0768795	
										_																																	
STA			\$ 2	2 1	 Δ T	T :	 D Ki			11 '	1 -	-			11		12	7	U 1	-	 I	N	 B	D	 E	c	LI	E	N T	- S			- 1	-	 L 2		Li	1 -	L	2/	L	1	1
INB	i M	UT AR				-				_		_			-	_		_	0.0		Ī ! • I	M	A F	C	Α.									<u>-</u>	0.0	0			-		00	0	1
N 1 1234567	I I I	•	5012333	0097			2333	50851233			- : - :	00000	0864210			- 3	2	0591631	6779335		Ĭ			14454	5095890	,				5857999	5093			:	0010070010	5		1	382577		0590409	09206	****
I 5	I I I		333	2			333	333			= :	000	0100					3	315		I I I			5	98	3				9	79				10	929		1	7		9	63	:
PROF				_	D E	1			S I	T1	. 0	N	=			,	1									-				-	~ ?					-			-		-		•
STAT	10	V - S											-		_		_			_	_									_			-	 ,									
INB	М	IT	A	S	A T	ВС	MI			U1	-	_		U	1	- (_ :		M				C !		B	: M	Ρ					. 2		11	-				1]]	֡֝֝֝֜֝֜֜֝֜֝֜֜֜֜֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
N 1 1 2 3 4 5 6			8415789	3			62000000	8 6 5		712	Ç	0 0	0915828			- 3	:	4	07430418			1		64	827637			1	64	8746208	3		-	. (0151592	0.60		-	1:	0054898	9		1
1 2 3 4 5 1 6 1	-	. 5	71		,		99	76				0	5		i	31010		468	4 5 5 6 5 4			4		200	56 53			3	2	462	3				11	0		-	123333	48	8		i
1 6			90			_:	9	25				Ö,	8	_	_	-1		8	51		[[- 4		9	97			5	1	8	1 -		-		22	89		-	3.	. 8	64	7	į
!			. F\																																								
STAT		JT:	2 . L	5	A T	10				u 1	-	U	-	. บ	11	 - i	12	7	U 1	_	 I	NI	3	D.	E	C	. 1	E	N T	5		 L	. 1	-			L 1	-	L	2/	L	1 ;	I
INB:	M.					B	MI						_	_				-		_	I	M		3	_			-	C M		- -		_			0					001	0	I
111111111	Ì		31334345				3344444	36				oo.	0342864		G			24468N®	0836550	916				5	1393447304				. 5	TNSMBC	5				015055	6000		1	285	0919778	0974928	003531	į
I 5	I I	, i	44		2		444	502				000	18			-1		2000	5753		I			000	37				. 7	80	0				15	78		1	282691	. 7	9	3	ļ
I 7	Î 		45	-			4	53		-:	:	0 (4		-	-		8	0 0	_	Ī			0	48	-		~	8	1	- -		-	-	2 2	9		2	1	. 8	8	0 :	[
							(
PRD	BAB	11	11	Ł	Di	ž	Γĸ	Á٨	5	1	10	NC	-	į			, ;	è																									
	TIC	-	s 1			12								-		-		. ~	_		_		_		-	-	_		-					-	-			<u>.</u> ,		_			
INB	I N	UT	-	-	Α.				7.	U	1				U 1	-	U 2	2/	U.	1 	I	NY.	BA	RC	A		L	I E	0	MP			L.		L			1.	- L	. 2	/ L	1	
Î 1	Ī	:	58	300			. 7	83	,		- :	. 0	21			-	2	7	046	9	Ī		1	. 5	17	3		1	:	5 8	3			• ;	00	000			-	:	000	0	
1 123 45 67	1		5788999	30000717			57899999	8750357				000	0223322	,		11111	233322	0745295	0480005	0719736	HILHHILL		110M44	5285208	817 66NO	2		112345		5296428	929				1	00340967			13455		045123176	04410846	
1 6	1		93	7			. 9	71				0	27	_		-	2	5	5	3 6 -	I		44	. 8	20	64-	-	5	:	23	4				2	77			- 5		11	461	
STA	110	N	c 2																																								
STA		UT		1 5	A	I	ON	5		U	1	·	2	=	U'	-	U	2/	U	1	I	N	В	RO	E	- 0	L	IE	N	TS			Ľ.	1 -	L	2	L	1.	- L	. 2	/ L	1	
1 1 2 3 4 5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1				-		~-		-	-	-	. 0	Ç	}		-		ç	Ō	- 0	I		-				-	_ =					a- ,		0	00		-	-	-	00	0	,
111111111111111111111111111111111111111	Ī		45566667	637			4566666	170	5			000	0122211			111111	232	Character	0670615	330	HILITIAN		1	4774791	TONMUTO	668		1		4703579	028			•	000	006409677			3		070504461	0103104	
- 4											*	- 4	3 2	-			=			<u> </u>	-			- 2	. =	_			٠.	= :	- Z				~	= ×			-				
1 6	İ		646	9 5 4			. 6	84) •		-	.00	19	,		-	32	95	61	88	Ī		11112	. 9	77	2		4441		5 8 7 6	6				2	3 9 0 6			100		0844	5	

PROBABILITE DE TRANSITION = ,1

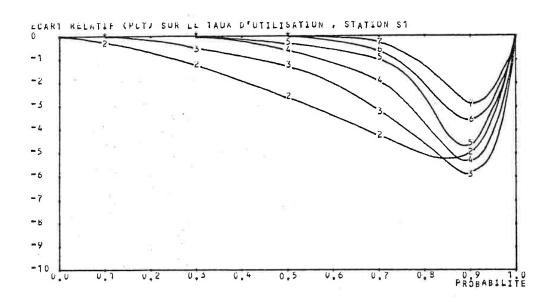
STATION S'

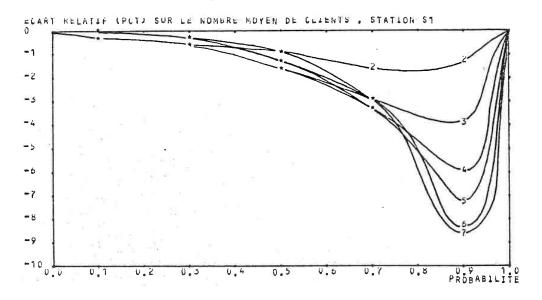
211	ALION ST							
IN		SATION BCMP	U1-U2	U1-U2/U1	NB DE C MARCA	LIENTS BCMP	L1-L2	L1-L2/L1 I
I	9988 9988 990000 100000 100000	1.000	- 0003 - 0000 - 0000 - 0000 - 0000	050000 0500000 0500000	901 1.877 2.871 4.871 4.871 5.871	901 1.881 2.877 3.877 4.877 5.877		0345327 02175208

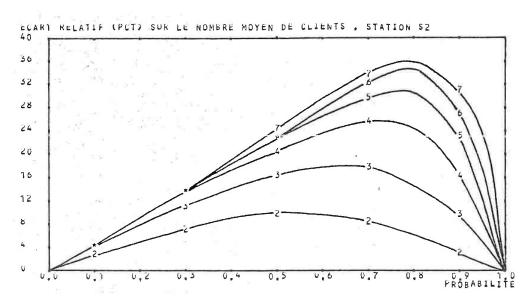
STATION SZ

SINITON 25							
I I UTILISATION INBI MARCA BCMP	U1-U2	U1-U2/U1 I	NB DE MARCA	CLIENTS BCMP	L1-L2	L1-L2/L1 I	1
1 11 099 099 1 21 108 1190 1 31 110 1100 1 31 1100 1100 1 51 1110 1100 1 71 110 1100	- 0000	0.3091 0.3091 1.00000 0.00000	099 1228 1228 1229 1229	099	000000000	00239438 0023948 0023948	

PROBABILITE DE TRANSITION = .3


TATION ST


STAT	ION ST					~~~~~~			-
INBI	UTILISA MARCA	TION- BCMP	_U1~U2	U1-U2/U1	NB DE MARCA	CLIENTS BCMP	L1-L2	L1-L2/L1	I
1 21 21 1 21 1 5 1 7 1	.998	76990000 1.0000	000000000000000000000000000000000000000	0.66400000 0.5055100 0.74710000	8798 8832187 123488 88166	2.843 3.842 4.841 5.841	0104455 01000000 01000000	05000 0000 05000 05000 05000 05000 05000 05000 05000 05000 05000 05000 0	HILLIAM

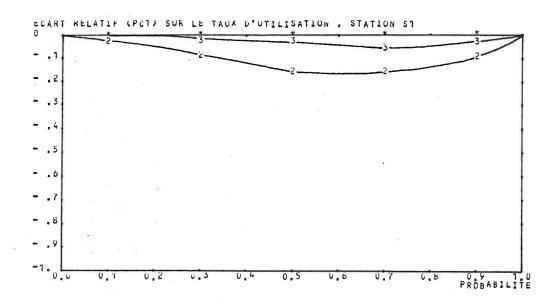

STATION SZ

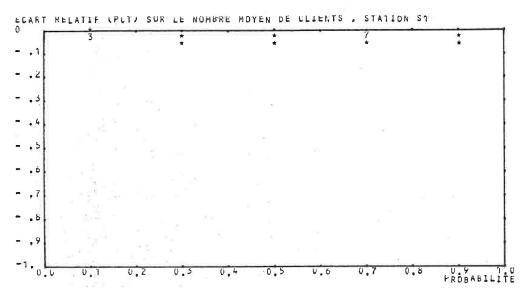
I I UTILISATION INBI MARCA BEMP	U1-U2	U1-U2/U1 I	NB DE C MARCA	LIENTS BCMP	L1-L2	L1-L2/L1 I
1 11 121 12577777 123577777 133 11 1377 1337 1337 1337 1337		00775 00775 10775 10000	1267723 1267723 12678884 118844	121 1157 11559 11559 11559	00112222	10000000000000000000000000000000000000

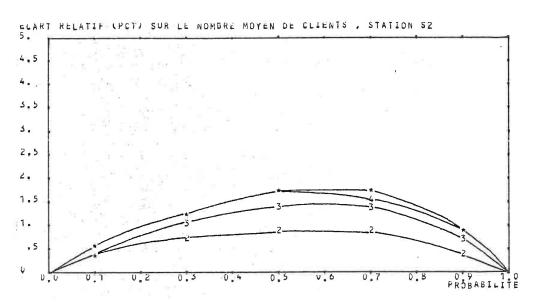
STATION SI INBI MARCA BCMP I 11 .846 .846 I 21 .949 .773 I 31 .981 .995 I 41 .997 1.000 I 71 1.000 1.000 STATION S2 I MARCA BCMP I 11 .846 .154 .154 I 12 .173 .154 I 21 .173 .182 I 51 .182 .182 I 61 .182 .182	U1-U2 U1-U2/U1 -0004 -2.501000224100022410000040 U1-U2 U1-U2/U1 0004 -2.55010004 -2.55010004 -2.55010004 -2.55010004 -2.55010004 -2.55010004 -2.5501	I NB DE LLIENTS I MARCA BCMP 1 1.776 1.77889 1 2.7720 3.7778 1 3.7778 1 5.7778 1 5.7778 1 5.7778 1 5.	L1-L2 L1-L2/L1 HH-1-L2 L1-L2 / L1 HH-1-L2 L1-L2 / L1 HH-1-L2 / L1 HH-1-L2 / L1 HH-1-L2 / L1 HH-1-L2 L1-L2 / L1 HH-1-L2 / L1-L2 / L1 HH-1-L2 / L1-L2 / L1 HH-1-L2 / L1-L2 / L1 HH-1-L2 / L1-L2 / L1 HH-1-L2 / L1-L2 / L1 HH-1-L2 / L1-L2 / L1-L2 / L1 HH-1-L2 / L1-L2 / L1-
PROBABILITE DE TRANS	7. = NOIFIE		
I I UTILISATION	ו 11-02 ט־1-02 נו		L1-L2 L1-L2/L1 I
1 11 787 787 787 121 21 200 954 9595 121 121 121 121 121 121 121 121 121 12	1.000 1.000	7.87 1.6675 2.6675 2.6675 3.6337 4.4856 6.6330 6.445 6.6330	000 1000 1 -0028 -23.43512 -0720 -33.4951 -11522 -33.1570
STATION SZ			
I I UTILISATION INDI MARCA BOMP	V1-U2 U1-U2/U1	MARCA BCMP	L1-L2 L1-L2/L1 I
1 1 21 31 366 1 21 258 2666 1 31 267 227 1 51 268 270 1 71 269 270	00000 -4320001 -4320001 -1000001	213 .213 .3180 .3100 .31	00441 00361 00361 00361 00266 14491 17178 17178
PROBABILITE DE TRANS	SITION = .9	, La	
STATION ST			
I I UTILISATION INBI MARCA BCMP		I NB DE CLIENTS I MARCA BCMP	L1-L2 L1-L2/L1 I
NB 1 MARCA BCNP 65422800 NB 1 111 181 191 191 191 191 191 191 191 1	0017 00907 00907 00907 004504 004504 004504 004504 004504 004504 006504	I MARCA BCMP 1	0019 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
STATION SZ			·
I I UTILISATION		I NB DE CLIENTS I MARCA BCMP	L1-L2 L1-L2/L1 I
I UTLL SATION BCMP IN BI	000 -0027 -55.4437 -00226 -00228 -0018 -0015	345 345 345 345 347 499 499 7983 10259 11259 11345 11545 11545	11-L2 L1-L2/L1 I 1000 300111 1013 90111 1013 10111 1014 10111

PROBABILITE DE TRANSITION = .1

STATION ST						_
I I UTILISATION INBI MARCA BCMP	U1-U2	U1-U2/U1 I	NB DE CLIENTS MARCA BOME	L1-L2	L1-L2/L1	1
11		0.040 0.040 0.000 0.000 0.000 0.000	9,688,888,888 1,23,45,6 1,23,45,6 1,23,45,6 1,23,45,6	32 .000	0000000	HHHHHHH
STATION S2						_
I I UTILISATION INBI MARCA BCMP	U1-U2	บ1-บ2/บ1	NB DE CLIENT	S L1-L2	L1-L2/L1	I

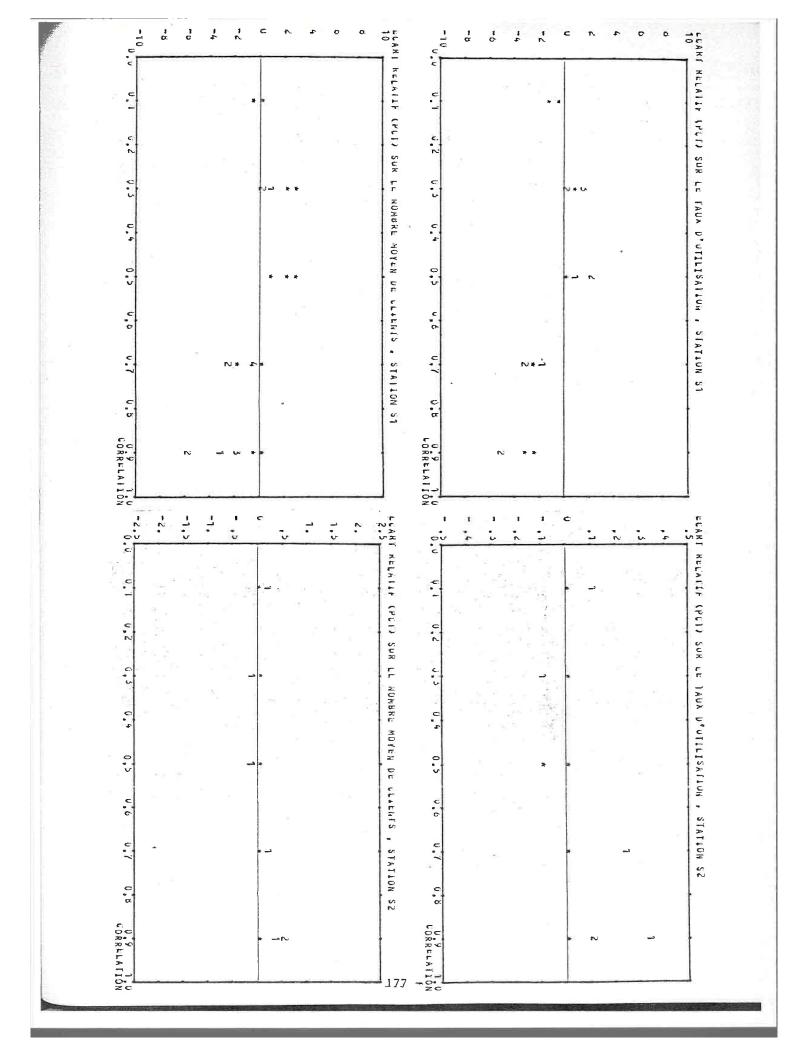

STATION SZ			
I I UTILISATION INBI MARCA BCMP	U1-U2 U1-U2/U	I NB DE CLIENTS I MARCA BOMP	L1-L2 L1-L2/L1 I
95 95 95 95 95 95 95 95 95 95 95 95 95 9	000 000 -0000 -009 -0000 -000 -0000 -000	1 118 118 1 118 118 1 118 118	23331


PROBABILITE DE TRANSITION = .5

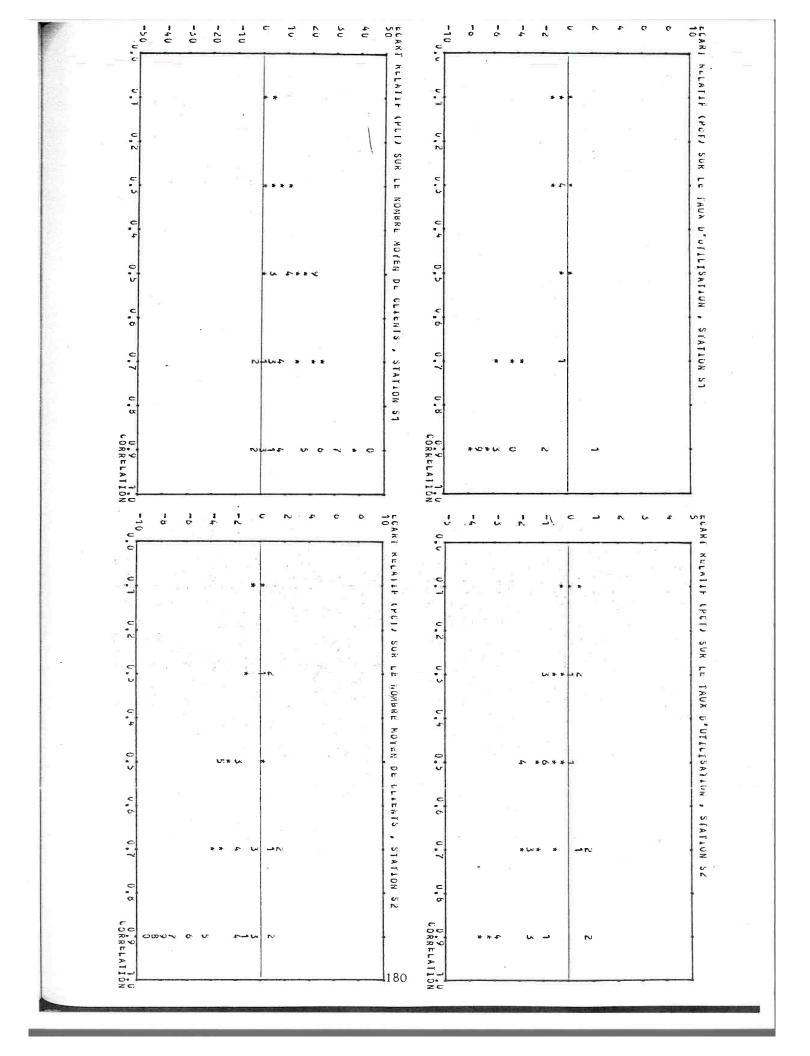

I I INBI	UTILISATION MARCA BCMP	U1-U2	U1-U2/U1	NB DE CL MARCA	BCMP	L1-L2	L1-L2/L1 I
111111111111111111111111111111111111111	95 958990 8987 998990 1 0000 1 0000 1 0000 1 000 1 0000 1 000	01000000	01000000	89716 887665 1 2 3 8 8 6 6 5 5 5 6 8 8 6 6 5 5 5 6 8 8 6 6 5 5 5 6 8 6 6 6 5 5 6 6 6 6	895 1.872 2.8667 4.8667 4.8667 6.867		05552149 0500000000000000000000000000000000000

STATION S2 I I UTILISATION INBI MARCA BCMP	U 1- U2	U1-U2/U1 I	NB DE CLI MARCA	ENTS BCMP	L1-L2	L1-L2/L1 I
105 105688 111 111 11188 11188 11188 11188 11188 11188 11188 11188	000000000	0.0000000000000000000000000000000000000	102537555 102537555	1058333333333333333333333333333333333333	00000000 00000000	06577-066 0948688 1117-11

RO	N 1 1 23 45 67	7 A	B 123456		B 1234567	-1234567- AT
i i i	1	TIU	I M	5 A B I		101
	RO		TICRO SSS		T C . 1	0000
54	A -	2	LA 7869900		LAI 1MMMMMM	
				Ü		
	-			E	TI	1777
	3 6		C	Ţ	00	
15	NH-355555		M-6899900	ŔĄ	NA 13333333	88890000
444-	3134	0 	707900	in S	8133333	-
				Iï		
	11		11	1	-	-:
				O IV	-	00000
000000000000000000000000000000000000000			2 0000000	=	2 00000000	0000000
)					-	
	ມ I		U 1		υ1 	
	-	_	-		-	
		-:	u 2	- 7		
100000			_	,	1000000	0100000
0950000	U1 - 096		11 10400000		0570000	00000001
1	- 1	_ <u>_</u>	- I		- 1	I
_	-	_			- 1	
	N B M A		NA 123456		A A	
1			K		R C	2000000000
00,000	14 37 00 COG		٠		EA 1455555	8544444
555			7			-
	L	_	L		L:	
	8		В		B	7234561
::-	-	_	C		-	
1818	3788888		S S S S S S S S S S S S S S S S S S S		SP 1455555	8544444
222					D	2376666
			1			
			-1		-1	1111111
						.00000000
0000000	-				_	0000000
1777777 1	_					122222
			L			
			1-		1 -	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					11111	_
	-	2	2			
555	0735666		000000000			0575432
7	-		0513			0402149
-		-				



ANNEXE III.2


Station PAPS avec temps de service corrélés

111111111111111111111111111111111111111		٥		:	
TA B 1234567690	N E 1 2345 6789 0	U (N N I		
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		1	A - 1234567890 -	A 61123456789	
10			-		
J	UN UN I		S	S	
T j			JT IN	N U	
LL 099000000	11 9900000000		Ī	S	
11 19190000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		īī		* 1
S #	S /			S	k s
	A T		A		*
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18 -		111111111111111111111111111111111111111	_	*
NV - 959 UCCCCCC	00. (0)		3 C	100	* *
P 099000000	9900000000		4	「大学」のいってってって	* *
191900000000	1900000000		P 0990000000		*
				190000000	* *
			-	. A	
11				Ū	* 2 *
		_		1	
		_		- (1 (
1000000000	2 - 10011011		1000000000001	2 - 0000000000	
-					* = *
U'		_	l	i .	* 1
-	1 -		11		* *
. U	1			_	*
		ے ۔		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* :
	/ -0109999999			2/	1 (
11 10000000000	1 6190000000	· n	100000000001	1 1 6007 107 107 1))
-	-	_	1 0000000000000000000000000000000000000		* :
			IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		* *
N 5	S		, S		* 1
BM			17 1734567		* *
9	000000000		MI		*
EL 8000000000000000000000000000000000000	EL-9011111111	_	EL 19999999999		* *
C -	700000000000000000000000000000000000000		100000000001	10700000011	* *
_ L _	L .	_	C I		
1 8 4 5 6 7 8 9	1!	-	. I		
NO	80		1 HB1 173456786	EB	
1 - M 1 9 00 00 00 00 00 00 00 00 00 00 00 00 0	丁※10~~~~~~~~	85			
SP - 99999999999999999999999999999999999	SP 90111111		- SP - 0999999999	T S F S C T T T T T T T T T T T T T T T T T T	
	3				
1					
1	-1		L		
		_	1 -		
10000000000	1022233333		100000000001	1 N 1 00000000001	
			1 10000000000		
L 1	L 1		L	L	
-			1	.1	
	-		- 1		
٠.	2				
1 -0000000				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
11 1000000000	1 6000000000000		11000000000000	L -45999999900	
- IHHIHHHHHHHH	I I I I I I I I I I I I I I I I I I I				
		*		- HILLIIIIIII	

STATION ST I I UTILISAT INBI SIMUL	TION U1-J2	1 - 1 ט / 2 ט - 1 ט 1	NB DE CLIENTS	L1-L2 L1-L2/L1 I
1 1	.091 .001 .099 .000 .100 .000 .100 .000 .100 .000 .100 .000 .100 .000 .100 .000	055 1 1 100 1 1 100 1 0000 1 0000 1 0000 1	091 091 110 108 112 111 113 111	001 1 8593 1 0002 1 8593 1 0002 1 7770 1 0002 1 7770 1 0002 1 7773 2 0003 2 6332 1 0003 2 6332 1
STALLON SZ I I UTILISAT INBI SIMUL	TION 01-02 BCMP	υ1-υ2/υ1 I	NE DE CLIENTS SIMUL BCMP	L1-L2 L1-L2/L1 I
11	909 - 001 999 - 0001 1000 - 000 1000 - 000	- 1101 II - 11000 II - 1000 II - 10000 II	90000000000000000000000000000000000000	-001 -110 1 -000 -000 1
	CORRELATION =	. ?		
TATION ST I UTILISAT NBI SIMUL	10N U1-U2 BCMP	U1-U2/U1 I	NO DE CLIENTS SIMUL BCMP	L1-L2 L1-L2/L1 I
9,06888888888888888888888888888888888888	23222222222222222222222222222222222222	000000044444 000000044444 000000000000	.089 .091 .105 .108 .109 .111 .110 .111 .111 .111 .111 .111 .111 .111	- 002 - 2 2507 1 1 - 0003 1 1 2 5 5 7 5 1 1 - 0000 1 1 - 0000 0 1 1 1 1 1 1 1 1
TATION 52	10N U1-U2	U1-U2/U1 I	NR DE CLIENTS	L1-L2 L1-L2/L1 I
NBI 1	BCMP	U1-U2/U1 I I I I I I I I I I I I I I I I I I I	NB DE CLIENTS 8 MUL 909 1.890 1.890 3.890 3.890 4.890 5.890 4.890 5.890 6.890 6.890 7.896 8.890 9.890 9.890	.002 .220 1 .000 .000 1 .000 .000 1 .000 .000 1 .000 .000
DEFICIENT DE	CORRELATION =	. 4		
I UTILISAT	10N U1-U2 BCMP	u1-u2/u1 I		L1-L2 L1-L2/L1 I
N B 11	91 - 000 000333333333333333333333333333333	MENUNCHANANA MENUNCHANANANANANANANANANANANANANANANANANANA	088 091 102 108 109 111 110 111 1110 111 1110 111 1111 111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TATION SZ I UTIEISAT NBI SIMUL	TOSI 111-112		NO DE CITENTA	
71 .912 .999 31 .999 41 1.000	10N P U1-U2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1	J1-U2/U1 I 	DE CLIEB CONTROL OF CO	L1-L2

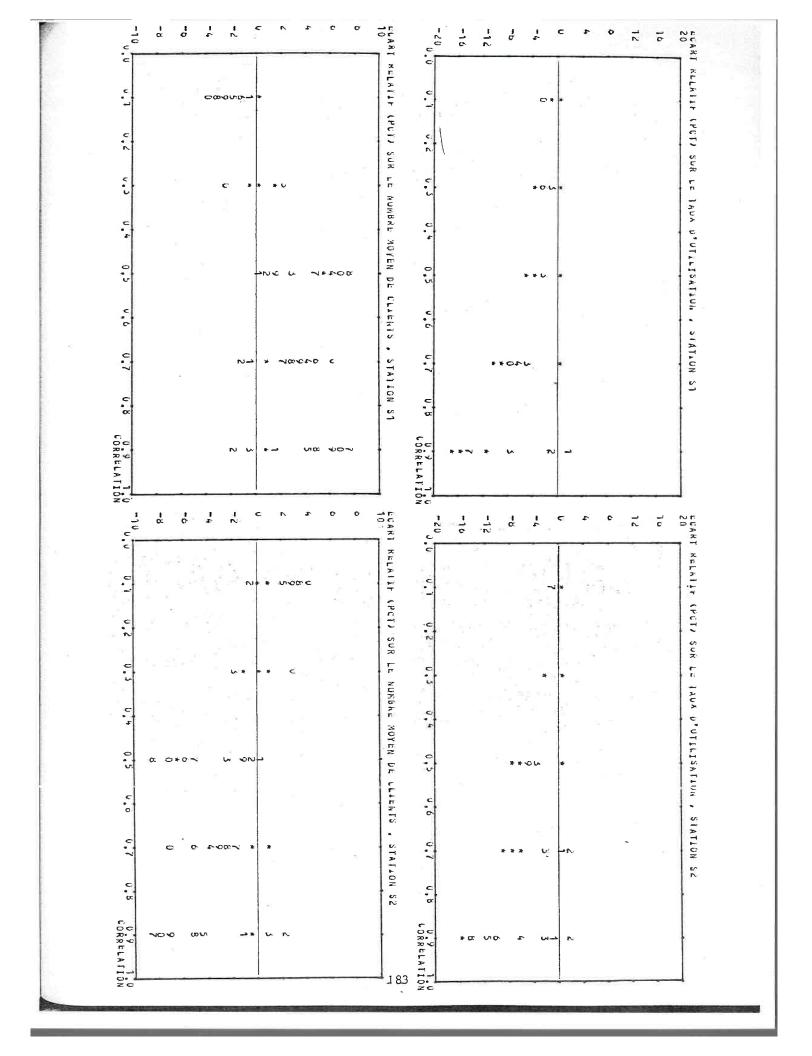
INBI SIA	TILISATI	.333 .001	299 I	334 .573 .767 .783	11-L2 L1-L2/L1 H .001 .294324 .002 4.4832028 .034 4.4832028 .092 12.55208 .1235 12.55208
456744	34632139019 32669999009	467 - 004 600011 44996 - 00001 4499 - 00001 4499 - 00001	745495000 78670650000 78670650000 7867064950000 7867064950000	1.0500 1.1.200 1.1.200 1.1.200	9 4 3 7 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	TILISATI MUL	ION U1-U2 BCMP		NB DE CLIENTS SIMUL BCMP	L1-L2 L1-L2/L1 I
1234567890 17234567890	6510131346 65257869999 68999999999	1 2 2 8 3 9 5 5 5 5 2 2 4 2 6 8 3 9 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1444444444 0455965450 12509510000 171111111111111111111111111111111	647600000000000000000000000000000000000	- 001 - 1500 - 1000 - 1772746 - 1772
COEFICI	FM) DE	CORRELATION =	• (
INBI SI	TILISAT	104 U1-U2	u1-u2/u1 I		L1-L2 L1-L2/L1
11234567890	33882977798 3444444444444444444444444444444444444	399 - 000 3109 3207 - 100 3207 - 100 3	94177733001 954177733001 958202444536 134545454545454	330 5549 7549 7500 1050 1050 1100 969 11250 9820 13300 995	90075 90075 90075 90077781674067 1407781674061 1107781674061 1107781674061 1107781674061 1107781674061 1107781674061 1107781674061
STATION	\$2	~~~~~~			L1-L2 L1-L2/L1
INBI SI	171LISAT	BCMP	.448 1		
17777777890	0478444615 76146788679	657 .0037 6573 - 0020 6573 - 0020 9988 - 00128 9988 - 00108 9999 - 00108	18050505773 481417487773 481417487773 1241747477773	0 0 1 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	478977780053 4788774780053 478877478056 4788774787 47887747878 4788774787 4788774787 4788774787 4788774787 4788774787 4788774878 4788774887 4788774887 4788774887 4788774887 4788774887 4788774887 4788774788 478877488 47887488 478877488 478877488 478877488 478877488 478877488 478877488 478877488 478877488 47887748 4
		CURKELATION =	.9		3
I I I	N ST UTTLISAT	TION U1-J2		NB DE CLIENTS SIMUL BCMP	L1-L2 L1-L2/L1
B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000000000000000000000000000000000000		9365762763 5439529999 9177887340 2267077674	37.30.00.00.00.00.00.00.00.00.00.00.00.00.	7 - 0112475774 00112475774 00112475774 00112475774 00112475774 00112475774 00112475774
STATIO	N SZ				
I I INBI 5	UTILISA IMUL	TION U1-U2	U1-U2/U1	NB DE CLIENTS	L1-L2 L1-L2/L1
1123451111111111111111111111111111111111	0380660389	657368 - 0000 657368 - 0000 657368 - 0000 657368 - 0000 779668999999999999999999999999999999999	1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	.660 1.430 1.446 1.430 2.2560 2.3160 1.3090 4.100 1.3910 4.100 1.4770 5.060 1.4770 5.060 1.5620 5.030 1.5620 5.030 1.5620 5.030 1.5620 5.030 1.5620 5.030 1.5620 5.030 1.5620 5.030	- 0.614949999999999999999999999999999999999

* SERVICE 1.000 * COEFICIENT DE CORRELATION = STATION ST U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 I SIMUL BCMP I SIMUL BCM STATION 52 COEFICIENT DE CORRELATION = L1-L2 L1-L2/L1 1 00850005363 0085004444 20435703924 11505703924 HILLHARIN STATION SZ U1-U2 U1-U2/U1 I NB DE CLIENTS L1-L2 L1-L2/L1 I I SIMUL BCMP UTILISATION SIMUL BCMP

90000000000 900776600000 1112223445

112233445

0013610824

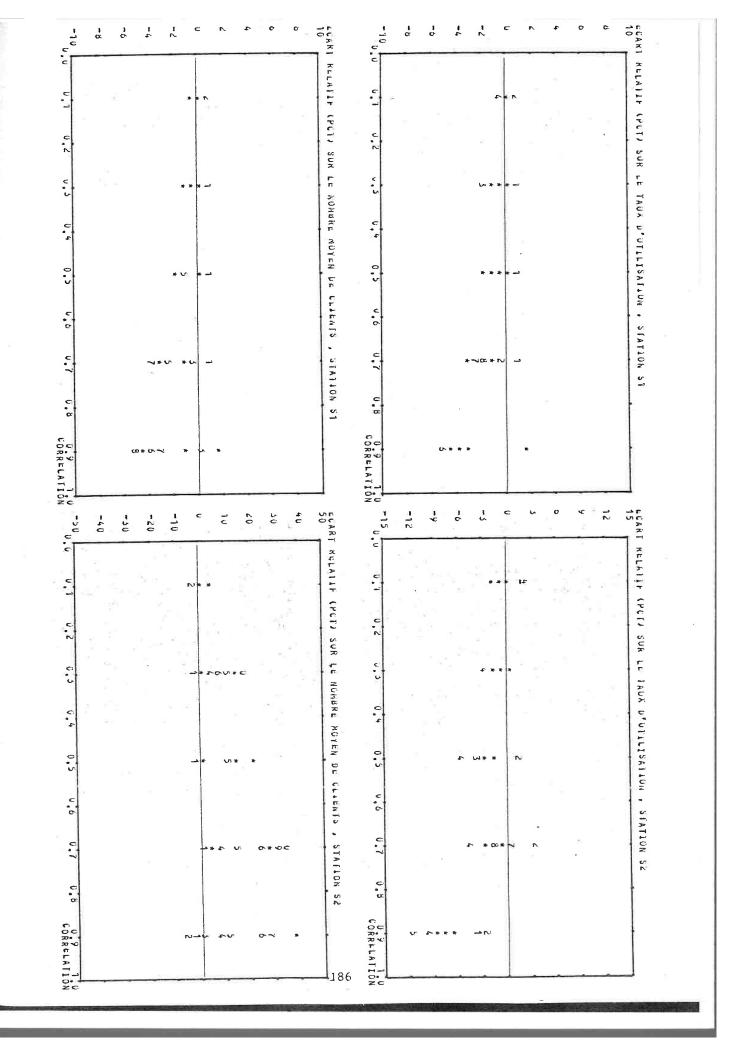

HAMMANAMAN

INBI

96377020471 46776888888

0700375909 5678888899

TAT										- :				-		7			-	- -	-					i i					- L			 L1	- i	- 2		1	-
NBI	ا 5] 	TIL	15	A I	50	N M	>		U 1	-			U1	-				- 1	[-	51	-			- L	8													-	
11		.50	1			31	57			. !	υú	1			•	65	96	1	-	1		21	100		1		50	0			.0	1	Q Q		;	:	20	9073	
21 31 41 51		7677799888	NO.		,	67.688 8899	0 0		-		000000000000000000000000000000000000000	08		-	3.	63	U9428575361		I I I	2	•	051617716	Ú		2		000	υ			1	35	ő		6		75153513	6 S	
51 51		27	55			. 6	57 75		-		04 04	2		-	5	10	53		I	3		17 67	OO		talla!	• 1	0 0 5 0	0			1	7	Ŏ		9	4	3 (603 632 933	
81						9	00		-		دُن دي	3		-	3.	062	55 34		I I	44		31 56	00		44		0 C 5 C	0				0	v			7.	3	93 16 67	
101		. R 7	6			. 9 (09			-	0.5	3			3 .	-	67	-	<u> </u>		•	54	0		-3	-	0 0					5 4				<u>-</u>	- 1		•
STAT	IUN	Si	_																											_	_								
I I		T+1	7 5	AT	11) iy		-	U 1	-	2 ل	2	'ע	1 -	UZ	1	U 1	-	 1	NB	Vi	D E		CL	IE	Ņ	TS		-	1	-1	. 2		L1	-	L 2	/	L1	•
		MOI			В	. M !	0 D			-	00	1			_				<u> </u>		-	49	9	-			5 (0			. (00	1		-		2	00	•
123451111		. 46	3			.57	0700375909				002	14		-	-377767	5	0092523561		Ī	1	•	4948383646	20							-		10	8		=	2:	7	0045800059	
1 41		.7	78		,	.000	33				0.5	5		-	7	0	55	,	I I I I I I	100		313	000		4		500	000000000		-	:	5	Ö		-	6.	30	83 07	
1 71 1 81		യത്ത്ത	19			8	75 89		-		35	1		-	2	3	36	}	I	la la la		33	Š		1		50	000		-		17	0		-	۶. 8.	4	01	
1101		. B	51			. 9	09	~-			045	8		-		8	16		I I	- 2		66	00		-		0 (0				34	ŏ-		-	Ż:	2	96	
					_							Ξ				,																							
LUEF	īL.	LEN	C 4	ع ل	Ľ	JA	KE	⊾ A	1 ,	ر ي	A)	=			٠	f																							
STAI											- :				-						-				Ţ		- ·				-						-		
INBI	5	INU	L	5 A I	В	CN	P					2	U 			_	บ'		I I					C L							-				1 -				
1 11			97		-	.5	07003750			:	00	3408525332			-	. 6	0038975950	*	İ			495051516	7			1:	50	000000000		:		000	300		-	1 3 417	500	01549665329)
1 21 31 1 5 6 7		• 7	10 52			. 8	50			:	000	48			6		5	3	I	-	2.	01	1 () 8 ()			2.	Š	00			:	01 08 02	000			3	5	164	
1 61		: 7 : 7	250			.05	57				000	ŽŽ		- 1	6	į	Ź	5	I I I		3.	3	50			3.	3	000				0825	8			4:	7	62	į
I 81		.00	17	i i		:9	00			-:	000	33		-1	000	. 1	5	3	I			163	000			4:	5	000				10 15 33	000			2.	2	37	,
1701		- <u>- B</u>	21.			. 9	09			- :					5	-	0	-		- :	-	-:			-	-	-				٠:		-				-		-
STAT	10:	V S	2				-		14																_														
INB	s	UTI	LI	SA	TIB	ON	۲		Ŋ,	1 -	ا ل	2	U	7 -	·u	2/	u	1	I	N S	BIM	U	L	CL	I	E N	T	S		L	-	L 2		L	1	La	2/	11	ì
11		.5	03				20				0	03							I -					-		. •	5	00				000	3		-		. 5	96	5
1 31		• 6	27			.78	50			-:	00	23			- 3		6	4	I		1	49	90			1.	50	000				01	00		44	4	6	71	į
123456		. 7	85	100		38	33			-:	0	48			6		976017958	Ś	I		1112233	48	8 č			3.	50	000				011	000		~	5	. 2	00	3
1 81		56777788888	2522			.00	0700375900			-:	000	3631877780		:	696899	. 2	0179585	2	I		3.	40.8	300000000000000000000000000000000000000			1223344	205	00000000000				10	000		-	4152237	5	99760631468	48
1701		8	25	<u>-</u>		. 9	09			:	Ö	80		_:	ģ		5	<u> </u>	Ī.	_	4	6	70		-	5.	Ó	ŏŏ		- :	:	33	Ö			7	0	66	5
LOEI	F . C	ı e kı	1	D €	· c	n s	RE	11	1 4	1:) id	=				Ç																							
					Ī		-								٠	•																							
STA				SA	 T Y	DA		-		1 -	in the	2		17	- 11	2	/11	 1	7					C 1		 E 1:	T	 s		1				 L	1-	- L	2 /	11	1
INB	Î - 3	IMU	-		8	C	P							_					• I ·	5	1	1 Ŭ	L			B (M	P -		_			-	L 		-	- 1	-	
1 1 2 3	I I	. 5	56			.56	007	,		- :	000	07			1	:	57	7	I		3	9	000) }		1:	5 Q	000			-:	000	19		-	-		3	1771
1 4		. 7	170				003	, S			000	63		*	11		57	6	Ĭ		2	06	10)		2	05	000				0:	100			4	. 47	9	85
1 5 7 8	Į	. 7	29				157	;	£.		. 1	28		=	17		35	9007	I		3	7	70)		3.	05	000				2	20			7	. 5	6	220
11054507000	Ī	• 56 • 66 • 77 • 77 • 77 • 77 • 77	72			000	00700375909)		- :	1	7123380388		1 2 1 1 1 1 1	16	3	8757657988	000	Ī		4.5	5940607288	000)		45	5.0	000000000000000000000000000000000000000				MAN	7900000000			166	. 7	9379166859	000
		-=-												_		-	-										-			-		-				-			_
STA	110	% _ S	2_			Ι,																					-			-						-			-
I	I I S	UTI	LI	S A	TI	ON	iP.		U	1.	- 0	2	U	11	U	2	/ U	1	1	N S	B	D	E	CI	- 1	B	M	SP		L	1 -	L	2 -	L	1-	·L	2/	'L'	1
INB			93	_		. 5	007)		-	00	07		-	- 1	•	42	0	TITLE		1	40	97	3	_	1	50	000		-		00	27		-	1	. 4	21	01
		- 4	75									~ ~	/ 1		- 5	•	Ьğ	1	į		1	. š	10	3		1	. 5	ññ				× 1	í c				- :	7 .	2
		. 67	7296				500)	Ç.	- ;	.0	52			-6		95	2	1		1.	. 9	90)		2.	ő	00			-:	Ö.	Į			-		0	۶
		. 657	724474			**************************************	5003)	9		00000	25885	,	-	10111		95656	2240	I		1222	9395	9000			2237	050	00000		į	-:	00100	10000		•	-4-8	*********	007	3210
1 2		. 6677777777777777777777777777777777777	72447577				07003755609		.0	111111	00000111	7812768776		1111	1126115566		2585658529	224859	INTITUTE		122334	4059392726	96390			223344	050505	00000000000				NANO TO	7000000000			4 857	**********	2660075442	321913



* SERVICE 2.500 ********** CDEFICIENT DE CORRELATION = STATION S1

I UTILISATION
INBI SIMUL BCMP
1 11 712 714
1 21 9588 964
1 51 9758 984
1 51 9758 989
1 81 7000 1000
1 101 1 000 LOEFICIENT DE CORRELATION = .5

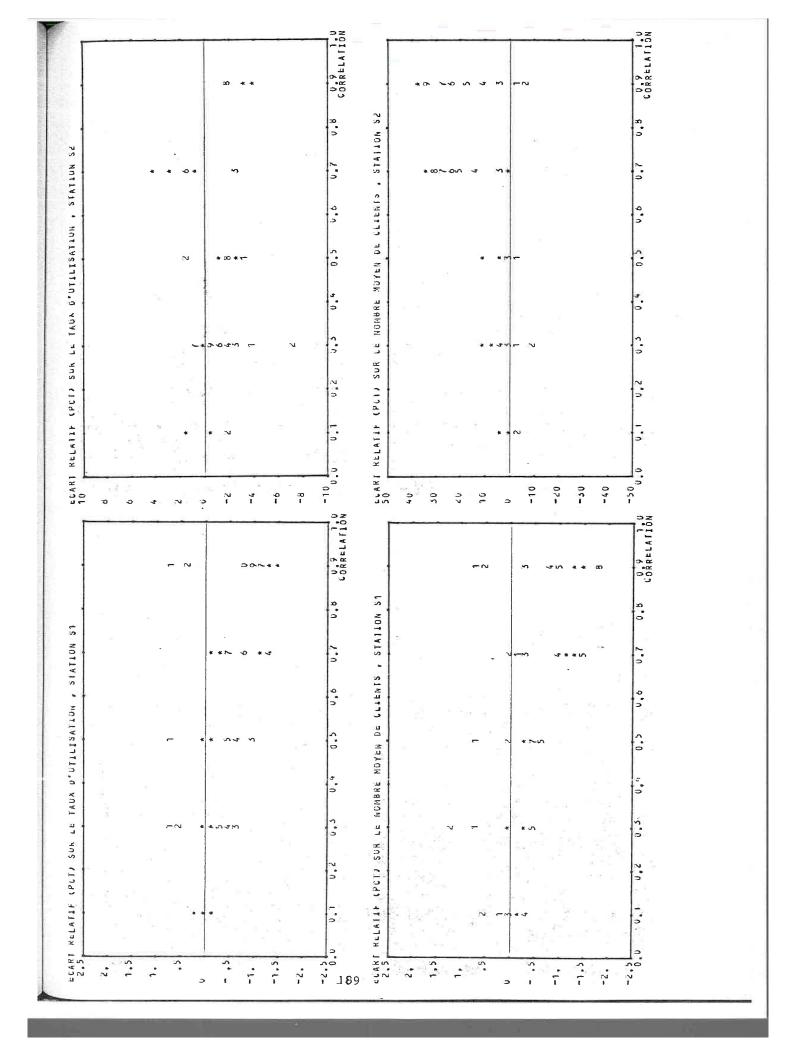
L1-L2 L1-L2/L1 I

					ī		5		117		Ī
	STI	N B	TA	578	TA	1234567	TA:	B 11234567890	91 01	B 112345578	AT
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ITTILLITIE	I:	ILLILILI	1		ïI		11	-	
\$		5	0		S			U	N	_	- '
Ī			N		IT	•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· ·	10 78 99 99 99 99	-
2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		17999999999	S	NEWNERMEN	110	71	5 1	L	_	1	7
746556777		1 2033546566	1 _	8774679175	I	7000156267	4	111370034	5	?	
5707472236	15		_		s			A		-	A
	A			50.00	A 1			T:			T
-	- T				T I B	1				:	0
В	10	C			300			233333344	1000	17000000	- 113
Zalalalalalalala	, iv	M 1789999990001	_	233333444	N HI	713799999		858999000	000	1	 .
858999000	P	P 1968999000		5594899000000000000000000000000000000000		4714489000	£	ŏ	-		
5744890000					_			-	-	-	-
-	_					9	_	U .	_		J 1
	_ ·		Ji		11		1			:	-
	1 -							· U	_	000	- U
000000000000000000000000000000000000000	 . U	100000000001		10000000000		0000000000		<u>-</u>	_	10011211000	2
11123432223	2	1134453433		21000000		3714333843	_		5	1	
1247428874		3			_	_		U		_	U
	Ū	_	- 11	-	Ų.			1	_	-	1
-	1	_	1				-		_		-1
	-			100000000000000000000000000000000000000	 - u	33332111	• - U	U - 1 350000 101	- ;	21211	J 2
4360N077	_ U		. 9				_	2	CONTRACTOR	1	. /
	2 /		_	0903712372		4735445845	7 !	75054065750	000	652	<u>۔</u> ن
0 (/ L	-	- 13	6774005056		1337325321	י ע	1 -9440284132	831	73891	1
0874997790	11	-	- · 1	0348911266		3739407307	 I	-	-	-	
_	_	-]		1	I	ILLILILITI	- I		I I I	I -	I I
ILILILITATION I	I I					-	-	to S		. -	N
	- 10	S -	_ N	-	NS		N E	-	6789	1 12345	P
1	B	1- 123456678-	_ B		I		3 4				-
E	_ M	M	- :		41	754371110	١υ	2456	1		D E
N45670800	ועם	7543311999		8885430969	E	1224560	L	EL 8651056122	70	900000000000000000000000000000000000000	-
7355048356		150000000000	_	30068726021	_	7000000000	- (_	-	C
500000000000000000000000000000000000000	c	-	_ _		_		2 1	L -	_	_	L
-	L		L	_	. 1			1	-		I
-	I	1,47,40,67,80		-	В	1234567891	В				N
1	ENG		N	:	C		Ç I	245666666	33		TX
249666666666666666666666666666666666666	T	M 175433333333	_ T	2456666666	M	7543333333	МF	SP 8 661456666	33		Sp
8665145666	Sp	11449644433	<u>.</u>	6	Ρ.	400000000000000000000000000000000000000)	622525146	000	43000000	
622525146	-	4000000000		3	-		-				-
					-	_		. ~			_
	L	-	L				- 1	-			1
	1	1111111	1.		1 -		-				- L
	- [0000012NNN	· _	DOOTTNAN	_	Ξ.			66		2
1123333	. 2	1204692789	- 2	01140643921	_			51510373	001	5	-
1358003644	-	110000000001		35162124			_	-	-		ł
	1		L		L	-	L	L 1			. 1
29	- 1		1		_			-		11111	-
TAMENON I	-			122233		1 1244	_	1	1	1	LZ
-	Lã	1133544	- 2		_		_	2/	7	SAMMOCO!	7
-	2/	152013555NY	7	0712177858	_	3!		7	54	19009906254	L'
0391482377	L 1	1809989862 1809989862		6505741926	.1	8667884072	.1	9682	5	50055568	 i
- 40	. -				- 1		I	HILIMANIANIANIA	Ī	ILLILILI	I I
I LILLILLILLIA I	- I I		-		İ						

COEFICIENT DE CORRELATION = .1

S	T	A	T	I	Ü	N	S 1	

- 1 /1 1									-
INBI	SIMUL	BCMP	U1-U2	1-02/ט	NB DE C	LIENTS BCMP	L1-L2	L1-L2/L1	I
1234557890	92700000 99900000 1100000	384900000 11000000000000000000000000000000	000000000000000000000000000000000000000	17/4000000	\$7777774444444444444444444444444444444	8376000 87765000 12.775500 4.775500 5.775500 9.775500	.00100 00100 00100 00100 00100	150207146943	HILLHILLIA


I 1 UTILISATION INBI SIMUL BCMP	⊎1- ⊍2	U1-U2/U1 I	NB DE CLIEN SIMUL BC	TS L1-L2	L1-L2/L1 I
1 11 166 167 1 21 1999 1 2000000000000000000000000000000000000	1413333333333 0000000000000000	2555888888 60078888888 11111111111111111111111111111	1.399.89.88 245.55.55.5 242.22.22.22	1001 67 -001 601 604 48 00000 604 485 604 485 604 604 604 604 604 604 604 604	04047575775 061476705775 604747470705 6047474707

CUEFICIENT DE CURRELATION = .3
STATION ST

I I UTTLISATION	U1-U2	u1-u2/u1 I	NB DE C	LIENTS BCMP	L1-L2	L1-L2/L1	III
338449000 87788 77900000 1 31	000000000000000000000000000000000000000	110000000 (20000000 (2000000000000000000	396553333222 1.7.7.7.7.7.7.7.2.2 2.5.6.7.8.9	8776555555555 123745677855	00000000000000000000000000000000000000	71000397949 71000439840	mannenne l
STATION S2				_			_

									-
INBI	UTILISA1 SIMUL	ION BCMP	U1-U2	U1-U2/U1	NB DE CL SIMUL	IENTS BCMP	L1-L2	L1-L2/L1	I
1234567890	1199090 1199090 1199090 1120090	11122222222222222222222222222222222222	63540N1010 01000000000000000000000000000000	7071000000 2074019000 7130004000 7130004000	1825193570 604576767570 1222222222	764480000000 1224455555555	0100217193570 0010020000000000000000000000000000000	7.4659351774 7.587704941 7.587704977	

11 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STAT	N - 1234567590	STAT		N - 1234567890	STAT	111111111111111111111111111111111111111	I I I	LDEF	B 1 1234567800	STAT	1 1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	INB
5			10		S								1 5
-	- *		N					- 1		•		7 7 7 7	-
	-	111 8999999999	S			5		S			~ _	8999999000	11
LL-6899999999		- 7	1 -		68		36868999997			L-6999999999		3687999000	L
-		-	1	D			•	S	U	-		100000000000000000000000000000000000000	S
A -		AT	4	-	A -	_	•	A	c		- A	_	Ā
B	-	111111		r	T I 8		11111	TI	C	- E	 T I		TI
•	- 1	•	_	_		-		000	٧	_	0		0
NM 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2		NM - 899990000000		KR	NM 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		189999999999	N MP	ĸĸ	3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N Mf	7990000	N M F
-		1 38490000001	0	-	-	_	M84000000	-	Ŀ	-	-	3849000000	, -
	-		7	Δ					LA		H		
-	-	-		1.7	U -			U	ı t		u		U
	4	1		-		•		1	1	-	1	111111	_
		-		אנ				- i	O n		- 1		
2 000000000000	-	*	_		000000000000000000000000000000000000000		00011100000	12	¥		jä	000000000000000000000000000000000000000	
-	~	1 643544NM081		=	11151538866	-	1 12131854331	-	=	5355233455	-	5207521000	?
							•			-		-	_
-	_	-	_	-	11			1			u 1		Jį
_	-	1 1 1 1 1 1 1	_	_	_			-		-	-		-
1 3333334244				<u>.</u> .	2 21332			U i		13122111222	+	-1	
7		244144						21	7	-	2		
0 12409996466	• =	. –			1 - 9179374441		2011100000	, u		05550550555	- ·	52075270000	
-			-	. -	-	-	079000000	1		637403314	. - J1	7766300000	11
								 I		- 1			
-				-		_		_		-	 I	-	
IB		123456789	-		S I			V E		5]	N E	4	N E
•	-	iri —	_		-		-	M					 - [iř
-	-	U (-	-	-	•	PU			D	6777777777	DU
EL-61530327448		190000000000			EL-6248123567	9	3751887533	E L		L 6346778777	E	3754232222	E
_	-	_	-		_		-	c				200000000000000000000000000000000000000	Ü
L]					L			L			L	-	L
8		B	-		I 6			I E			 I !		1 8
	. N	C	_	-	NC			IN C			= 1	23456786	3 0
-		M	=	-	TM 122222222	-	-	T		• =	√ Y	7	T
SP 6244555555		₽		_	50 1 62445555555	-	-	SP		0244555555	5	3765555555	S
7648000				Ľ.	7648000000	-	10000000000	-		-	_	MU0000000001	_
-	-	-	-		• •• ,			-					
_				-	L -	_		L		-	-		L
					-	_		1 -		ı	1	-	1
		-	-		. (000000000000000000000000000000000000000	·			-		- 1
-	-	2 101135804241	-		2 000036780112		0014778022	. 2					. 2
6192327448	- .			_	1135854546	_	10000000000	-		5542732675	-	5000000000	-
L 			_		L			L			L		L
-			-	-	-	_		1		-	1		1
11747635		- 1 - 1 - 1 - 1 - 1 - 1 - 1			1222233			~ 1		1			
-	· · · ·	-	_		-			. 2		3214981299	La		- 2
			-	. 2	_		1030421332	7		0166743470	27	5032534333	7
1 - 76792994857		1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		_ :	L 9108337793		2067939094	L 1		8611424249	L	P0663448401	Ē.
		_	-	-				- -		6435758071	 1	7047696949	1
		I I I I I I I I I I I I I I I I I I I	-		A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.		-]					

* SERVICE 10.000 *************************** CUEFICIENT DE CORRELATION = . 1 U1-U2 U1-U2/U1 I NB DE CLIENTS SCMP

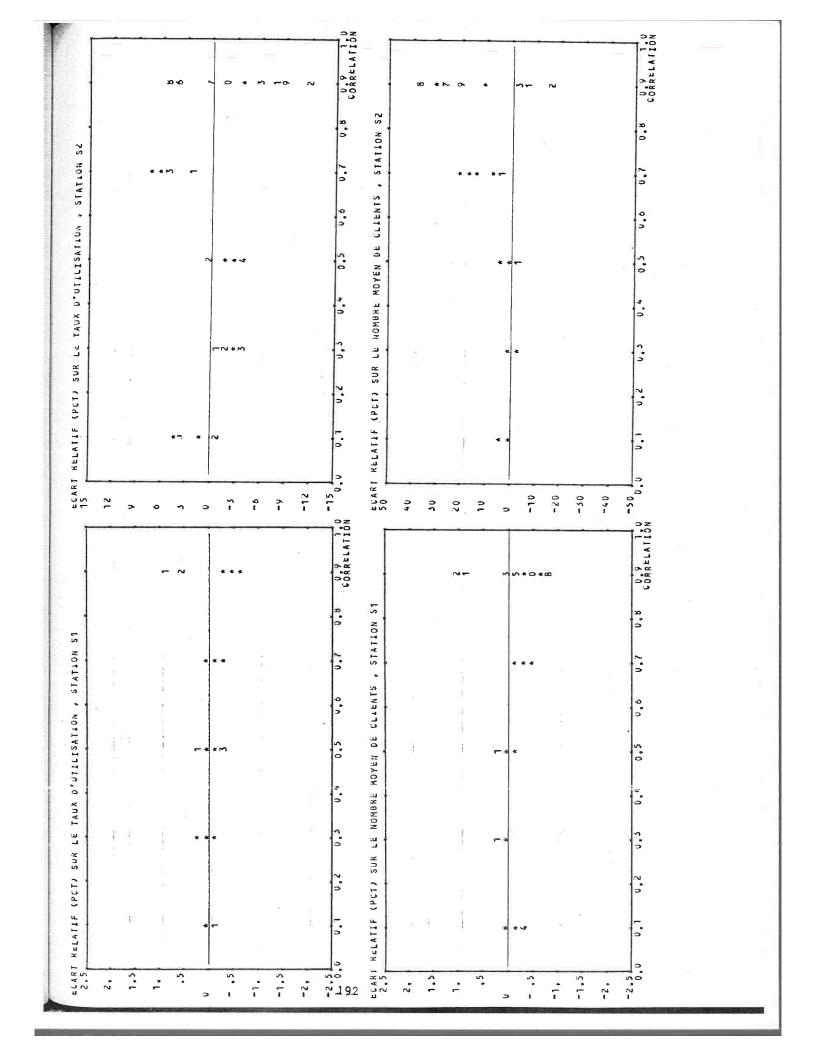
- 001 - 110 I 908 909
- 0000 9000 I 1.8990 1.8990
- 0000 9000 I 3.880 5.890
- 0000 9000 I 4.880 5.890
- 0000 9000 I 5.880 6.890
- 0000 9000 I 7.880 6.890
- 0000 9000 I 7.880 8.890
- 0000 9000 I 7.880 8.890
- 0000 9000 I 7.880 9.890 L1-L2 L1-L2/L1 I - 10005505737 - 11005505737 STATION SZ LUEFICIENT DE CORRELATION = U1-U2/U1 I NB DE CLIENTS I SIMUL BCMP

1 -001 -1.451 I .090 .091

2 -0004 -1.641 I .1007 .111

-0005 -3.2.666 I .109 .111

-0005 -3.2.666 I .109 .111


-0005 -3.2.868 I .110 .111

-0005 -3.2.8881 I .110 .111

-0005 -3.8881 I .111 .111

-0005 -3.8881 I .111 L1-L2 L1-L2/L1 1 17.895.093.00 4.67.7895.093.00 4.67.789.095.00 -11.3-11.11 1243M3MMM3M 11169673133 1446061899 1466634890 111303033333

STATION ST			
I I UTILISATION INBI SIMUL BCMP	U1-U2 - U1-U2/U1 I	NB DE CLIENTS SIMUL BCMP	L1-L2 L1-L2/L1 I
1 1		911 909 1.890 1.890 2.890 3.890 3.890 4.890 4.890 4.890 5.8890 6.890 7.8880 7.890	200 1 0000 0000 1 0000 0000 1 0000 1
999 1.0000 1.0000 1.0000 1.0000 1.0000		4.890 4.890 5.880 5.890 6.890 6.890	- 000
1 91 1.000 1.000	21111111111111111111111111111111111111	1.8990 4.88990 4.88990 7.88990 7.88990 7.88990 7.88990 7.88990 7.88990 7.88990 7.89990 7.89990 7.89990 7.89990 7.89990 7.89990	002 2000 1 0000 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1
1101 11000 11000			
STATION SZ	U1-U2 U1-U2/U1 I	NB DE CLIENTS SIMUL BCMP	L1-L2 L1-L2/L1 I
I I UTILISATION INBI SIMUL BCMP	002 -2.020 I	.089 .091	002 -2.020 1
11	017044981754887 0170498175488 0170498175488 0170498175488 0170498175488 0170498175488 0170498175488 0170498175488 0170498175488 0170498175488 017049817548 01704987548 0170498754 017	.089 .091 .109 .108 .111 .111 .112 .111 .114 .111 .115 .111 .115 .111 .115 .111	-002 -2 01 0001 -2 0207 00001 089324 00001 2 63788 00044 34478 00044 34478 00044 34478
29900000000000000000000000000000000000		1112 1111 1114 1111 1115 1111 1115 1111	3.478 I
1 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	003 -2.981 I	115 111	005 004 3.478 1
COEFICIENT DE CORREI			
STATION ST			
I I UTILISATION INBI SIMUL BEMP	U1-U2 U1-U2/U1 I	NB DE CLIENTS SIMUL BEMP	L1-L2 L1-L2/L1 I
i 1i .907 .909	002221 Î	.907 .909	11111111111111111111111111111111111111
907 999 999 1000000	- 002 - 0003 - 0004 - 0002 - 0001 - 0001 - 0001 - 0000 - 0000 - 0000	70000000000000000000000000000000000000	7.27.7.7.27.20.03 25.77.7.7.27.20.03 25.77.7.7.27.20.03 25.77.7.7.27.20.03 25.77.7.7.27.20.03 25.77.7.7.27.20.03 25.77.7.7.27.20.03 25.77.7.7.27.20.03 25.77.7.7.27.20.03 25.77.7.7.27.20.03 25.77.7.7.27.20.03 25.77.7.7.27.20.03 25.77.7.7.27.20.03 25.77.7.7.27.20.03 25.77.7.27.20.03 25.77.7.27.20.03 25.77.7.27.20.03 25.77.7.27.20.03 25.77.7.27.20.03 25.77.7.27.20.03 25.77.7.27.20.03 25.77.7.27.20.03 25.77.20.03 2
1 61	- 001 - 100 I	6.870 5.890 7.860 7.890 8.870 8.890	020 030 020 225 I
1101 1.000 1.000	000 000 1	9.870 9.890	-1020 -1203 I
STATION SZ			
	U1-U2 U1-U2/U1 I		11-L2 L1-L1 II II II II II II II II II II II II II
111 .093 .091 121 .1065 .1000 131 .1065 .1000	002 25507	.117 .108 .119 .111	823557254457 5925625454457 24562562561455 24562562561455 24562562561455 24562625625 245626625 245626625 2456266665 245626666666666
1 51 106 1000 1 51 106 1000 1 71 106 1000 1 71 106 1000	65566666666666666666666666666666666666	131	0220 15.267 I 0225 18.3615 I
11	.007 6.542 1 .006 5.660 1 .006 5.660 1	130 .111	
	_006 5.060 1	130 111 139 111 130 111	298990000000000000000000000000000000000
	.000	130 130 130 111 130 111	29 20 20 20 20 20 20 20 20 20 20 20 20 20
COEFICIENT DE CORRE		130 111	028 20 144 I 019 14 615 I
		131	L1-L2 L1-L2/L1 I
		I NB DE CLIENTS	L1-L2 L1-L2/L1 I
		I NB DE CLIENTS	L1-L2 L1-L2/L1 I
		I NB DE CLIENTS	L1-L2 L1-L2/L1 I
		I NB DE CLIENTS I SIMUL BCMP	
NBI SIMULISATION P 999000000000000000000000000000000000	U1-U2 U1-U2/U1 007 .764 0055 .3001 0066 .4004 0065 .5003 0066 .5003 0066 .5003 0066 .5003 0066 .5003	NB DE CLIENTS SIMUL BCMP 1 916 909 1 1.916 1.929 1 2.890 3.890 1 3.5860 3.890 1 4.8500 5.890 1 5.8560 5.890 1 7.8560 8.890 1 7.8660 8.890 1 7.8660 8.890	11-L2 L1-L2/L1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
NBI SIMULISATION P 999000000000000000000000000000000000	U1-U2 U1-U2/U1 007 .764 0055 .3001 0066 .4004 0065 .5003 0066 .5003 0066 .5003 0066 .5003 0066 .5003	NB DE CLIENTS SIMUL BCMP 1 916 909 1 1.916 1.929 1 2.890 3.890 1 3.5860 3.890 1 4.8500 5.890 1 5.8560 5.890 1 7.8560 8.890 1 7.8660 8.890 1 7.8660 8.890	11-L2 L1-L2/L1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
NBI SIMULISATION P 999000000000000000000000000000000000	U1-U2 U1-U2/U1 007 .764 0055 .3001 0066 .4004 0065 .5003 0066 .5003 0066 .5003 0066 .5003 0066 .5003	NB DE CLIENTS SIMUL BCMP 1 916 909 1 1.916 1.929 1 2.890 3.890 1 3.5860 3.890 1 4.8500 5.890 1 5.8560 5.890 1 7.8560 8.890 1 7.8660 8.890 1 7.8660 8.890	11-L2 L1-L2/L1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
NBI SIMULISATION P 999000000000000000000000000000000000	U1-U2 U1-U2/U1 007 .764 0055 .3001 0066 .4004 0065 .5003 0066 .5003 0066 .5003 0066 .5003 0066 .5003	NB DE CLIENTS SIMUL BCMP 1 916 909 1 1.916 1.929 1 2.890 3.890 1 3.5860 3.890 1 4.8500 5.890 1 5.8560 5.890 1 7.8560 8.890 1 7.8660 8.890 1 7.8660 8.890	11-L2 L1-L2/L1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
NBI SIMULISATION P 999000000000000000000000000000000000		NB DE CLIENTS SIMUL BCMP 1 916 909 1 1.916 1.929 1 2.890 3.890 1 3.5860 3.890 1 4.8500 5.890 1 5.8560 5.890 1 7.8560 8.890 1 7.8660 8.890 1 7.8660 8.890	11-L2 L1-L2/L1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

ANNEXE III.3

Modeles du système GCOS-64

III.3.1 - Modèle A

```
MUDELE A ....
    UNE FILE PAR PERIFRERIQUE,
    DONNEES BRUTES .
RESULUTION PAR CALCUL ANALYTIQUE BCMP .
  DECLAR/QUEUE CPU, DSYS, CK1, DK2, DK2, TP1, TP2, TF3, TF4, TP5;
CLASS C3, C1, C2, C4;
INTEGER K1, N2, N3, N4;
   UNITE CENTRALE ...
۵
/STATION/NAME=CPU;
                     NAME=CPU;

SCHED=LIFU.PREEMFT;

SERVICE(C1)=EXF(34.4,;SERVICE(C2)=EAP(8.8);

SERVICE(C3)=EXF(16.2);SERVICE(C4)=EXF(14.6);

1RANSIT(C1)=DSYS,16930.DK1,9997;

TRANSIT(C2)=DSYS,7735.DK4.32196.TP1.1U9.1P2.4987.TP3.159;

TRANSIT(C3)=DSYS,1320.DK2.4537.TP4.21807.TP5.21830;

TRANSIT(C4)=DSYS,1665.DK2.24462.DK3.16230;

INIT(C1)=N1;INIT(C2)=N2;INIT(C3)=N3;INIT(C4)=N4;
    DISQUES
à
7STAT LUN/NAME=DSYS:
SCHED=LIFD.PREEMP1;

SERVICE(C1)=EXP(20.0); SERVICE(C2)=EXP(13.8);

SERVICE(C3)=EXP(24.5); SERVICE(C4)=EXP(25.2);

TRANSIT=CPU;

STATION/NAME=DK1;

SERVICE=EXP(31.4); TRANSIT(C1)=CPU;
SERVICE=EXP(31.47.1KANS11(C1)=CPC)

/STATION/NAME=DK2;
SCHED=LIFO.PREEMPT;
SERVICE(C2)=EXF(18.4);SEKVICE(C4)=EXP(21.8);

/STATION/NAME=DK3;
SCHED=LIFO.PREEMPT;
SERVICE(C3)=EXF(21.0);SEKVICE(C4)=EXP(20.5);

TRANSIT(C3)=CPU;TRANSIT(C4)=CPU;
    BANDES ...
/STATION/NAME = TF4;
SERVILE=EXF(15.6,) RANSIT(03)=CPU;
/STATICH/NAML=TF5;
SERVICE=EXP(15.8); TRANSIT(03)=CPU;
/EXEC/BEGIN N1:=1; N2:=1; N5:=1; N4:=1;
                            COMPUTE:
```

Liv D ;

```
TOTAL NUMBER
  **** SUBLHALN
                                                                                                                                                                                    UF
                                                                                                                                                                                                   LUSTOMERS=
                                                                                                    TOTAL
                                                                                                                                         NUMBER
NUMBER
  *** SUBCHAIN
                                                                                                                                                                                   OF
                                                                                                                                                                                                    LUSTOMERS=
                                                                                          234
                                                                                                    TOTAL
                                                                                                                                                                                                     LUSTOMERS=
  ****SUELHAIN
                                                                                                                                          NUMBER
                                                                                                                                                                                    OF
                                                                                                                                                                                                                                                                                    KESFONSE
43.77
89.55
20.59
42.05
44.15
                                                                                                                                                                                                                                                                                                                                                                                                                         16.85
25.422
21.227
21.84
  AUUEUL CPU
                                                                             SERVALE
                                                                                                                                               BUSY
                                                                                                                                                                           PCT
                                                                                                                                                                                                                  CUST
                                                                                                                                                                                                                                                                                                                                                             THRUPUT
                                                                                                                                                                                                                                               I. B
                                                                                                                                               267911
*CLASS C1
*CLASS C2
*CLASS C4
*CLASS C4
                                                                            16.4.6.60
154.6.60
154.6.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
155.60
15
                                                                                                                                                                                                                 .7282
.77862
.5582
.6187
                                                                                                                                                                                                                                                                                                                                                        .165cE-01
.8696E-02
.2092E-01
.1451E-01
.6062E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 *
                                                                                                                                                                                                                                                                                    RESPONSE
30.04
21.93
16.16
31.79
                                                                                                                                                                                                                 CUST NB
.1348E-07
.1199
.5793E-01
                                                                                                                                                                                                                                                                                                                                                                                                                         2242.
161.0
263.1
1723.
376.9
                                                                             SERVICE
                                                                                                                                               BUSY PCT
 *QUEUE
                                       USYS
                                                                                                                                                                                                                                                                                                                                                              THRUPUT
                                                                            4.50000
4.0000
4.03.000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.000
                                                                                                                                               .1078E-07
.1093
.4941E-01
.1437E-01
                                                                                                                                                                                                                                                                                                                                                        .4400E-03
.5467E-02
.3581E-02
.5701E-03
.1006E-01
                                       1000
 *CLASS
*CLASS
*CLASS
*CLASS
                                                                                                                                                                                                                  . 2091
*QUEUE DKT
*CLASS C1
*GLOBAL
                                                                                                                                               .1014
.1014
                                                                                                                                                                                                                 CUST NE . 1014 . 1014
                                                                                                                                                                                                                                                                                                                                                        THRUPUT.
.3228E-02
.3228E-02
                                                                                                                                                                                                                                                                                     RESPONSE
                                                                                                                                                                                                                                                                                                                                                                                                                          278.3
278.3
                                                                            SERVILE
                                                                                                                                                                                                                                                                                     31.40
                                                                             31.40
                                                                                                                                              BUSY PCT
.2742
.1826
.4568
                                                                                                                                                                                                                                                                                    KESPONSE
22.58
29.25
24.98
                                                                            SERVICE
* GRENE DKS
                                                                                                                                                                                                                 CUST NE
                                                                                                                                                                                                                                                                                                                                                             THRUPUT
                                                                                                                                                                                                                                                                                                                                                                                                                               CYCLE
                                                                                                                                                                                                                .3366
.2450
.5815
                                                                                                                                                                                                                                                                                                                                                                                                                         44.51
90.14
60.93
*CLASS C2
*CLASS C4
*GLOBAL
                                                                            18.40
21.80
19.62
                                                                                                                                                                                                                                                                                                                                                       .1490E-01
.8576E-02
.2328E-01
                                                                           SERVILE
21.00
20.50
20.61
                                                                                                                                                                                                                CUST NB
.3612E-01
.1183
.1545
                                                                                                                                                                                                                                                                                                                                                                                                                        CYCLE
637.4
158.6
261.0
 *QUEUE DKS
                                                                                                                                               BUSY POT
                                                                                                                                                                                                                                                                                                                                                      THRUPU1
.1512E-02
.5559E-02
.7072E-02
                                                                                                                                                                                                                                                                                    RESPONSE
*CLASS C3
*CLASS C4
*GLOBAL
                                                                                                                                              .3176E-01
.1140
.1457
                                                                                                                                                                                                                                                                                    23.89
21.29
21.84
*QUEUE IP1
*CLASS CZ
*GLOBAL
                                                                                                                                                                                                                                                                                   RESPONSE
87.40
87.40
                                                                                                                                                                                                                                                                                                                                                                                                                         CYCLE *
.1973E+05*
                                                                             SERVICE
                                                                                                                                               BUSY PUT
                                                                                                                                                                                                                                                                                                                                                            THRUPUT
                                                                                                                                                                                                                                           Nb
                                                                                                                                                                                                                 CUST
                                                                           87.40
87.40
                                                                                                                                               4410E-02
4410E-02
                                                                                                                                                                                                                4410E-02
                                                                                                                                                                                                                                                                                                                                                            5046E-04
                                                                                                                                                                                                                                                                                                                                                        .5046E-04
                                                                                                                                                                                                                                                                                   RESPONSE
18.70
18.70
                                                                                                                                             6USY PCT
4317E-01
4317E-01
*GLDBAL 1P2
                                                                                                                                                                                                                                                                                                                                                      THRUPUT .2309E-04.2309E-02
                                                                            SERVICE
                                                                                                                                                                                                               CUST NB
.431/E-U1
.4317E-01
                                                                                                                                                                                                                                                                                                                                                                                                                        CYCLE
414.5
414.5
                                                                           18.70
                                                                                                                                              1663E-02
1663E-02
                                                                                                                                                                                                                                                                                   RESPONSE
22.60
22.60
                                                                                                                                                                                                                                                                                                                                                                                                                        LYCLE *
.1356E+05*
 *WUEUE TP3
                                                                           SERVICE
                                                                                                                                                                                                                                                                                                                                                            THRUPUT
                                                                                                                                                                                                                CUST
                                                                                                                                                                                                                                              NB
*CLASS C2
                                                                                                                                                                                                                1663E-02
1663E-02
                                                                           22.60
                                                                                                                                                                                                                                                                                                                                                       .7360E-04
 *QUEUE 1P4
                                                                                                                                              BUSY PLT
.1134
.1134
                                                                           SERVICE
                                                                                                                                                                                                                                                                                    RESPONSE
                                                                                                                                                                                                                                                                                                                                                                                                                              CYCLE
                                                                                                                                                                                                                CUST
                                                                                                                                                                                                                                                                                                                                                            THRUPUT
*CLASS C3
                                                                                                                                                                                                                                                                                    15.60
                                                                           15.60
                                                                                                                                                                                                                :1134
                                                                                                                                                                                                                                                                                                                                                      .7269E-02
                                                                                                                                                                                                                                                                                                                                                                                                                        122.0
*WULUE IPS
                                                                           SERVICE
                                                                                                                                              BUSY PCT
                                                                                                                                                                                                                                                                                    RESPONSE
                                                                                                                                                                                                                                                                                                                                                                                                                               CYCLE
                                                                                                                                                                                                                CUST NB
                                                                                                                                                                                                                                                                                                                                                            THRUPUT
                                                                                                                                             .1150
*LLASS L3
                                                                                                                                                                                                                                                                                    15.00
                                                                                                                                                                                                                                                                                                                                                      .7276E-02
                                                                           15.80
                                                                                                                                                                                                                .175U
                                                                                                                                                                                                                                                                                                                                                                                                                         141.0
*GLOBAL
                                                                           15.80
                                                                                                                                                                                                                 .1150
                                                                                                                                                                                                                                                                                    15.80
                                                                                                                                                                                                                                                                                                                                                                                                                         121.6
```

III.3.2 - Modèle 1, avec transitions entre périphériques

```
MUDELE A-BIS ...
                 PERIPHERIQUES ,
TRANSITIONS PRISES EN COMPTE ,
DONNEES BRUTES
RESOLUTION PAR ANALYSE BCMP .
   /DECLAR/QUEUE CPU.DSY3.DK1.DK2.DK>,TP1.TP2.TP3.TP4.TP5;
CLASS C11.C12.C21.C22.C23.C24.C25.C31.C32.C33.C54.C41.C42.C43;
INTEGER N;
** TATION/NAME=CPU; SCHED=PS;

SERVICE(C21)=EXP(8.6);
SERVICE(C22)=EXP(8.6);
SERVICE(C221)=EXP(8.6);
SERVICE(C221)=EXP(8.6);
SERVICE(C223)=EXP(8.6);
SERVICE(C233)=EXP(8.6);
SERVICE(C233)=EXP(8.6);
SERVICE(C233)=EXP(10.2);
SERVICE(C333)=EXP(10.2);
SERVICE(C333)=EXP(10.2);
SERVICE(C333)=EXP(10.2);
SERVICE(C333)=EXP(10.2);
SERVICE(C333)=EXP(10.2);
SERVICE(C333)=EXP(10.2);
SERVICE(C331)=EXP(10.2);
SERVICE(C331)=EXP(10.2);
SERVICE(C331)=EXP(11.2);
SERVICE(C331)=EXP(11.2);
SERVICE(C331)=EXP(11.2);
SERVICE(C331)=DSYS,15007,DK2.227422.TP1.80,TP2.2470.TP3.4;
SERVICE(C221)=DSYS.30072.DK2.227422.TP1.80,TP2.2470.TP3.4;
SERVICE(C221)=DSYS.30072.DK2.227422.TP1.80,TP2.2470.TP3.4;
SERVICE(C221)=DSYS.30072.DK2.227422.TP1.80,TP2.2470.TP3.4;
SERVICE(C221)=DSYS.30072.DK2.227422.TP1.80,TP2.2470.TP3.4;
SERVICE(C221)=DSYS.30072.DK2.2469.TP2.541;
TRANSITT(C221)=DSYS.30072.DK2.2469.TP2.541;
TRANSITT(C231)=DSYS.81.DK3.440.DF4.467.TP3.3;
TRANSITT(C334)=DSYS.81.DK3.440.DF4.3135;
TRANSITT(C334)=DSYS.30.DK3.7925.TP4.3135;
TRANSITT(C44)=DSYS.30.DK2.829.DK3.7926;
TRANSITT(C443)=DSYS.30.DK2.829.DK3.7926;
   /STATIUN/NAME=CPU; SCHED=PS;
   8
/STATION/NAME=DSYS;SCHED=PS;
/STATION/NAME=DSYS;

SERVICE(C11)=EXP(20.0);SERVICE(C22)=EXPP(13.8);

SERVICE(C11)=EXPP(213.8);SERVICE(C224)=EXPP(13.8);

SERVICE(C233)=EXXPP(13.8);SERVICE(C324)=EXPP(225.2);

SERVICE(C331)=EXXPP(13.8);SERVICE(C342)=EXPP(225.2);

SERVICE(C331)=EXXPP(224.5);SERVICE(C427.2);

SERVICE(C331)=EXXPP(224.5);SERVICE(C217.2);

SERVICE(C341)=EXXPP(225.2);

SERVICE(C341)=EXXPP(225.2);

TRANSIT(C121)=CPPU(C211);TRANSIT(C231)=CPPU(C311);

TRANSIT(C224)=CPPU(C311);TRANSIT(C332)=CPPU(C311);

TRANSIT(C234)=CPPU(C311);TRANSIT(C332)=CPPU(C311);

TRANSIT(C234)=CPPU(C311);TRANSIT(C441)=CPPU;

TRANSIT(C11)=CPPU;TRANSIT(C441)=CPPU;

TRANSIT(C11)=CPPU;TRANSIT(C441)=CPPU;

TRANSIT(C332)=CPPU;TRANSIT(C441)=CPPU;

TRANSIT(C331)=CPPU;TRANSIT(C441)=CPPU;
  & /STATION/NAME=DK1;SCHED=P5;
  SERVICE(C11) = EXP(31.4); SERVICE(C12) = EXP(31.4); TRANSIT(C11) = CPU(C12);
```

```
TRANSIT(C12)=CPU;
 & /STATION/NAME=DK2;SCHED=P3;
/STATION/NAME=DK2; SCHED=P3;

SERVICE(C21)=EXP(18.4); SERVICE(C22)=EXP(10.4);

SERVICE(C23)=EXP(18.4); SERVICE(C24)=EXP(10.4);

SERVICE(C25)=EXP(18.4); SERVICE(C42)=EXP(21.6);

SERVICE(C41)=EXP(21.8);

IRANSIT(C21)=CPU(C22); TRANSIT(C23)=CPU(C22);

TRANSIT(C24)=CPU(C22); TRANSIT(C25)=CPU(C22);

TRANSIT(C24)=CPU(C42); TRANSIT(C43)=CPU(C42);

TRANSIT(C21)=CPU(C42); TRANSIT(C43)=CPU(C42);

TRANSIT(C22)=CPU; TRANSIT(C42)=CPU;
 7STATION/NAME=DK3;SCHED=PS;
SERVICE(C31) = EXP(21.); SERVICE(C32) = EXP(21.); SERVICE(C331) = EXP(21.); SERVICE(C34) = EXP(21.); SERVICE(C42) = EXP(21.); SERVICE(C42) = EXP(20.5); SERVICE(C42) = EXP(20.5); SERVICE(C431) = EXP(20.5); TRANSIT(C31) = CPU(C32); TRANSIT(C34) = CPU(C32); TRANSIT(C41) = CPU(C43); TRANSIT(C42) = CPU(C43); TRANSIT(C32) = CPU; TRANSIT(C32) = CPU; TRANSIT(C32) = CPU;
 %STATION/NAME=TPT;SERVICE=EXP(67.4);
TRANSIT(C21)=CPU(C23);TRANSYT(C22)=CPU(C23);
TRANSIT(C23)=CPU;
 %STATION/NAME=TP2;SERVICE=EXP(18./);
TRANSIT(C21)=CPU(C24);TRANSIT(C22)=CPU(C24);
TRANSIT(C23)=CPU(C24);
TRANSIT(C24)=CPU;
 //station/name=tp3;service=exp(22.0);
transit(c21)=cpu(c25);transit(c22)=cpu(c25);
transit(c25)=cpu;
 %
/STATION/NAME=FP4; SERVICE=EXP(T5.0);
/RANSIT(C31)=CPU(C33); TRANSIT(C32)=CPU(C33),
/RANSIT(C34)=CPU(C33); TRANSIT(C33)=CPU;
 /STATION/NAME=TPD;SERVICE=EXP(15.8);
TRANSIT(c31)=cPU(c34);TRANSIT(c32)=cPU(c34);
TRANSIT(c33)=cPU(c34);TRANSIT(c34)=cPU;
 &
/compute/init(c11)=n;Init(c21)=n;init(c31)=n;init(c41)=n;
 &
/EXEC/BEGIN
                    N:=1;
COMPUTE
END;
```

```
1
      *** SUBLHAIN
                                                                                                                1 TOTAL NUMBER OF
                                                                                                                                                                                                                                                        CUSTOMERS=
      *** SUBCHAIN
                                                                                                                2 TUTAL VUMBER OF
                                                                                                                                                                                                                                                        CUSTOMERS=
                                                                                                                5
                                                                                                                                                                           NUMBER
                                                                                                                                                                                                                                 0 F
                                                                                                                                                                                                                                                        CUSTUMERS=
                                                                                                                                                                                                                                                                                                                                                            1
      *** SUBCHAIN
                                                                                                                              TOTAL
                                                                                                               4 TOTAL
                                                                                                                                                                                                                                 OF
                                                                                                                                                                                                                                                         SUSTUMERS=
                                                                                                                                                                            NUMBER
      ***SUBCHAIN
                                                                                                                                                                                                                                                                     RESPONSE
                                           SERVICE
                                                                                                                                                                                    BUSY
                                                                                                                                                                                                                     PCT
                                                                                                                                                                                                                                                                                                                                                                                                                                              TH422894681029771562

1533140404322233221

1542289468102971EEEE

15234040602977775662

15234040810777775662

15234040810777775662
                                                                                                                                                                                                                                                                                                                                                                                                                                                        THRUPUT
    .WUEUE
                                                                                                                                                                                                                                                                                                                                                          5599999977777775
559555577777775
99666663333322224
                                                                                               CLASS
     CLASS
     CLASS
   *
   CLASS
  CLASS
CLASS
    +GLDBA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  TH95650181759279279
                                                                                                                                                                                                                                                                                                                                                                                                                                                      THRUPUT
                                                                                                                                                                                   T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011

T 1011
                                                                                                                                                                                                                                                                    RESPONSE
    RUEJE
                                                 DSYS
                                                                                               SERVICE
                                                                                                                                                                                    BUSY PUT
                                                                                                                                                                                                                                                                       CUST
 22241111333333332
                                               1212345123
                                                                                               54060 ± + 0 5 6 * * + 0 5 6 6 7 7 * * + 0 5 6 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 6 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 
   CLASS
CLASS
                                                 34123
CCCC
   *CLASS
  CLASS
 GLDBAL
                                                                                               SERVICE
31.40
31.40
31.40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CYCLE
1783.
342.1
278.4
                                                                                                                                                                                                                                                                                                                                                            RESPONSE
                                            DK1
011
012
                                                                                                                                                                                                                                                                     .1731E-01
.8406E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                        THRUPUT
  AQUEUE
                                                                                                                                                                                    BUSY PCT
                                                                                                                                                                                   .1731E-01
.8406E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                               .5512E-02
.2677E-02
.3228E-02
                                                                                                                                                                                                                                                                                                                                                            31.40
  *CLASS
*CLASS
*GLOBAL
                                                                                                                                                                                                                                                                                                                                                          TH597942455221
-9127944552221
-91279445522221
-91279445522221
                                                                                                                                                                                  6 USY PCT

177366 E - 031

239852E - 031

1212166 E - 03

1212164 E - 01

14567
                                                                                                                                                                                                                                                                     QUEUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CYCLE
                                                 X122345123
X222222444
D00000000
                                                                                                 SERVICE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  *CLASS
                                                                                                188.44
                                                                                                18.4000
 CLASS
CLASS.
                                                                                                                                                                                                                                                                                                                                                              24.98
                                                                                                                                                                                                                                                                         . 5314
                                                                                                                                                                                                                                                                                                                                                                                                                                                 .2328E-01
   *GLOBAL
                                                                                                  19.62
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CYCLE
.3612E+05
848.2
5647.
                                                                                                                                                                                   BUSY PUT
.5810E-03
.2408E-01
.3703E-02
                                                                                                                                                                                                                                                                                                                                                           RESPONSE
23.89
23.89
23.89
                                                                                                                                                                                                                                                                                                                                                                                                                                                THRUPUT .2767E-04 .1147E-02 .1763E-03
  MARRIE
                                                 0 K 3
C 3 3
C 3 3
C 3 3
                                                                                                                                                                                                                                                                      CUST NB
.66082-03
.2739E-01
.4212E-02
                                                                                                 BERVICE
*CLASS
*CLASS
                                                                                                 21.00
```

```
.3395E-02
.1066E-03
.5320E-01
                                                                                              .3861 = -02
.1107 = -03
.6043 = -01
.5773 = -01
                                                                                                                             23.39
21.29
21.29
                                  20.50
                                                                                                                                                           .1677E-05
.5199E-05
.2839E-02
                                                                                                                                                                                         6152. *
.1923:+U6*
330.9 *
347.4 *
 LLASS
                  034
 CLASS
CLASS
                C41
C42
C43
 *GLJBAL
                                   20.51
                                                                 . 1457
                                                                                               . 1544
                                                                                                                             21.84
                                                                                                                                                            .7009E-02
                                                                                                                                                                                          261.1
                                  SERVICE
                                                                                                                                                           THRUPUT .6480E-05.3704E-04.6944E-05.
                                                                                                                                                                                         CYCLE **
.1542E+05*
.2691E+05*
.1439E+06*
.1973E+05*
 QUEUE
                  177
                                                                 BUSY POT
                                                                                              CUST
                                                                                                           NB
                                                                                                                             RESPONSE
                                                                                              .5663E-03
.3237E-02
.6069E-03
.4410E-02
                                                                                                                            87.40
87.40
87.40
                                  87.40
87.40
87.40
87.40
                                                                .5063E-03
.3237E-03
CLASS C21
 *GLD5AL
                                                                 .4410E-02
                                                                                                                                                            .5046E-04
                                                                BUSY PCT
.17798E-01
.21387E-05
.46881E-01
                                                                                              NB 17798E-01
121357E-01
186581E-01
14317E-01
                                                                                                                                                                                         1075 8
1075 8
8555 8
•22160 £+07
3414 • 5
                                                                                                                             RESPONSE
 .dd≘d∈
                  TP2
                                  SERVICE
                                                                                                                                                              THRUPUT
                                                                                                                             18.70
18.70
18.70
18.70
CLASS
CLASS
CLASS
                 22224
                                  18.70
18.70
18.70
18.70
                                                                                                                                                           .9141E-03
.1144E-02
.4630E-06
.2503E-03
.2308E-02
                                                                                                                                                                                                                  *
*GLOBAL
QUEUE
CLASS
CLASS
               TP3
C21
C22
C25
                                  SERVICE
22.60
22.60
22.60
22.60
                                                                BUSY PCT
.4185E-04
.1570E-02
.5232E-04
.1664E-02
                                                                                              CUST NB
.4185E-04
.1570E-02
.5232E-04
.1664E-02
                                                                                                                                                           THRUPUT

•1852E-05

•6945E-04

•2315E-05

•7361E-04
                                                                                                                                                                                         RESPONSE
                                                                                                                             22.60
22.60
22.60
22.60
*GLOBAL
                                                                BUSY PCT
.1560E-04
.2428E-02
.2600E-04
                                                                                              CUST NB
.1560E-04
.2428E-02
.2600E-04
.1109
.1134
                                                                                                                                                                                         CYCLE
.1000E+07
6409.0E+06
125.0
*NUEUE
                                  SERVICE
                                                                                                                                                             THRUPUT
                 TP4
                                                                                                                             RESPONSE
                 C31
C334
                                                                                                                             15.60
15.60
15.60
15.60
                                                                                                                                                           .1000E-05
.1557E-03
.1667E-05
.7110E-02
.7269E-02
                                  15.60
15.60
15.60
15.60
                                                                                                                                                                                                                  *
CLASS
*CLASS
*CLASS
A B C L D *
                                                                                                                                                                                                          +06*
                                                                 .1134
SERVICE
15.880
155.880
155.80
155.80
                                                                                                                                                                                         1000 E+ 07
5449
125 - 3
121 - 6
                                                                                              CUST N8
.15891E-02
.112890
.5793E-04
                                                                                                                             RESPONSE
                 TP5
                                                                 BUSY POT
                                                                                                                                                              THRUPUT
                                                                1580E-04
.2891E-02
.1120
.5793E-04
                                                                                                                                                           1000E-03
1830E-03
7089E-05
3667E-05
                 C312334
                                                                                                                            1555550
                                                                                                                                                                                                                  ×
```

III.3.3 - Modèle B

```
MODELE B ...
        CUNTRULEURS DISQUES ET BANDES
       DONNEES BRUIES
RESOLUTION PAR
 8.00
                                                      METHODE ANALYTIQUE BOMP .
 ZOECLARZQUEUZ CPU, MSC. MTC.
                           CLASS C1.C11.C12.C23.C24.C25,
C2.C21.C22.C23.C34.C25,
C3.C31.C32.C33.C34.
C4.C41,C42.C43;
REAL T1.T2.T3.T4;
       UNITE CENTRALE
 ŝ
%/STATION/NAME=CPU; SCHED=P5;

SERVICE(C1)=EXP(T1);

SERVICE(C2)=EXP(T2);

SERVICE(C2)=EXP(T3);

TRANSIT(C1)=MSC(C1),16930,MSC(C12),9997;

TRANSIT(C2)=MSC(C21),7735,MSC(C22),32196,

MTC(C23),109,MTC(C24),4987,MTL(L25),159;

TRANSIT(C3)=MSC(C31),1320,MSC(C32),4537;

MTC(C33),21807,MTC(L34),21830;

TRANSIT(C4)=MSC(C41),1665,MSC(C+2),16236,MSL(C45),24462;
 à
       CONTROLEUR DISQUES ...
 à
%
/STATION/NAME = MSC; SCHLD = PS;
/STATION/NAME = MSC; SCHLD = PS;
SERVICE(C11) = EXP(20.0); TRANSIT(C21) = CPU(C22);
SERVICE(C12) = EXP(31.4); TRANSIT(C221) = CPU(C231);
SERVICE(C222) = EEXP(113.4); TRANSIT(C231) = CPU(C231);
SERVICE(C222) = EEXP(24.5); TRANSIT(C331) = CPU(C331);
SERVICE(C331) = EXP(24.5); TRANSIT(C443);
SERVICE(C442) = EXP(25.5); TRANSIT(C443);
SERVICE(C443) = EXP(25.5); TRANSIT(C443);
SERVICE(C443) = EXP(21.5); TRANSIT(C443);
SERVICE(C443) = EXP(21.5); TRANSIT(C443);
SERVICE(C443) = EXP(21.5); TRANSIT(C443);
       CONTROLEUR BANDES
 STATION/NAME=MTC; SCHED=PS;
                              SERVICE(C23) = EXP(87.4); TRANSIT(C23) = CPU(C2); SERVICE(C24) = EXP(18.7); TRANSIT(C24) = CPU(C2); SERVICE(C25) = EXP(18.6); TRANSIT(C25) = CPU(C2); SERVICE(C33) = EXP(15.6); TRANSIT(C33) = CPU(C3); SERVICE(C34) = EXP(15.8); TRANSIT(C34) = CPU(C3);
 /COMPUTE/INITICT/=1;INIT(C2)=1;INIT(C3)=1;INIT(C4)=1;
 /EXEC/BEGIN
T1:=34.4;T2:=8.8;T3:=16.2;T4:=14.6;
                     COMPUTE:
                     END:
```

```
**** 5 J & U H M L IV
                                               TUTAL
                                                               NUMBER
                                                                                   UF
                                                                                           LUSTOMERS=
 NIAHO8U2****
NIAHO8U2****
NIAHO8U2****
                                                               NUMBER
NUMBER
NUMBER
                                                                                           CUSTOMERS=
CUSTOMERS=
CUSTOMERS=
                                              JATOT
LATOT
LATOT
                                                                                   SPE
                                          3
                                                                                                                                1
                                                                                                                                1
*
                                                                                                CUST NB

.6077

.4268

.6291

.4821

2.145
                                                                                                                               RESPONSE
82.91
24.56
36.40
39.14
39.51
                                                                                                                                                              THRUPUT 21
-737528E-01
-17238E-01
-17230E-01
                                                                  3JSY PCT
.2519
.1529
.2800
.1798
                                                                                                                                                                                             532.44
532.44
532.44
                                    SERVICE
                                   34.800
38.600
115.92
                                                                                                                                                                                                                      \star
                                                                   .0046
                                                                                                                                                                                             34.15
                                                                                                                                                                                             12342521796
 *QUEUE
                   450
                                    SERVICE
                                                                  BUSY PCT
                                                                                                 CUST No
                                                                                                                                RESPONSE
                                                                                                                                                                 THRUPUT
08168143162
9 236544279
8 4965669021
                                                                                                                                                              *
*QUESSS CCC
*CLASSS CCC
*CLASSS A
*CLASSS A
*CLASSS A
*CLASSS A
*CLASSS A
*CLASSS A
*CLASS A
*CLASS A
*CLASS A
*CLASS A
*CLASS A
*CLASS A
                                                                                                                               R11.75
113.75
123.51
167.51
                                                                                                CUST NB
.46555E-01
.45555E-02
.17263
.1260
.3022
                                                                                                                                                              THRUPUT

41918E-024

1918E-024

16114E-02

17614E-02

17625E-01
                                                                                                                                                                                             CYCLE
22375E+05
497377
115.0
114.7
98.38
                                   SERVICE
37.40
182.600
125.600
156.23
                                                                  BUSY PCT
                                                                  355653E-02
.35586E-02
.11888
.12004
                                                                                                                                                                                                                      *
```

III.3.4 - Modèle C

```
*** CUEUEING RETRURK ANALISER ( UT-04-78 ) ***
                       MODELE C ....
8
   SCUB-SYSTEME CANAL-DISQUES, LANAUX LOGIQUES BARDES .
   DONNEES BRUTES
TRAITE EN METHODE ANALYTIQUE BUMP .
プロビにLAR/QUEUE CFU,DSYS,DK1,DK2,DK2,TP1,TP2,1F2,1F4,TP4,TP5,MSC,
              CLASS C3.C1.C2.C4:
INTEGER N1.N2.N3.N4;
% /STATION/NAME=CPU;
SCHED=LIFO.PREEMPT;
SERVICE(C1)=EXP(34.4);SERVICE(C2)=EXP(8.8);
SERVICE(C3)=EXP(16.2);SERVICE(C4)=EXP(14.6);
TRANSIT(C1)=DSYS,16930.DK1,9997;
TRANSIT(C2)=DSYS,7735,DK2,32196,TP1,109,TP2,4987,TP3.159;
TRANSIT(C2)=DSYS,13ZO.DK3,4537,TP4,21807,TP5,21830;
TRANSIT(C4)=DSYS,1665,DK2,24462,DK3,16236;
INIT(C1)=N1;INIT(C2)=N2;INIT(C3)=N3;INIT(C4)=N4;
SCHED=LIFO.PREEMPT;

SERVICE(C1)=EXP(5.6); SERVICE(C2)=EXP(2.6);

SERVICE(C3)=EXP(8.9); SERVICE(C4)=EXP(10.5);

TRANSIT=MSC;

/STATION/NAME=DAT;

SERVICE(EXP(10.5); SERVICE(C4)=EXP(10.5);
/STATION/NAME=DSTS:
/STATIUN/NAME=MSC;
                SCHED=L1FO.PREEMPT;
SERVICE(C1)=EXP(14.4);SERVICE(C2)=EXP(11.2);
SERVICE(C3)=EXP(15.6);SERVICE(C4)=EXP(14.7);
TRANSIT=CPU;
/STATION/NAME=TPT:
SERVICE=EXP(87.4); TRANSIT(C2)=CPU;
/STATION/NAME=TP2;
                SERVICE=EXP(18.7); TRANSI1(C2)=CPU;
/STATION/NAME=TP3;
SERVICE=EXP(ZZ.6);TRANS11(CZ)=CPU;
/STATION/NAME=TP4;
SERVICE=EXP(75.6); TRANSIT(C3)=CPU; /STATION/NAME=TP5;
                SERVICE=EXP(75.8);TRANS17(C3)=CPU;
/EXEC/BEGIN N1:=1; N2:=1; N3:=1; N4:=1;
                      COMPUTE:
```

END:

```
**** SLBCHAIN
                                   TUTAL NUMBER OF
                                                                   LUSTUMERS=
 *** SUBCHAIN

*** SUBCHAIN

*** SUBCHAIN

*** ***
                                                NUMBER
NUMBER
NUMBER
                                                                   CUSTOMERS=
CUSTOMERS=
                                   TOTAL
TOTAL
TOTAL
                                                              OFF
                                23
                                                  5 Y 2 6 2 2 7 7 7 7 3 7 1 2 9 3 0 1 2 9 3 1
                                                                                               RESPONSE
41.15
88.77
41.43
  * GUEUC
              LPU
                           PEKATLE
                                                                         CUST NB
                                                                                                                         THRUPUT
 LYCLE
                           16.4000
1384
15.79
                                                                         .6913
.71389
.5760
             03102
                                                                                                                      1680E-01
1800E-01
180013E-01
13892E-01
                                                                                                                                             1359444
              C
 *QUEUE US
*CLASS C3
*CLASS C1
*CLASS C2
*CLASS C4
*CLASS C4
                                                 BUSY FL1
.39881E-01
.38841E-02
.89643E-01
                           SERVICE
             USYS
C3
C1
                                                                                                                      THREAT 4455
                                                                                                                                             191.4
287.4
1817.3
                                                                         CUST NB
                                                                                                RESPONSE
                           .4208E-02
.2909E-01
.9387E-02
.6049E-02
.4873E-01
                                                                                               9.393
-724
11.121
                                                                                                                                   -02
                                                 BUSY PCT
.5093E-01
.5093E-01
 *WUEUE DKT
                           SERVICE
                                                                        CUST NB
.5093E-01
.5093E-01
                                                                                               KESPONSE
17.00
17.00
                                                                                                                      THRUPUT .2996E-02.2996E-02
                                                                                                                                               LYCLL
 *GLOBAL
                           17.00
17.00
                                                                                                                                             316.8
                                                                                                                                              316.8
 * WUEUE UKZ
                           SERVICE
                                                  BUSY
                                                            FCT
                                                                         CUST
                                                                                                RESPONSE
                                                                        CUST NB
.1105
.6430E-01
                                                                                                                        THRUFUT
                                                                                   Is b
                                                                                                                                               LYLLL
                                                 .1033
.5705E-01
 *CLASS C2
                           7.200
7.100
7.164
                                                                                               7.705
8.002
7.812
                                                                                                                                             62.00
116.5
81.55
                                                                                                                      .1435E-01
.8035E-02
.2238E-01
 *GLOBAL
*QUEUE DKS
*ULASS U3
*CLASS C4
                                                 BUSY FET
.83161-62
.3093E-01
.3925E-01
                          SERVICE
                                                                        CUST NB
.8621E-62
.3124E-61
.3986E-01
                                                                                                                      THRUPU1
.154UE-02
.5333E-02
.6873E-02
                                                                                                                                             LYCLE
043.8
181.7
285.2
                                                                                               RESPONSE
                          5.400
                                                                                               5.578
5.857
5.799
                          5.800
 *GLCEAL
*QUEUE TP1
*CLASS C2
*GLOBAL
                          SERVICE
87.40
87.40
                                                 BUSY FCT
.4245E-02
.4245E-02
                                                                        CUST NB
.4245E-02
.4245E-02
                                                                                                                      THRUPU1 .4857E-04.4857E-04
                                                                                                                                             .2050E+05*
.2050E+05*
                                                                                               RESPONSE
                                                                                               87.40
87.40
*QUEUE 1P2
*GLOBAL
                          SERVICE
18.70
18.70
                                                 6057 PCT
.4155E-01
.4155E-01
                                                                        CUST NB
.4155E-01
.4155E-01
                                                                                               RESPONSE
                                                                                                                        THRUPUT
                                                                                                                                            431.3
431.3
                                                                                               18.70
                                                                                                                      .2222E-02
*QUEUE TP3
*CLASS C2
*GLOBAL
                          SERVICE
                                                 5USY
                                                                        CUST NB
.1601E-02
.1601E-02
                                                           PUT
                                                                                               RESPONSE
                                                                                                                                            CYCLE
1409E+05
                                                                                                                        THRUPUT
                                                 1601E-02
                          22.60
                                                                                               55.60
                                                                                                                      -7085E-04
*QUEUE 1P4
*CLASS C3
*GLOBAL
                          SERVICE
                                                 1155
1155
                                                                       CUST NB
.1155
.1155
                                                                                                                                            CYCLE
119.5
119.5
                                                           PCT
                                                                                               RESPONSE
                                                                                                                        THRUPUT
                          15.60
                                                                                               15.60
                                                                                                                      .7402E-02
                                                                                                                                                               *
*QUEUE TPS
                          SERVICE
                                                 BUSY PCT
                                                                        CUST NB
                                                                                               RESPONSE
                                                                                                                        THRUPUT
                                                                                                                                              CYCLE
                                                                                                                                                               *
*LLASS L3
                                                 :1171
                                                                                                                                            119.2
                          75.80
                                                                       1171
                                                                                              15.80
                                                                                                                     .7410E-02
*GLUBAL
                          15.80
*QUEUL
                                                                                              RESPONSE
31.84
25.62
17.64
23.11
21.68
                                                                                                                     THR800E-001
-19079E-001
-13977E-01
             MSL
                          SERVICE
                                                 BUSY
                                                                       CUST
                                                          POT
                                                                                 NB
CYCLE
                                                .3101E-01
.1162
.1993
                                                                       .6330E-01
.2068
.3139
.3216
                          15.60
                                                                                                                                            475.576
49344
7
                         14.40
11.20
14.70
13.19
                                                 2046
```

III.3.5 - Modèle D

```
*** GUEUEING NEINURK ANALISER ( UT-04-78 , ***
                                   MODELE G ....
یخ
      SOUS-SYSTEME CANAL-DISQUES, CONTROLEUR DE BANCES .
 2000
      DONNEES BRUTES
TRAITE PAR METHODE ANALYTIQUE BUMP
DECLAR/QUEUE CPU, DSYS, DK1, DK2, DK3, MSC, MTU;
CLASS C3, C1, C2, C4, C21, C22, C23, C31, C52;
INTEGER N1, N2, N3, N4;
 /STATION/NAME=CPU;
                        NAME=(PU;

SCHED=LIFU.PREEMPT;

SERVICE(C1)=EAP(34.4); SERVICE(C2)=EAP(8.6);

SERVICE(C3)=EAP(16.2); SERVICE(C4)=EXP(14.6);

TRANSIT(C1)=DSYS.16930.DK1,9997;

TRANSIT(C2)=DSYS.16930.DK1,9997;

TRANSIT(C2)=DSYS.17735.DK2.32196;

TRANSIT(C3)=DSYS.1320.DK3.4537.

MTC(C21).109.MTC(C22).4907.MTC(C23).159;

MTC(C31).218U7,MTC(C32).2183U;

TRANSIT(C4)=DSYS.1665.DK2.24462.DK3.16236;

INIT(C1)=N1; INIT(C2)=N2; INIT(C3)=N3; INIT(C4)=N4;
/STATICN/NAME=DSYS:
 /STATIUN/NAME = MSC:
                        NAME - MSC,

SCHED=LIFO, PREEMPT;

SERVICE(C1) = EXF(14.4); SERVICE(C2) = EXF(11.2);

SERVICE(C3) = EXF(15.6); SERVICE(C4) = EXP(14.7);

TRANSIT(C1) = CPU; TRANSIT(C2) = CPU;

TRANSIT(C3) = CPU; TRANSIT(C4) = CPU;
 /STATION/NAME=NTC:
                        NAME=NIC;
SCHED=LIFU.PREEMPT;
SERVICE(C21)=EXP(87.4);TKANSIT(C21)=CPU(C2);
SERVICE(C22)=EXP(18.7);TRANSIT(C22)=CPU(C2);
SERVICE(C23)=EXP(18.6);TKANSIT(C23)=CPU(C2);
SERVICE(C31)=EXP(15.6);TKANSIT(C31)=CPU(C3);
SERVICE(C32)=EXP(15.8);TRANSIT(C32)=CPU(C3);
  & / EXEC/BEGIN N1:=1:N2:=1;N5:=1;N4:=1;
```

COMPUTE:

ENDI

```
CUSTOMERS=
                                                                                                                                                                                                                                                                                                                                                             7
                                                                                                                                TUTAL NUMBER OF
    ****SUCLHAIN
                                                                                                                                                                                                                                                        LUSTOMERS=
LUSTOMERS=
LUSTOMERS=
                                                                                                                                TOTAL
TOTAL
TOTAL
                                                                                                                                                                             NUMBER
                                                                                                                                                                                                                                  OF
   *** SUBCHAIN
  ****SUBCHAIN
                                                                                                                                                                            NUMBER
NUMBER
                                                                                                                                                                                                                                  OF
    ****
RESPONSE
41.15
87.59
25.77
41.12
42.37
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  19.13
35.43
24.53
20.31
25.90
                                                                                                                                                                                      BUSY
                                                    CPU
                                                                                                   SERVICE
                                                                                                                                                                                                                           PC1
                                                                                                                                                                                                                                                                          CUST No
                                                                                                                                                                                      .2796
.2796
.1750
.277
                                                                                                                                                                                                                                                                        .682203
.71253
.5748
                                                                                                                                                                                                                                                                                                                                                                                                                                               .1659E-01
.8128E-01
.1986E-01
.1400E-01
                                                                                                  16.2000
16.4000
134.8000
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.6000
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.6000
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.6000
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.6000
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.6000
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.6000
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.6000
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.600
14.6000
14.600
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.6000
14.60
                                                   3124
                                                                                                   15.83
                                                                                                   SERVICE
                                                                                                                                                                                      BUSY PLT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CYCLE
                                                                                                                                                                                                                                                                          CUST
                                                                                                                                                                                                                                                                                                                                                             RESPONSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                        THRUPUI
   * WULUE
                                                    DSYS
                                                                                                                                                                                                                                                                                                              NB
                                                                                                                                                                                                                                                                        .4159E-01
.29270E-02
.9277E-02
.4880E-01
                                                                                                                                                                                      .3938E-02
.3938E-01
.8849E-02
.5778E-02
                                                                                                                                                                                                                                                                                                                                                            95.724
11.06
5.13
                                                                                                                                                                                                                                                                                                                                                                                                                                                .4424E-022
.5111E-022
.5403E-03
.5507E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  219106.6
 *CLASS C1
*CLASS C2
*CLASS C4
                                                                                                  6920000
6920000
10.963
   *GLOEAL
                                                                                                                                                                                     BUSY FCT
.5130E-01
.5130E-01
                                                                                                  SERVICE
17.00
17.00
                                                                                                                                                                                                                                                                        CUST NB
.5130E-01
.5130E-01
                                                                                                                                                                                                                                                                                                                                                             RESPONSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                        THRUPLI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           LYCLE
   * WUEUE DKT
  *CLASS CT
                                                                                                                                                                                                                                                                                                                                                             17.00
17.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                  .3018E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    314.4
*WUEUE DKC
*CLASS C2
*CLASS C4
*GLOBAL
                                                                                                                                                                                     BUSY PCT
.1020
.5740E-01
                                                                                                                                                                                                                                                                        CUST NB
.1092
.6456F-01
                                                                                                                                                                                                                                                                                                                                                            RESPONSE
7.705
7.985
7.807
                                                                                                   SERVICE
                                                                                                                                                                                                                                                                                                                                                                                                                                                         THRUPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CYCLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  62.89
115.7
82.08
                                                                                                  7.200
7.100
7.164
                                                                                                                                                                                                                                                                                                                                                                                                                                                .1417E-01
.8085E-02
.2225E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  052.5
180.5
                                                                                                                                                                                     ь USY РСТ
.8211E-02
.3112E-01
.3933E-01
                                                                                                                                                                                                                                                                        .8513E-U2
.3142E-01
                                                                                                                                                                                                                                                                                                                                                             RESPONSE
  *QUEUE DK3
                                                                                                                                                                                                                                                                                                                                                                                                                                                        THRUPUI
                                                                                                   SERVICE
                                                                                                                                                                                                                                                                                                                                                            5.598
5.856
5.799
                                                                                                                                                                                                                                                                                                                                                                                                                                                .1521E-04
.5366E-02
 *CLASS
                                                                                                   5.400
                                               C 3
                                                                                                   5.712
                                                                                                                                                                                                                                                                          .3994E-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                 .6887E-02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   284.6
  *GLOBAL
                                                                                                                                                                                                                                                                       CUST NB
.6251E-01
.2074
.3100
.3222
                                                                                                                                                                                                                                                                                                                                                            RESPONSE
31.84
25.52
17.64
                                                                                                                                                                                                                                                                                                                                                                                                                                              THEOPUT 22

19125761

19125761

1141661

141661
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  477.6
97.51
39.28
                                                                                                                                                                                     BUSY PLT
.3062E-01
.1170
.1968
 *QUEUE
                                                                                                   SERVILE
                                                MSC
*CLLASSS *CLLASSS *CLLASSS *CLLASSS *CLLASSS *CLLASSS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLLASS *CLlass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass *Cllass 
                                                                                                  15.60
14.20
14.20
143.21
                                                    C 3
                                                    Ç1
Ç2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  48.41
                                                                                                                                                                                      2058
                                                                                                                                                                                                                                                                                                                                                             23.02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CYCLE
.2074£+1
432.0
.1426£+1
120.4
120.0
100.3
                                                                                                  SERVICE
87.40
18.70
22.600
15.83
16.3
                                                                                                                                                                                    BUSY PCT 4.41903E-01.41903E-02.11460.4156
  *QUEUE
                                                    MTC
                                                                                                                                                                                                                                                                                                                                                                                                                                                        THRUPUT
                                                                                                                                                                                                                                                                          CUST NB
                                                                                                                                                                                                                                                                                                                                                             RESPONSE
                                                                                                                                                                                                                                                                                                                                                                                                                                               * CLLASS
* CLLASS
* CLLASS
* CLLASS
* CLLASS
                                                                                                                                                                                                                                                                        .531045
.5320053
.122005
.13015
                                                                                                                                                                                                                                                                                                                                                             110.765
                                                   222312
                                                                                                                                                                                                                                                                                                                                                             16.66
```

III.3.6 - Modèle C, modélisation d'un sécond canal-disques

```
MODELE C ....
     SOUS-SYSTEME CANAL-DISQUES, CANAUX LOGIQUES BANDES
   DONNEES CORRIGEES
TRAITE PAR LA METHODE ANALYTIQUE BCMP
MODELISATION D'UN CANAL DISQUE SUPPLEMENTAIRE .
& DECLAR/QUEUE CPU, DSYS, DK1. DK2. DK2. TP1. TP2. TP3. TP4. TP5. MSC1. MSC2;
                 CLASS C3, C1, C2, C4;
INTEGER N1, N2, N3, N4;
 /STATION/NAME=CPU;
                   NAME=CPU;

SCHED=LIFD.PREEMPT;

SERVICE(C1)=EXP(27.5); SERVICE(C2)=EXP(8.4);

SERVICE(C3)=EXP(15.9); SERVICE(C4)=EXP(14.3);

TRANSIT(C1)=DSYS,23670.DK1.9997;

TRANSIT(C2)=DSYS,10175.DK2,32196.TP1.109.TP2.498/,TP3.159;

TRANSIT(C3)=DSYS,2230.DK3,4537,TP4.21807.TP5.21830;

TRANSIT(C4)=DSYS,2575.DK2,24462.DK3.16236;

INIT(C1)=N1;INIT(C2)=N2;INIT(C3)=N3;INIT(C4)=N4;
/STATION/NAME=DSYS;
/STATION/NAME=MSC1;
                   SCHED=LIFO.PREEMPT;
SERVICE(C1)=EXP(14.4); SERVICE(C2)=EAP(11.2);
                   SERVICE(C3)=EXP(15.6); SERVICE(C4)=EXP(14.7); TRANSIT=CPU;
 /STATION/NAME=MSC2; COPY=MSC1;
& /STATION/NAME=TPT;
/STATION/NAME=TP1;
/STATION/NAME=TP2;
/STATION/NAME=TP2;
/STATION/NAME=TP2;
/STATION/NAME=TP2;
/STATION/NAME=TP4;
/STATION/NAME=TP4;
/STATION/NAME=TP4;
/STATION/NAME=TP4;
/STATION/NAME=TP4;
/STATION/NAME=TP5;
SERVICE=EXP(15.6); TRANSIT(C3)=CPU;
/STATION/NAME=TP5;
SERVICE=EXP(15.8); TRANSIT(C3)=CPU;
/EXEC/BEGIN N1:=1:N2:=1:N5:=1:N4:=1;
                          COMPUTE;
N4:=0;COMPUTE;
N1:=0;COMPUTE;
N2:=0;COMPUTE;
             END:
```

***	**	SU SU SU	BBB	H	AIAI	N	* *	1234*	1	00	TAAAA*	L	NNN	W N	BE	R		F	*0000		T	0	E	R	S = S = S =	* *	1111	*	* *	***	k *	* *	**	*	* *	*	* *	r *	* *	* *	* *	* *	* :	* *	* *	**	
**********	AAAA	5555		P 3	J		S12811	,	90)	E		1	022129	S7787	1759	PC	Ť		•	7756	501305	9595		В		4724	111409	.74	2	1 S	E		•	16925	500	9383	-	T 0 1 2 1 0 0 1		1222		U66034	8 4 1		*****	
* * C C C C C C C C C C C C C C C C C C	LAALA	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		\$3124	Y 5		\$85215	9	00)	Ε			6	65	09713	F .	T00000	21121		7411	NOMO	20119	E	6-0000	1	9912	E	6807	72096	N S	Ē			7648	4	7 E 8 E 8 E	-	T 000000		1121	37090	1	2		****	
* Q ! * C ! * G	ĹΑ	SS	() K	7		517		00)	E			. 5	0 2	4	Ε.	T00	1	(. 5 . 5	500	24	ZHE	B 0	7	1	7 7	. (000	N S	Ē			29	1 R	5 8	-	0 2		3	21				* * *	•
* G C C C C C C C C C C C C C C C C C C	LA	55	(K 2 4	2		S 7 7 7 7 7	. 2	0 ()	Ě			1	0:	5 2 8		· 0	1		. 1		53) E	B - 0	1	7	RE.	73	I 5	N S	E			9 4	R994	3 8	=	01001		5 1 1 7	9 9 9 7	5	7 7 5		* * * *	•
* Q * C * C * C * G	LA	S S	(K 3	3		5555	4	0 ()	E			8	2	1	E-	1000	1	•	8	5	8 4 0 3	F	8 -00 -00	1	2	RE .	6	0386	Ŋ S	E		•	15	3	91	-	T0000		6	48	C .	15 25 2		* * * *	r
* Q * C G	L A	SS	([P	1		588	FR	V:40	C C	£			. 4	4.	17	E .	T 00	2		. 4	4	17	MMZ	B U	2	8	RE 37 37	. 4	000	N S	Ε			5 (1 R 2 5	4 8	-	T 04			19	7	DE OE	+ ()5*)5*	*
****	UE	UÉ		P 2	2		1 5	ER B.	70)	E		i	3 4 4	533	144	P (100	7		1.	マ	5 4	NEE	= 0	1	-	RE 18	. 7	000	N 5	E			T 1	1 R 3 1	2 I	E -	0 4) }	4	1 3	C	L E 800		* *	*
* Q * C * G	I A	SS	3	[5 [b	3	2.0	2	E R	61	0	E			3 U	5 6	7 5 6 5 6	BE.	0-0	2		- 1	6	46	NEE	B 0	2	ě	RE 22 22	. (N S	E			7	1 R 3 7 3 7	21	E -	04	,		C Y	55	L E E	+(05 ±	ŀ
* # Q C G				1 P	4		517	ER 5.	V 66		E			. 1 . 1	51	7	PI	T		(1	1	146	N	B		•	15	51	000	N S	E		•	7:7:	1 R	11	P U	T	5	1	20		L E 4 4		* * *	k
* 4 C G	LA	SS	3	TP C3	5		5	E R	V 0000	1 C	E			.1	1	53	PI	T			_ 1	1	63	N S	В			RE 15	\$1	30	N S	E		•	T ! 7 : 7 :	1 R 3 5 3 5	0188	P -	100	2	1	20	0.			* *	k
****	LALLA	1.5.5	00000	953124 CC4			1	E54143	61	n	E			. 1	7	7960059	E	- 0 - 0	1		0 291	567440	T 1 3 1 2 6	NEE	8 - () 1) 1		R29487	S !	066815	N S	ĒΕ		_	9	R472314	01	F -	100000		- 8	57	6.4	L94322		***	***
* Q * C C * C	0 6 6 6	15 15 15 15 15 15 15 15 15 15 15 15 15 1	00000	M S 3 C 1 C C 4			511111	E 5 4 1 4 3	V64272	1000001				B 177113	571110	Y 9600599	PEE	C T 0			C 2551	567440	T 13126	N E E	B - (1		RE29487	\$	P 0 6 6 8 9 5 3 9 5 3 5 5	N S				T14972	HR 147 197 197 197 197 197 197 197 197 197 19	000355		00000		81011	58712	3 . 4			*	***
**	* 1	* * :	* *	* *	* 1	* * 1	* *	* *	*	* *	* 1	. * :	* *	* *	*	* *	*	* *	* *	*	* *	*	* 1	* *	* 1	* *	*	* *	*	* *	* *	* *	* * :	* *	*	* *	*	* *	*	* *	* *	* 1	* *	* *	*	* * *	k

BIBLIOGRAPHIE

[BaB77]	BRULL S.C.	"CUSTOMER CLASSES AND CLOSED NETWORK MODELS: A SOLUTION TECHNIQUE" ; COMMUNICATION PRESENTEE A IFIP 77.
[BaC75]		"OPEN , CLOSED AND MIXED NETWORKS OF QUEUES WITH DIFFERENT CLASSES OF CUSTOMERS" , J.ACM , VOL 22 , N 2 , APRIL 75.
[Bad77]	BADEL M.	"GENERATION DE HOMBRES ALEATOIRES AUTOCORRELES" : IRIA/LABORIA , RAPPORT DE RECHERCHE N 265 , NOVEMBRE 77.
[Bar76]	BARBOUR A.D.	"NETWORK OF QUEUES AND THE METHOD OF STAGE" ADV.APPL.PROB., VOL 8 , 1976.
[BaV76]	BADEL M. VERAN M.	"FORTSIM: UN SYSTEME D'AIDE A L'ECRITURE DE SIMULATEURS EN FORTRAN" , IRIA/LABORIA , RAPPORT DE RECHERCHE N 201 , DECEMBRE 76.
[BeK69]	BELADY L. KUHNER C.J.	"DYNAMIC SPACE SHARING IN COMPUTER SYSTEMS" , C.ACM , VOL 12 , N 5 , NAY 69.
[BeM75]	BEUTLER F.J. MELAMED B.	"DECOMPOSITION AND CUSTOMER STREAMS OF FEEDBACK QUEUEING NETWORKS IN EQUILIBRIUM", TR 75.5 ,UNIVERSITY OF MICHIGAN ,ANN ARBOUR, SEPTEMBER 75.
[Ber70]	BERGE C.	"GRAPHES ET HYPERGRAPHES" DUNGD ED., PARIS 1970.
[Bra74]	BRANDWAJN A.	"A MODEL OF A TIME SHARING VIRTUAL MEMORY SYSTEM SOLVED USING EQUIVALENCE AND DECOMPOSITION METHODS", ACTA INFORMATICA, VOL 4, 1974.
(BrC75)	CHANDY K.M.	"HIERARCICAL TECHNIQUES FOR THE DEVELOPMENT OF REALISTIC MODELS OF COMPLEX COMPUTER SYSTEMS", PROCEEDINGS OF THE IEEE SPECIAL ISSUE ON INTERACTIVE COMPUTER SYSTEMS, VOL 63, N 6, JUNE 75.
[Bul77]	BURGEVIN P. INGELS P. LEROUDIER J.	"ANALYSIS OF PROGRAM BEHAVIOUR" ; IRIA/LABORIA ,RAPPORT DE RECHERCHE N 237 ; JUIN 77.
[Buz73]	BUZEN J.P.	"COMPUTATIONAL ALGORITHMS FOR CLOSED QUEUEING NETWORKS WITH EXPONENTIAL SERVERS" , C.ACN , VOL 16 , N 9 , SEPTEMBER 73.
[Car77]	CARDAILLAC M.	"CHAINE SPW: MESURE DES TEMPS DE REPONSE" , COMMUNICATION PERSONNELLE , 1977.
[ChH75]		"APPROXIMATE ANALYSIS OF GENERAL QUEUEING NETWORKS" , IBM JOURNAL OF RES. AND DEV. , JANUARY 75.

[ChH77] CHANDY K.M. "PRODUCT FORM AND LOCAL BALANCE IN QUEUEING NETWORKS" . HOWARD J.H. TOWSLEY D.F. J. ACM , VOL 24 , N 2 , APRIL 77. "WORKING-RATES IN CLOSED QUEUEING NETWORKS WITH [ChL72] CHANG A. GENERAL INDEPENDANT SERVERS" , LAVENBERG S.S. IBM RESEARCH REPORT RJ 989 , 1972. [CII76] "GUIDE TECHNIQUE SERIE 60 NIVEAU 64" . COMPAGNIE INTERNATIONALE POUR L'INFORMATIQUE -HONEYWLL-BULL , FEVRIER 76. [Con63] CONWAY R.W. "SOME TACTICAL PROBLEMS IN DIGITAL SIMULATION" , MANAGEMENT SCIENCES , VOL 10 , N 1 , OCTOBER 63 [Cor76] CORRE J.P. "ASTRE: ANALYSE STATISTIQUE DES TEMPS DE REPONSE. ENTRE EVENEMENTS" , COMMUNICATION PERSONNELLE , 1976. "MODELISATION DES CHARGE INSPIREE DE SPW" , [Cor77] CORRE J.P. COMMUNICATION PERSONNELLE , 1977. "DECOMPOSABILITY, INSTABILITIES AND SATURATION [Cou75] COURTOIS P.J. IN MULTIPROGRAMMING SYSTEMS" , C.ACM , VOL 18 , N 7 , JULY 75. "INTRODUCTION AND OVERWIEW OF THE MULTICS SYSTEM" ; [CoV65] CORBATO F.J. PROC. OF AFIPS CONF. , WASHINGTON D.C. , VYSSOTSKY V.A. SPARTAN BOOK ,1965. [Cox55] COX D.R. "A USE OF COMPLEX PROBABILITIES IN THE THEORY OF STOCHASTIC PROCESSES" , PROC. OF THE CAMBRIDGE PHIL. SOCIETY , VOL 52 , 1955. [Cri74] CRANE M.A. "SIMULATING STABLE STOCHASTIC SYSTEMS" , IGLEHART D.L. J.ACM , VOL 21 , N 1 , JANUARY 1974. [DeB77] DENNING P.J. "OPERATIONNAL ANALYSIS OF QUEUEING NETWORKS" , BUZEN J.P. CSD-TR 225 , COMPUTER SCIENCE DEPT. , PURDUE UNIVERSITY , WEST LAFAYETTE , INDIANA , MARCH 77. [DeP71] DERNIAME J.P. "PROBLEMES DE CHEMINEMENT DANS LES GRAPHES" ; MONOGRAPHIE D'INFORMATIQUE , AFCET-DUNOD , 1971. PAIR C. [Ge175] GELENBE E. "ON APPROXIMATE COMPUTER SYSTEM NODELS" , J.ACM . VOL 22 .N 2 .1975. [GeP77] GELENBE E. "A DIFFUSION MODEL FOR MULTIPLE CLASS QUEUEING PUJULLE G. NETWORKS" ; IRIA/LABORIA , RAPPORT DE RECHERCHE N 142 , AOUT 77. [GoN67] GORDON W.J. "CLOSED QUEUEING SYSTEMS WITH EXPONENTIAL SERVERS" NEWELL G.F. OPERATION RESEARCH , VOL 15 ,1967. [Jac63] JACKSON J.R. "JOB-SHOP LIKE QUEUEING SYSTEMS" . MANAGEMENT SCIENCE , VOL 10 , N 1 , OCTOBER 63. [JaL76] JACOBS P.A. "A MIXED AUTOREGRESSIVE MOVING AVERAGE EXPONENTIAL SEQUENCE AND POINT PROCESS (EARMA 1,1)" , LEWIS P.A.W. 1976.

"GAUSS SEIDEL NETHODS OF SOLVING LARGE SYSTEMS [Kah58] KAHAN W. OF LINEAR EQUATIONS" , PH.D THESIS JUNIVERSITY OF TORONTO ,1958. "ASQ USER'S MANUAL" , [Kel74] KELLER T.W. TR-27 , DEPT. OF COMPUTER SCIENCES , UNIVERSITY OF TEXAS AT AUSTIN : 1974. "NETWORKS OF QUEUES WITH CUSTOMERS OF DIFFERENT [Kel75] KELLY F.P. CLASSES" , J. APPL. PROB. , VOL 12 , 1975. "APPLICATION OF THE DIFFUSION APPROXIMATION [Kob74] KOBAYASHI H. TO QUEUEING NETWORKS" , J.ACM , VOL 21 ,1974. "A MULTICLASS NETWORK MODEL OF A MULTIPROGRAMMING [KrG77] KRZESINSKI A. TIME-SHARING COMPUTER SYSTEM" , GERBER 5. IFIP CONGRESS ,1977. TEUNISSEN P. "EFFICIENT COMPUTATIONAL FORMS FOR THE NORMALIZING [KrT77A] KRZESINSKI A. TEUNISSEN P. CONSTANT AND THE STATISTICAL MEASURES OF MIXED MULTICLASS QUEUEING NETWORKS" , REPORT RW77-04 JUNIVERSITY OF STELLENBOSCH (RSA) DEPT. OF COMP. SCIENCE .JUNE 77. "STOCHASTIC NETWORK ANALYSIS PROGRAM - USER'S [KrT77B] KRZESINSKI A. TEUNISSEN P. MANUAL" , REPORT RW76-02 , DEPT. OF COMP. SCIENCE , UNIVERSITY OF STELLENBOSCH (RSA) , MARCH 77. [Lam77] LAM 5.5. "QUEUEING NETWORKS WITH POPULATION SIZE CONSTRAINTS" , IBM JOURNAL OF RES. AND DEV. JULY 77. "DISCRETE EVENT SIMULATION MODELLING OF COMPUTER [LeP76] LEROUDIER J. SYSTEM FOR PERFORMANCE EVALUATION" , PARENT M. IRIA/LABORIA , RAPPORT DE RECHERCHE N 177 , JUIN 76. [Mar77] MARIE R. "UNE METHODE ANALYTIQUE APPROCHEE POUR RESEAU DE FILES D'ATTENTE GENERAUX" , IRISA , RAPPORT N 85 ,1977. "METHODES ITERATIVES DE RESOLUTION DE MODELES [Mar78] MARIE R. MATHEMATIQUES DE SYSTEMES INFORMATIQUES" , RAIRO REVUE BLEU , VOL 2 ,1978. "A TOOL FOR COMPUTER PERFORMANCE ANALYSIS" > [MeP78] MERLE D. PROC. ICPCI 78 .JUNE 78. POTIER D. VERAN M. "COMPUTATIONAL MODEL OF A CLOSED QUEUEING NETWORK [Moo72] MOORE F.R. WITH EXPONENTIAL SERVERS" , IBM JOURNAL OF RES. AND DEV. , HOVEMBER 72. "POISSON DEPARTURE PROCESSES AND QUEUEING NETWORKS" . [Mun72] MUNTZ R.R. IBM RES. REP. RC4115 , DECEMBER 72. "TWO QUEUES IN SERIES WITH A FINITE INTERMEDIATE [Neu68] NEUTS M.F. WAITING ROOM" , J. APPL. PROB. , VOL 5 ,1968.

"MODELISATION DE LA CHARGE SPW ET RESULTATS DE roli77] OLIVEIRA J. SIMULATION SUR ORACLE" , COMMUNICATION PERSONNELLE ,1977. "CLOSED EXPONENTIAL NETWORKS OF QUEUES WITH BLOCKING (Pit76) PITTEL B. THE JACKSON-TYPE STATIONARY DISTRIBUTION AND ITS ASYMPTOTIC ANALYSIS" , IBM RES. REP. RC6174 , AUGUST 76. "UN MODELE D'ANALYSE DES PERFORMANCES D'ORDINATEUR [PoL76] POTIER D. MULTIPROGRAMMES A MEMOIRE VIRTUELLE" , LEROUDIER J. IRIA/LABORIA , RAPPORT DE RECHERCHE N 152 , JANVIER 76. BADEL M. "CIGALE, THE PACKET SWITCHING MACHINE OF THE CYCLADE [Pou74] POUZIN L. COMPUTER NETWORK" ; PROC. IFIP CONGRESS 74 ,STOCKOLM ,NORTH-HOLLAND ED. , AUGUST 74. "RESEAUX DE FILES D'ATTENTE A CAPACITE LIMITEE [PuP77] PUJOLLE G. AVEC DES APPLICATIONS AUX SYSTEMES INFORMATIQUES" , POTIER D. IRIA/LABORIA : RAPPORT N 219 : FEVRIER 77. "QNET4 USER'S GUIDE" , [Re175] REISER M. IBM RES. REP. RA-71 :1975. "NUMERICAL METHODS IN SEPERABLE QUEUING NETWORKS" , [Rei76] REISER M. IBM RES. REP. RC-5842 , MAY 76. [ReK75] REISER M. "QUEUEING NETWORKS WITH MULTIPLE CLOSED CHAINS: THEORY AND COMPUTATIONAL ALGORITHMS" , KOBAYASHI H. IBM JOURNAL OF RES. AND DEV. , VOL 19 , MAY 75. "ON THE CONVOLUTION ALGORITHM FOR SEPARABLE [ReK76] REISER M. QUEUEING NETWORKS" . KOBAYASHI H. IBM RES. REP. RC-5914 , JANUARY 76. [RoD72] RODRIGUEZ-ROSSEL J. "THE EVALUATION OF A TIME SHARING PAGE DEMAND SYSTEM" , DUPUY J. P. PROC. SPRING JOINT COMPUTER CONF. :1972. "VALIDATION OF A QUEUEING MODEL WITH CLASSES [Ros76] ROSE C. OF CUSTOMERS" , PROC. INTERNATIONAL SYMPOSIUM ON COMPUTER PERFORMANCE, MEASUREMENT AND EVALUATION , ACM-SYGMETRICS FIFIR WG 7.3 FMARCH 76. [SaM77] SAUER C.H. "APPLICATION OF RESQ: COMMUNICATION SYSTEM MAC NAIR E.A. EVALUATION" , IBM RES. REP. RC-6633 JULY 77. "SIMULATION ANALYSIS OF GENERALIZED QUEUEING [Sau75] SAUER C.H. NETWORKS" , PROC. 1975 SUMMER COMPUTER SIMULATION CONFERENCE . "MULTIDIMENSIONAL DATA ANALYSIS AS A TOOL FOR [Sch78] SCHROEDER A. THE STUDY OF COMPUTER SYSTEMS" , A PARAITRE ,1978. "MARCA: MARKOV CHAIN ANALYSER" , [Ste76] STEWART W.J. IRISA , RAPPORT N 45 , JUIN 1976. "A COMPARISON OF NUMERICAL TECHNIQUES IN [Ste78] STEWART W.J. MARKOV MODELLING" , C.ACM , VOL 21 ,N 2 ,FEBRUARY 78.

- 210 -

"QUEUING NETWORKS INSENSITIVITY AND A HEURISTIC APPROXIMATION",
BERGAKADENIE FREIBERG, SEKTION MATHEMATIK,
DDR 92 ,FREIBERG, 1977.

[Ver77] VERAN M. "QNAP: MANUEL D'UTILISATION",

RAPPORT TECHNIQUE CENTRE SCIENTIFIQUE CII-HB , GRENOBLE , NOVEMBRE 77.

[WiB74] WILLIAMS A.C. "QUEUEING NETWORKS MODELS OF COMPUTER SYSTEMS",
BHANDIWAD K.A. PROC. OF THE 3RD TEXAS CONF. ON COMPUTER SYSTEMS,
NOVEMBER 74.

[ZaL77] ZAHORJAN J. "AN OVERWIEW OF THE QSOLVE SYSTEM",
LEVI A.I. TR CSRG-83 .COMP. SYST. RESEARCH GROUP,
UNIVERSITY OF TORONTO ,JULY 77.