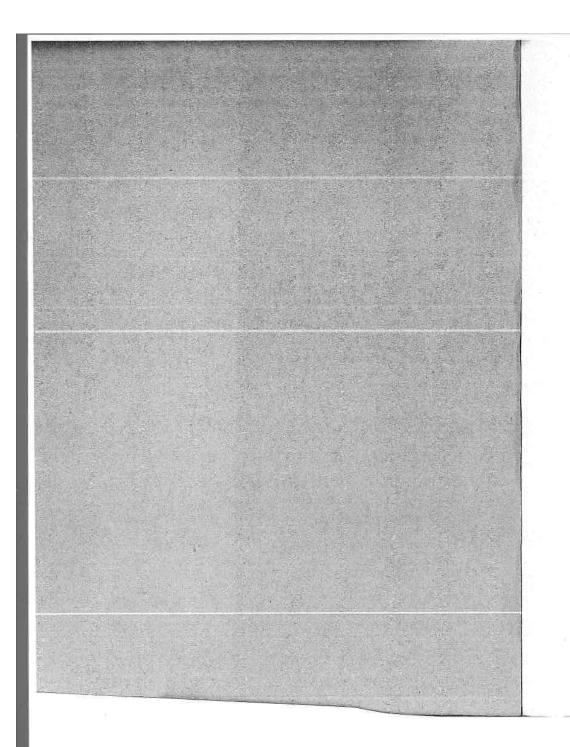
OPERATIONS EN TRIPLE PRECISION CODE DE PROGRAMMATION MATRICIEL MOMENTS CENTRES COURBE DE K.PEARSON

THESE

PRESENTEE A LA FACULTE DES SCIENCES

DE L'UNIVERSITE DE NANCY


POUR L'OBTENTION

DU DOCTORAT DE SPECIALITE

MATHEMATIQUES 3º CYCLE

jury MM. LEGRAS président . HERVE examinateurs

UNIVERSITE de NANCY --o-- FACULTE des SCIENCES

- OPERATIONS ARITHMETIQUES EN TRIPLE PRECISION
- CODE de PROGRAMMATION MATRICIEL
- CALCUL des MOMENTS CENTRES et ESTIMATION PAR LES COURBES de K. PEARSON.

par

Claude COLAS

UNIVERSITE de NANCY - FACULTE des SCIENCES

Doyen: M. ROUBAULT Assesseur: M. WAHL

Doyens honoraires: MM. CORNUBERT, DELSARTE

Professeurs honoraires: MM. GUTTON, CROZE, RAYBAUD, LAFFITTE,

LERAY, JOLY, LAPORTE, EICHHORN, CAPELLE, GODEMENT, DUBREIL,

L. SCHWARTZ, DIEUDONNE, de MALLEMANN, LONGCHAMBON, LETORT,

DODE, GAUTHIER, GOUDET, OLMER, CORNUBERT, CHAPELLE, GUERIN,

CHEVALLIER, REMY.

Maîtres de conférences honoraires : MM. RAUX, LIENHART.

al man I to Education I see - 1 (MAZ to 1) (Box

BACTERSON THE RESAMENTS THROW AS A TOP IN

PROFESSEURS

MAITRES de CONFERENCES

MM.			
WERNER	Botanique	CLIN	Paléontologie
GARNIER	Agronomie	ROCCI	Géologie
REGNIER	Physico-chimie	WEISS	Physique M.P.C.
WEPPE	Minéral ogie appli.	Mme BASTICK	Chimie M.P.C.
BERNARD	Géologic	VUILLAUME	Psychophysiologic
ARAGNOL	Mathématiques (prop.)	PLAN	Mathématiques
GAY	Chimie biologique	GUDEFIN	Physique
RENARD	Physique théo: et nuc.	MARI	Chimic I.S.I.N.
CONDE	Zoologie	LAFON	Physique I.S.I.N.
GOSSE	Génie chimique	HORN	Physique
CHAMPIER	Physique	PIERRET	Maître de conf. adj.

Secrétaire Principal: M. CARON

Que Monsieur J. LEGRAS, Professeur à la Faculté des Sciences, veuille bien trouver ici l'expression de ma profonde reconnaissance pour l'intérêt permanent qu'il a manifesté vis à vis de mon travail, et pour les conseils judicieux qu'il n'a cessé de me prodiguer.

J'adresse mes plus vifs remerciements à Monsieur DEPAIX, Chef de travaux à la Faculté des Sciences, pour l'aide efficace qu'il m'a apportédans la partie statistique.

Je remercie Messieurs les Professeurs qui ont bien voulu me faire l'honneur de composer le Jury.

TABLE des MATIERES

lère Partie : OPERATIONS EN VIRGULE FLOTTANTE.						
- Opérations arithmétiques sur l'ordinateur 650 I.B.M.	I					
- Les opérations arithmétiques en virgule flottante triple précision						
AdditionSoust ractionMultiplicationDivision						
2ème Partie : ENSEMBLE DES SOUS-PROGRAMMES MATRICIELS						
- Introduction: les programmes matriciels	45					
- Transposition	47					
- Addition et Soustraction	51					
- Multiplication	55					
- Inversion	60					
- Calcul de dét erminant	65					
3ème Partie : MOMENTS CENTRES : COURBES de PEARSON						
- Calcul des moments centrés jusqu'à l'ordre 4						
- Général ités - Sous-Programmes	77 78					
- Estimation d'une distribution : Courbes de K. PEARSON						
- Généralités - Exemples	92 108					

-0-0-0-0-0-

-0-0-

-O-1

lère PARTIE

LEAVE, III TARRESTA MAN AL

and at the left of

Quality of the second of the same of the s

er v og ji ræfak

and an artist on

ALCOHOLOGY (ACTUAL)

to the di

EXPANSION DES OPERATIONS ARITHMETIQUES SUR ORDINATEUR IBM 650

-- OPERATIONS en TRIPLE PRECISION --

I - LES OPERATIONS ARITHMETIQUES SUR L'ORDINATEUR 650 I, B, M,

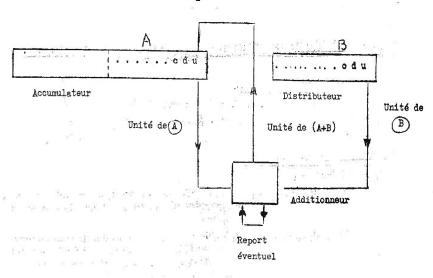
1) LA VIRGULE FIXE.

L'ordinateur I. B. M. 650 est capable d'effectuer les quatre opérations arithmétiques à partir d'un ensemble d'organes arithmétiques et selon un processus élémentaire unique pour toutes ces opérations.

- Les organes arithmétiques.

Ils se composent :

- a) du distributeur : mémoire adressable (8001) de capacité un mot, c'est-à-dire dix positions d'enregistrement et un signe,
- b) de l'accumulateur : double mémoire adressable (accumulateur gauche (8001) ; accumulateur droit (8002) ; ces deux mémoires fonctionnant presque toujours de façon solidaire).
- c) de l'additionneur : organe entièrement sous la dépendance des circuits internes et, de ce fait, échappant à tout contrôle de l'opérateur.


Le processus élémentaire utilisé dans les 4 opérations.

Le processus élémentaire, à la base de l'exécution des opérations arithmétiques, est l'addition.

Ce processus se déroule de la façon indiquée par le schéma ci-dessous :

Soient A et B, les données initialement enregistrées dans les mémoires a et b.

L'un de ces deux opérandes est transféré sur l'accumulateur, l'autre sur le distributeur.

Schéma de principe de l'opération A + B.

L'Additionneur analyse les positions "Unité" des données, effectue leur addition et transfère le résultat $U_{\rm A}^{}+U_{\rm B}^{}$ en position unité de l'accumulateur, conservant tout report éventuel qui viendra s'ajouter aux positions dizaines de A et B et ainsi de suite, jusqu'à épuisement de toutes les positions d'enregistrement.

- Exécution des 4 opérations,

Il découle de ce qui précède que l'addition ne sera rien d'autre que la mise en œuvre du processus élémentaire.

La soustraction A - B sera ramenée à l'addition à A du complèment à 9 de B.

Exemple:
$$46 - 24 \longrightarrow 46 + 75 = 121$$

$$\frac{1}{22}$$

La multiplication et la division se raméneront respectivement à une série d'additions ou de soustractions avec décalages. L'analyse des signes des opérandes permet alors à la machine d'affecter au résultat de l'opération le signe convenable.

Dès que l'un des facteurs sur lesquels portera l'opération est mis en place dans l'accumulateur, celle-ci est déclenchée par une seule instruction codée.

Les calculs que peut effectuer directement l'ordinateur sur des données exprimées à partir de l'écriture numérique habituelle au moyen des opérations décrites ci-dessus, sont appelés calculs en virgule fixe.

Dans tous les problèmes de calculs traités sur ordinateur, en virgule fixe, il importe d'après le principe de fonctionnement de l'additionneur que les nombres utilisés soient cadrés de façon cohérente les uns par rapport aux autres, ce qui suppose que l'ordre de grandeurs de tous résultats intermédiaires soit connu à priori, afin d'indiquer à la machine les cadrages à exécuter en cours de déroulement du programme. Malheureusement il en est ainsi que très rarement, et pour tourner la difficulté on est conduit à utiliser un autre mode d'écriture des nombres appelé : Virgule flottante.

2) LA VIRGULE FLOTTANTE.

Un nombre écrit en virgule flottante se compose de 2 parties :

- la caractéristique ou exposant, indiquant l'ordre de grandeur du nombre.
- la mantisse, formée des chiffres significatifs de ce nombre.

Nous ne parlerons ici que de la virgule flottante, type FLAIR, qui est la plus couramment utilisée.

Transcription d'un nombre écrit en Virgule fixe en Virgule flottante Flair. Tout nombre a peut s'écrire $0, XXXXX...10^p$; p étant un exposant nanti d'un signe. Pour s'affranchir de ce signe on convient d'ajouter une caractér, mantisse quantité P = 50, et l'on écrit alors (a) VFL = 50 + p [XXXXXX] ce qui permet de représenter tous les nombres compris entre 10^{-49} et 10^{+49} .

. .

. . /

onal A muzamethum sane passipal e si L'unité de mémoire détermine pour chaque calculateur le nombre de chiffres constitutifs desnombres traités. Dans le cas du 650, la mémoire unité ayant 10 positions d'enregistrement + un signe, il s'en suit que la mantisse aura au maximum huit chiffres significatifs.

Exemple :

$$A = 494,65$$
 0,49465 X 10³

Mantisse: 49465000

Caractéristique: 50 + 3 = 53

D'où la traduction de A en VFL

53, 49465000.

Quelques définitions.

L'ordinateur travaille en simple précision lorsque les nombres traités ont la dimension de l'unité de mémoire, c'est-à-dire 10 chiffres.

Il est dit travailler en double ou triple précision lorsque les nombres occupent respectivement deux ou trois unités de mémoires.

On est conduit à travailler en double précision lorsque la précision obtenue par simple précision est insuffisante : Résultats d'une série d'opérations arithmétiques sans commune mesure avec les opérandes (ce qui se produit par exemple dans le calcul de séries alternées, et surtout de calcul matriciel). La triple précision, d'une portée plus limitée, pourra par exemple servir ;

- a) à vérifier la double précision
- b) à calculer avec précision des coefficients intervenant dans des calculs en double précision.
- c) à établir des tables numériques (n!, C_n^p ;).

II - LES OPERATIONS ARITHMETIQUES EN VIRGULE FLOTTANTE FLAIR,

TRIPLE PRECISION.

91.99 4 7 7

M- Généralités.

Afin de donner à ces sous-programmes une généralité aussi grande que possible. ils ont été conçus pour exploiter des nombres dont la caractéristique peut avoir de 2 à 4 chiffres, 1 pouvant s'écrire :

.../...

De ce fait, chaque sous-programme aura trois entrées, la caractéristique utilisée imposant l'entrée dans ce sous-programme.

Les 4 opérations :

Soient A et B les opérandes sur lesquels portent l'opération arithmétique étudiée.

L'écriture de A sera symbolisé par 🛛 🗘 a 1 a 2 a 3

√ - caractéristique de A

a lère partie de la mantisse a 2 - 2ème " "

a₃ - 3ème " "

étant en séquence.

De même B s'écrira (b, b, b, b, b, b, b, b, etant rangés dans trois mémoires en séquence. Plus généralement nous symboliserons la mantisse du nombre N par (n:). (N) symbolisera la ou les adresses en séquence qui repèrent la ou les mémoires contenant N ou ses composantes.

- Entrée dans les sous-programmes,

Elle se fait de la façon habituelle pour ce genre de sous-programmes.

en 8003, il y aura zéro

en 8002, il y aura 00 (A) (B)

en 8001, il y aura 00 (C) (N).

- (A) et (B) indiquant les premières adresses des mémoires où sont rangées A et B, opérandes sur lesquels portera l'opération (C) indiquant la première des adresses où sera transféré le résultat de l'opération.
- (N) indiquant l'adresse "instruction suivante", une fois le sous-programme utilisé.
- A L'Addition en V. FL. triple précision triple entrée.

 Le programme consiste :
 - 1°) à séparer caractéristique et mantisse de A et B.
 - 2°) à posimonner correctement d'après la valeur | √ (3 | de la différence en valeur absolue des caractéristiques, les mantisses de A et B.
 - 3°) à effectuer l'addition en fixe des mantisses cadrées.
 - 4°) à choisir la plus grande des caractéristiques $\sqrt{}$ et $\sqrt{}$ qui deviendra alors la caractéristique du résultat.

Exemple schématique.

A = 60 1234567890123456789012345678

B = 4512345

-idem-

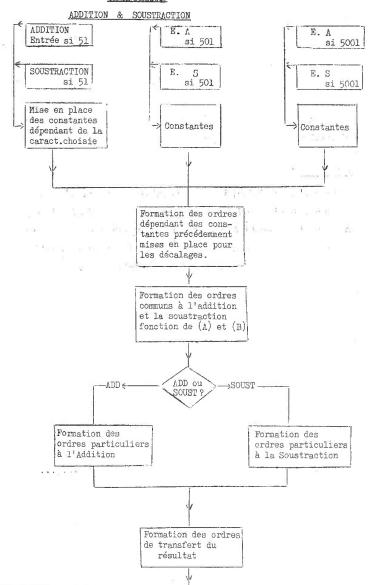
- Différence : $| \chi \beta | = 15$, ce qui implique qu'il faut décaler. $| \beta |$ de 15 positions par rapport à A.
- Positionnement de B par rapport à A

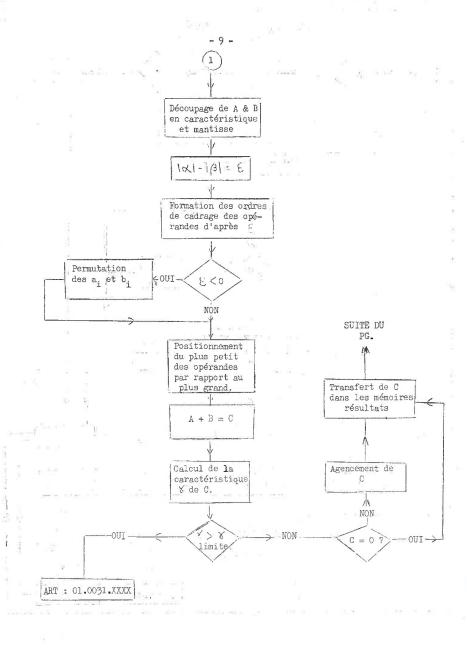
Mantisse de A 12345678 90 12345678 90 12345678

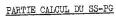
- Addition A + B 1234567890123458023580235801
- Résultat (A + B) 6012 801

.../...

B - La Soustraction


La seule différence avec l'Addition porte sur le remplacement de l'addition en fixe des mantisses correctement cadrées par la soustraction de celles-ci.


C'est la seule différence, aussi ces deux opérations sont-elles exécutées par le même sous-programme. L'entrée dans le sous-programme, précisant le genre d'opération que l'on veut exécuter, provoque alors la mise en place des ordres d'Addition ou de Soustraction en fixe.


Remarque:

- 1) Lors d'une addition, il peut apparaître un report. L'exposant est alors augmenté d'une unité et la mantisse résultat décalée d'une position à droite.
- 2) Lors d'une soustraction, la mantisse résultat peut commencer par une suite q de zéros. La mantisse résultat sera alors décalée de q positions vers la gauche et la caractéristique diminué de q.

. . . / . .

ENTREE - 10 -

SOUS-PROGRAMME D'ADDITION et de SOUSTRACTION (P.A.S.O.)

1		0312		
1	PEN	25001	0000	
	PEN	25005	0001	V.
	PEN	25011	0002	
	PEN	25015	0003	
	PEN	25111	0004	
	PEN	25115	0005	: B
	_			Caractéristique type 51
25001	TDI	25BAl	25LA1	Entrée en Addition
25005	TDI	25BA1		Entrée en Soustraction
	RSD	8002	25LA1	
25LA1	TRD	25LB1	GI HISTORY	Mise en place des constantes qui permettront
	EDI	66010		par la suite d'effectuer le positionnement du plus
	TDI	25021		petit des opérandes par rapport au plus grand
	EDI	66011		et de calculer la caractéristique du résultat.
	TDI	25031		
	EDI	66012		
	TDI	25041		
	EDI	66013		
	TDI	25051		
		66014		
	TOI	25061		
		66015		
		25071		
			25LC1	
	10110	00001	LJEGI	3
				Caractéristique type 501
25011	TDI	25BAL	25LD1	Entrée en Addition
25015	TDI	25BA1	Į.	Entrée en Soustraction

RSD 25LD1 RD 25LD1 RD 25CD1 EDI 66020 TDI 25034 EDI 66022 TDI 25054 EDI 66025 TDI 25051 EDI 66025 TDI 25D1 EDI 66030 TDI 25EA1 RSD 6002 25LE1 Entrée en Addition Entrée en Soustraction Entré		
Mise en place des constantes pour ce type de caractéristique. Total 25021 EDI 66021 TDI 25034 EDI 66022 TDI 25041 EDI 66023 TDI 25061 EDI 66024 TDI 25061 EDI 66025 TDI 25071 RAD 66002 25LC1 Caractéristique type 5001	ŀ	RSD 8002 25LD1
TDI 25021 EDI 66021 TDI 25034 EDI 66022 TDI 25041 EDI 66023 TDI 25061 EDI 66024 TDI 25061 EDI 66025 TDI 25071 RAD 66002 25LC1 Caractéristique type 5001 Caractéristique type 5001 Entrée en Addition Entrée en Soustraction Entrée en Soustraction Mise en place des constantes pour ce type de caractéristique. TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25051 EDI 66034 TDI 25051 EDI 66034 TDI 25051 EDI 66035 TDI 25061	a)	
EDI 66021 TDI 25034 EDI 66022 TDI 25041 EDI 66023 TDI 25061 EDI 66024 TDI 25061 EDI 66025 TDI 25071 RAD 66002 25L01 25111 TDI 25BA1 RSD 8002 25LE1 TRD 25LE1 EDI 66030 TDI 25021 EDI 66031 TDI 25031 EDI 66032 TDI 25041 EDI 66032 TDI 25041 EDI 66035 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25061		
TDI 25034 EDI 66022 TDI 25041 EDI 66023 TDI 25051 EDI 66024 TDI 25061 EDI 66025 TDI 25071 RAD 66002 25101 EDI 66030 EDI 66034 TDI 25051 EDI 66035 TDI 25061 EDI 66035 EDI 60035 EDI		
EDI 66022 TDI 25041 EDI 66023 TDI 25051 EDI 66024 TDI 25061 EDI 66025 TDI 25071 RAD 66002 25LC1 25111 TDI 25BA1 25LB1 EDI 66030 TDI 25021 EDI 66031 TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25051 EDI 66034 TDI 25051 EDI 66035 TDI 25051 EDI 66035 TDI 25071		EDI 66021
TDI 25041 EDI 66023 TDI 25051 EDI 66024 TDI 25061 EDI 66025 TDI 25071 RAD 66002 25LC1 Caractéristique type 5001 25111 TDI 25BA1 25LB1 EDI 66030 TDI 25021 EDI 66031 TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25041 EDI 66033 TDI 25041 EDI 66034 TDI 25051 EDI 66035 TDI 25061 EDI 66035 TDI 25071		TDI 25034
EDI 66023 TDI 25051 EDI 66024 TDI 25061 EDI 66025 TDI 25071 RAD 66002 25LC1 Caractéristique type 5001 25111 TDI 25BA1 2515 TDI 25BA1 RSD 8002 25LE1 EDI 66030 TDI 25021 EDI 66031 TDI 25031 EDI 66032 TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25051 EDI 66035 TDI 25071		EDI 66022
TDI 25051 EDI 66024 TDI 25061 EDI 66025 TDI 25071 RAD 66002 25LC1 Caractéristique type 5001 25111 TDI 25BA1 25LE1 Entrée en Addition Entrée en Soustraction Entrée en Soustraction Mise en place des constantes pour ce type de caractéristique. TDI 25021 EDI 66031 TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25051 EDI 66035 TDI 25061 EDI 66035 TDI 25071		TDI 25041
EDI 66024 TDI 25061 EDI 66025 TDI 25071 RAD 66002 25LC1 Caractéristique type 5001 25111 TDI 25BA1 25LE1 Entrée en Addition Entrée en Soustraction Entrée en Soustraction Mise en place des constantes pour ce type de caractéristique. TDI 25031 EDI 66030 TDI 25031 EDI 66032 TDI 25041 EDI 66034 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25061 EDI 66035 TDI 25071		EDI 66023
TDI 25061 EDI 66025 TDI 25071 RAD 66002 25LC1 25111 TDI 25BA1 25LE1		TDI 25051
EDI 66025 TDI 25071 RAD 66002 25LC1 25111 TDI 25BA1 25LE1 Entrée en Addition 25115 TDI 25BA1 25LE1 RSD 8002 25LE1 25LE1 TRD 25LB1 EDI 66030 TDI 25021 Mise en place des constantes pour ce type de caractéristique. TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071	>:	EDI 66024
TDI 25071 RAD 66002 25LC1 Caractéristique type 5001 25111 TDI 25BA1 25LE1 Entrée en Addition Entrée en Soustraction RSD 8002 25LE1 25LE1 TRD 25LB1 EDI 66030 TDI 25021 Mise en place des constantes pour ce type de caractéristique. TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071		TDI 25061
Caractéristique type 5001 25111 TDI 25BA1 25LE1 Entrée en Addition Entrée en Soustraction 880 8002 25LE1 25LE1 TRD 25LB1 EDI 66030 TDI 25021 Mise en place des constantes pour ce type de caractéristique. TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071		EDI 66025
Caractéristique type 5001	1	TDI 25071
25111 TDI 25BA1 25LE1 Entrée en Addition Entrée en Soustraction 8002 25LE1 TRD 25LB1 EDI 66030 TDI 25021 Mise en place des constantes pour ce type de caractéristique. 1		RAD 65002 25LC1
25115 TDI 25BA1 RSD 8002 25LE1 TRD 25LB1 EDI 66030 TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071 EDI 66035 TDI 25071 EDI 66035 TDI 25071	1	Caractéristique type 5001
25115 TDI 25BA1 RSD 8002 25LE1 TRD 25LB1 EDI 66030 TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071 EDI 66035 TDI 25071 EDI 66035 TDI 25071		2521 TDI 25RAI 25IRI Entrée en Addition
RSD 8002 25LE1 TRD 25LB1 EDI 66030 TDI 25021 EDI 66031 TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071		
25LE1 TRD 25LB1 EDI 66030 TDI 25021 Mise en place des constantes pour ce type de caractéristique. TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071		
EDI 66030 TDI 25021 EDI 66031 TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071		
TDI 25021 Mise en place des constantes pour ce type de caractéristique. TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071	1	
EDI 66031 de caractéristique. TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071		
TDI 25031 EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071		
EDI 66032 TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071	*	
TDI 25041 EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071		
EDI 66033 TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071		
TDI 25051 EDI 66034 TDI 25061 EDI 66035 TDI 25071		
EDI 66034 TDI 25061 EDI 66035 TDI 25071		
TDI 25061 EDI 66035 TDI 25071	3	
EDI 66035 TDI 25071		
TDI 25071	CALL DESIGN	
RAD 56003 25LC1		
	1	RAD 06003 [25LC1]
	3	

					1.5 (0.7)
	25LC1	EDI	25MA1	I	Formation, en fonction du type de caractéristique
		SBF	25MA1		choisi, des ordres de décalage servant
		EDI	25MA2		1º) au découpage des opérandes en caractéristique
		SBF	25MA2		et mantisse.
- Fa		EDI	25AI1		2º) à l'agencement du résultat de l'opération.
		SBF	25AI1		
10.1		EDI	25MA3		V.
		SBF	25MA3		
		EDI	25MA4		1,3%
30.		SBF	25MA4		100
		EDI	25MA5		4
		SBF	25MA5		E
		DAG	0004	-524	
		EDI	25FB1		
		SBF	25FB1		
		EDI	25MA6		
		SBF	25MA6		W. 1 1 1
	F 1	EDI	25MA7		5-TK
		SBF	25MA7		n _ x _ 8
		ROD	25LB1	25BC1	
		* V		l e	
	25BC1	EDI	25A01		Formation des ordres dépendant de la mémoire
		SBF	25A01		contenant A.
		ANG	25BD1		Est-ce une addition ou une soustraction ?
	1 1	AAD	25911		C'est une addition
	1 - 1	EDI	25AB1		
		SBF	25AB1		
		AAD	25911		54
		EDI	25AC1		
		SBF	25AC1		900
		DAG	0004		
that the same		EDI	25AE1		Formation des ordres dépendant des mémoires
		SBF	25AH1		contenant B.
WE 1	20060				

A	AD 25911	i	ai i
E	DI 25AK1	1	
S	BF 25AJ1	- 1	
A	AD 25911		B. A.
E	EDI 25AP1		
5	SBF 25AN1 25	BEL	- x
25BD1 8	SAD 25911	4	C'est une soustraction
	EDI 25AB1	1	
	SBF 25ABL	1	
	SAD 25911		
1	EDI 25AC1		
	SBF 25AC1		24 2 mb 300
	DAG 0004		Formation des ordres dépendant des
	EDI 25AF1	1	mémoires contenant B.
1	SBF 25AH1		
	SAD 25911		
1	EDI 25AL1		
	SBF 25AJ1		E
No.	SAD 25911		
	SBF 25AN1	25B E1	
			Formation des ordres de mise en place
25BE1	RAD 25BAL		du résultat dans les mémoires choisies C
	EDI 25ZZ1		du legatous son
	SBF 25ZZl		
	SBI 25ZZl		A
	AAD 25911		
	EDI 25YYl		
	SEF 25YYl	5	
	AAD 25911		
	EDI 25XX1		
	SBF 25XX1	25101	

25A01|RAD| 9999|25MA1 25MAL DAG 1111 SAG TDI 25B01 25MA2 DAD 1111 TRD 25CO1 25AB1 25AB1 EDI 9998 TDI 25D01 25AC1 25AC1 EDI 9997 TDI 25E01 25AH1 25AE1 RAD 9996 25AI1 25AF1 RSD 9996 25AI1 25AI1 DAG 2222 SAG 8003 TDI 25F01 25MA3 25MA3 DAD 1111 TRD 25GO1 25AJ1 25AK1 RAD 9995 25AM1 25AL1 RSD 9995 25AM1 25AM1 TRD 25H01 25AM1 25AP1 RAD 9994 25AR1 25AQ1 RSD 9994 25AR1 25AR1 TRD 25I01 RAV 25B01 SVD 25F01 DAG 0004 EDI 25CAl SBF 25CAl EDI 25CX1 SBF 25CX1 ANG 25CB1 SAD 25021 ANG 25001 250D1 Découpage de A et B

Transfert de la caractéristique de A en 25B01

Transfert de la lère partie de la mantisse de A (a₁) en 25001

Transfert de a₂ en 25D01

 $\begin{array}{lll} \text{Transfert de} & \textbf{a}_{\overline{\textbf{3}}} \text{ en 25EOl} \\ \text{Ordre utilis\'e en addition} \\ \text{Ordre utilis\'e en soustraction} \end{array}$

Transfert de 💪 en 25F0l

Transfert de b, en 25G01

Transfert de b, en 25H01

Transfert de b3 en 25101

101-1131=8

Formation d'ordres de décalages dépendant de ⊱ pour le positionnement du plus petit par rapport au plus grand.

|A| < |B| = ?

Le programme se poursuit en

25CCl Si B n'est pas négligeable devant A

25CDl Si B est négligeable devant A (C = A)

.../...

610

250BT		25021 25CE1		\A\ \ \B\ A est-il négligeable devant B ?
	1			Si oui on va en 25CEl C = B
				Si non on va en 25CFl
100	-5	75		
25 C U1	RAV	8002	250Gl	B n'étant pas négligeable devant A on
250G1	SAD	25031		cherche alors à le positionner correctement
	ANG		25CI1	par rapport à A.
	RAV	8002		
	SAD	25041		9 10 5
	ANG		25CH1	8 3 3
	EDI	25H01		a had a second
21/2	TDI	25101		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0	EDI	25G01		1 1/1
	TDI	25H01		ji jendji USi8 iy
11	TRG	25G01	25011	
250H1	EDI	25G01		1.00
	TDI	25101	11,000	fill aspect of the control of
j.		25H01	1 1	A BANKAN A RESPONDENCE
1	- 1		25011	a in the manifest the
25CI1		25H01		
			25CA1	in the state of
25CAI		7777	- 1	and the state of t
		25101		
		25G01		
		25H01	1 7 1 1 1 1 1 1 1 1	*) Y.
25CX1		7777		
		25G01		e*
		25H01		
		25E01		Calcul de A + B
		25101		10 A 10
		25101	1 3	E. Company
	HAD	8003	1 1	

	AAD	25D01	1
	AAD	25HC1	
	AAG	25001	
	AAG	25G01	
	ANN		25DC1
	GNN	=1	25DB1
	EDI	25051	
	TDI	25CZ1	
	TRD	25H01	
	TRG	25G01	25EAl
250C)	RAG	25 I 01	
	GNN		25XX1
	EDI	25071	
	TDI	25CZ1	
	TRG	25G01	
	TRD	25H01	
	TDI	25101	25EAl
25DB1	EDI	25061	
	TDI	25CZ1	
	RAG	8002	
	AAD	25101	
	TRG	25G01	
	TRD	25H01	
	RAG	8003	
	TRD	25101	25EA1
25EAl	DGC	0000	
	TRG	25G01	
	TRD	25001	
	DAG	0007	
	RAD	8002	
	DAD	0003	
	EDI	25EB1	1
	SBF	25EB1	
e 20 -)	RAG	25H01	
	AAD	25101	25EB1

Calcul de la caractéristique de C et positionnement du résultat permettant de faire disparaître les zéros qui pourraient se trouver au début du résultat précédemment obtenu

25EB1	DAG	9876	1	92		
	TRG	25H01	Ì		200	
	TRD	25101		4		
	RAG	25GOL		- 5	i	
	AAD	25001	11.040	1.00	" or that gold	
	DGC	0000	T.	- 1		
	SAD	25001	20			
1	ANG	25FAl				
	AVD	25B01				
	AVD	25CZ1	25FB1			
25FA1	SVD	25B01				
	SAD	25CZ1	25FB1			
25FB1	DAG	8000		Ŕ		
	SAG	8003				
	SD2		25FC1		La caractéristique 🎖 de	e C est elle plus
					grande que la caractéris	stique limite ?
	SD1	25FD1			est-elle nulle ?	
	TRD	25B01			Elle est comprise entre	0 et 8 limite?
	RAG	OFTIO1			i' gr	
1		SOUCE		}		
1	AAD	25101	25MA4	9	E = 5	
25MA4			25MA4	9	Agencement du résulta	at et transfert
25MA4	DAD	25101	25MA4	-	- Agencement du résulta	at et transfert
25 M A4	DAD TRD	25I01 1111	25MA4	-	Agencement du résulta	at et transfert
25MA4	DAD TRD RAG	25101 1111 25101			Agencement du résulta	at et transfert —————
	DAD TRD RAG AAD	25I01 1111 25I01 25G01			Agencement du résulta	at et transfert
	DAD TRD RAG AAD DAD	25I01 1111 25I01 25G01 25H01			Agencement du résulta	at et transfert
	DAD TRD RAG AAD DAD	25I01 1111 25I01 25G01 25H01 1111	25MA5		Agencement du résulta	at et transfert
25MA5	DAD TRD RAG AAD DAD AAG EDI	25101 1111 25101 25G01 25H01 1111 25B01	25MA5 25XX1		Agencement du résulta	at et transfert
25MA5 25XX1	DAD TRD RAG AAD DAD AAG EDI TDI	25101 1111 25101 25G01 25H01 1111 25B01 25101	25MA5 25XX1 25XY1		— Agencement du résulta	at et transfert
25MA5 25XX1 25YY1	DAD TRD RAG AAD DAD AAG EDI TDI TRD	25101 1111 25101 25G01 25H01 1111 25B01 25101 5555	25MA5 25XX1 25YY1 25ZZ1		Agencement du résulta	at et transfert

25FC1	01	0031	9999	La caractéristique du résultat > % lim. Dépassement de capacité	
25FD1	RAG	8003	25XX1	Le résultat vaut 0.	
25CF1	EDI	25F01		B est le plus grand mais A n'est pas	
	TDI	25801		négligeable. On permute alors les roles d	e
	TRD	25FE1		A et B et on procède alors aux calculs	
	RAG	25001		l°) de A + B	
	EDI	25G01		2°) de la caractéristique	
	TDI	25001		et à l'agencement du résultat.	
	TRG	25G01			
1	RAG	25001			
	EDI	25H01		©	
	TDI	25D01			
	TRG	25H01			
	RAG	25E01			
	EDI	25101			
	TDI	25E01			
	TRG	25101			
	RAV	25FE1	250G1		
25CD1	RAG	25B01	25MA6		
25MA6	DAG	2222			
	AAG	25001			
	AAD	25D01			
	EDI	25E01	25XX1		
25CE1	RAG	25F01	25MA7	B est le plus grand et A est négligeable	
25MA7	DAG	2222		devant lui C = B	
	AAG	25G01			
	MAD	25H01			
	EDI	25101	25 XX 1		

N. S. 12.1

CONSTANTES

I	25911	00	0001	0000 ==	
١	66001	00	0002	8000	
-	66002	00	0003	0007	
1	66003	00	0004	0006	
1	66010	00	0028	0000	
	66011	00	0018	0001	
	66012	00	8000	0002	
	66013	00	2000	8902	
	66014	00	0000	8892	
	66075	00	0000	8882	
	66020	00	0027	0000	İ
	66021	00	0017	0001	
	66022	00	0007	0002	
	66023	00	8000	0003	
	66024	00	8000	8993	
	66025	00	0008	8983	
	66030	00	0026	0000	
	66031	00	0016	0001	-
	66032	00	0006	0002	-
	66033	00	0089	0004	
	66034	00	0088	9994	
	66035	00	0088	9984	1

C - La Multiplication

Le sous-programme consiste

- 1°) à séparer mantisses et caractéristiques des opérandes
- 2°) à multiplier les composantes de la mantisse de l'un des opérandes par les composantes de la mantisse de l'autre, puis à procéder à l'addition des résultats partiels obtenus pour neconserver que les trois parties intéressantes, parties les plus à gauche du résultat.
- 3°) à calculer la caractéristique du résultat.

Détail sur la partie 2.

Soit a_1 , a_2 , a_3 et b_1 , b_2 , b_3 les parties constitutives des mantisses de A et B. Le calcul de la mantisse du produit se fera de la façon suivante :

On effectue une lère série de multiplications
$$\begin{bmatrix} -b_3 & x & a_3 & = \begin{bmatrix} \mathbb{R} (a_3 b_3) & , & \mathbb{R}^1 (a_3 b_3) \end{bmatrix} \\ -b_3 & x & a_2 & = \begin{bmatrix} \mathbb{R} (a_2 b_3) & , & \mathbb{R}^1 (a_2 b_3) \end{bmatrix} \\ -b_2 & x & a_3 & = \begin{bmatrix} \mathbb{R} (a_3 b_2) & , & \mathbb{R}^1 (a_3 b_2) \end{bmatrix}$$

Une lère série
$$R_1 R_1' = R (a_3 b_3) + R' (a_2 b_3) + R' (a_3 b_2)$$
 $R_2 R_2' = R_1 + R (b_3 a_2) + R (a_3 b_2)$

On ne conserve alors que la partie principale de ce dernier résultat c'est-à-dire $\ \ R_{\,2}.$

On effectue une deuxième suite de multiplications.

$$b_{3} \times a_{1} = \left[\overline{R} (b_{1} a_{1}), R' (b_{3} a_{1}) \right]$$

$$b_{1} \times a_{3} = \left[\overline{R} (b_{1} a_{3}), R' (b_{1} a_{3}) \right]$$

$$b_{2} \times a_{2} = \left[\overline{R} (b_{2} a_{2}), R' (b_{2} a_{2}) \right]$$

suivie d'une addition

$$R_3 R_3' = R_2 + R' (b_3 a_1) + R' (a_2 b_1) + R' (b_2 a_2)$$
.../...

MULTIPLICATION

dont on ne conserve que la partie principale R3

On effectue une troisième série de multiplications

$$b_2 \times a_1 = \left[R (b_2 a_1), R^1 (b_2 a_1) \right]$$

 $b_1 \times a_2 = \left[R (b_1 a_2), R^1 (b_1 a_2) \right]$

suivie d'une addition qui donne la partie C3 du résultat

$$R_4 R_4' = R_3' + R' (b_1 a_2) + R' (b_2 a_1) + R (b_3 a_1) + R (b_1 a_3) + R (b_2 a_2)$$

$$R_4' = C_3$$

On effectue alors les dernières opérations qui donnent C_1 et C_2

$$(b_1 \times a_1) = [R(b_1 a_1), R'(b_1 a_1)]$$

$$R_{5}R_{5}^{!} = R^{!}(b_{1}a_{1}) + R(b_{1}a_{2}) + R(b_{2}a_{1}) + R_{4} + R(b_{1}a_{1}) = (C_{1}C_{2})$$

$$(C_{1}C_{2}C_{3}) = (R_{5}R_{5}^{!}R_{4}^{!})$$

Entrée dans le sous-prog. (≤) =(501) (X)= 5001 Si (8)=51 Formation des ordres de décalage dépendant du choix du type de caractéristique servant au découpage de A et B et à l'agencement de C. Formation des ordres dépendant des adres.des opérandes Formation des ordres detransfert du résultat et de sortie Découpage des opérandes Exécution de l'opération sur les mantisses NON CALCUL DE & AGENCE TOT DU OUI RESULTAT C = 0TRANSFERT DU RESULTAT ART = 01.0033.XXXX

.../...

7900

PROGRAMME PASØ MULTIPLICATION

				- Control
	PRA	0229	1999	
	PEN 2	25003	0000	Z, impak a co
	PEN 3	25033		
	PEN :	25333	0002	1 a 7 b
			BIK.	Entrée en Multiplication
	_			- Si la caractéristique est du type 51
25003				- 21 19 Christoff ac can an obbo ha
	1	25LA3		% → ™
		66040		
		25023	25LB3	17.7
25033				_ Si la caractéristique est du type 501
25033		25LA3		
		66041		
	- 1	25023		- 7 22
			25LB3	COLA NO V D V
25333				_ Si la caractéristique est du type 5001
6))))	- 1	25LA3	1	
		66042		The state of the s
	1	25023		
			25LB3	
	14.1			Formation des ordres dépendant
		051413		du choix du type de caractéristique
25LB3		25MA1	ĺ	na choix au type ac caracteristics
	1	25MA1	1	and the second s
		25MA2	1	Example of
	1	25MA2		a a constant
	1	25MA		Andrea a see
		25MA	1	
Ī	EDI	25NA	4'	1

	SBF 25M	14	Ces ordres de décalage permettront d	ans =
	EDI 25M	A5	la suite du programme	
	SBF 25M	A5	- de découper les opérandes en l	eurs
	EDI 25M	A6	parties constitutives	
	SBF 25M	A6	- d'agencer le résultat de l'opé	ration.
	EDI 25%	Δ7		
	SBF 25M	A7	a 15	
	EDI 25M	1.8	A [84]	
	SBF 25M	8A	4	
	EDI 25M	A9	5.58	
	SBF 25M	A9 .		
	EDI 2510	B1		
	SBF 25M	Bl		
	EDI 25M	B3	٥	
	SBF 25M	83		
	EDI 25Mi	B4		
	SBF 25M	B4	1	
	SAD 250	13		
	EDI 2510	B5	1	
	SBF 25!11	B5		
	EDI 25M	В6		
	SBF 25:1	B6		
	DVC OX	04		
	EDI 25A	03		
	SBF 25A	C3		
	RAD 25L	A3 25LC3	Formation des ordres dépe	ndant
25LC3	EDI 25Q	03	des adresses de A et B	
	SBF 25Q	03		
	AAD 250	13		

.../...

W.	
EDI 25k03	
SBF 25R03	
AAD 25013	
EDI 25503	
SBF 25503	
DAG 0004	
EDI 25T03	
SBF 25T03	-
AAD 25013	
EDI 25U03	
SBF 25U03	
AAD 25013	
EDI 25V03	
SBF 25V03	
RAD 25AA3	Formation des ordres de sortie
EDI 25Y03	
SBF 25Y03	
SBI 25Y03	
AAD 25013	
EDI 25X03	
SBF 25X03	
AAD 25013	
EDI 25W03	
SBF 25W03 25Q03	
	Découpage des opérandes
25Q03 RAD 9999 25MA1	
25003 RAD 9999 27MA1	Dans cette partie du programme les opérandes
25MA1 DAG 1111 TRG 25A03	sont découpés en caractéristiques et mantisses
RAG 8002 25HA2	(3 parties)
I TAG OUUZ ZJILAZ	

25MA2	DAD	1111;	25R03	İ				
25R03	AAD	9999	25MA3	7> en	25A03		12	
25MA3	DAG	1111	10.00		65			
	TRG	25803		a ₁ en	25B03			
	RAG	8002	25MA4					
25MA4	DAD	1111	25503					
25803	ND	9999	25145					
25MA5	DAG	1111						
	TRG	25003		a ₂ - en	25003			
	TRD	25D03	25T03	6.3-50	25 D 3			
25103	RAD	9999	25MA6					
25MA6	DAG	1111						
	TRG	25E03		(3> en	25E03			
	RAG	8002	25MA7				2	
251147	DAD	11:11	25003				10	
25003	AAD	9999	25MA8					
25MA8	DAG	1111						
	TRG	25F03	L 10	b ₁ → er	25F03			
	RAG	8002	25I-IA9					
25MA9	DAD	1111	25V03		6.7			
25703	AAD	9999	25MB1					
25! Bl	DAG	1111	35					
	TRG	25G03	1	b ₂ ⇒ er	25G03		(A)	
	TRD	25H03	F	b ₃ > er	25H03			
					— Exécu	ition de l	l'opération —	
	PAG	8002						
		25D03		b; X a3				
		25103	1	R (b. X	a ₃) en 251	103		
	1	25H03	1	13	5			
	, IQIU	1 - 2000						

	L 25003		b ₃ × a ₂
TR	D 25J03		Transfert de R' (b3 × a2)
TR	G 25K03		Transfert de R (b ₃ × a ₂)
RA	G 25G03) 2
MU	L 25D03		b ₂ × a ₃
TRO	£ 25L03		Transfert de R (a ₃ × b ₂)
RAJ	8002		lère sommation des résultats obtenus ci-dessus
AAI	25J02		$- R' (a_3 + b_2) + R' (b_3 \times a_2) + R (b_3 \times a_3)$
			$= R_1 R_1$
MAI	25103		. I I
RAI	8003		$-R_1 + R(b_3 \times a_2) + R(a_3 \times b_2) = R_2 R_2^{!}$
AM	25K03		1) 2 ') 2 2 2 2
AAI	25L03		
TRO	25103		Transfert de R ₂ en 25103
RAC	25Н03		
MUI	25B03		$b_3 \times a_7$
TRE	25J03		Transfert de R' (b3 × a1)
TRO	25K03		Transfert de R (b3 x a1)
RAG	25003		
MUI	25003		b ₂ × a ₂
TRI	25L03	****	$b_2 \times a_2$ Transfert de R' $(b_2 \times a_2)$
TRG	25M03		Transfert de R (b2 x a2)
RAG	25F03		2 2
MUL	25D03		b ₁ × a ₃
TRG	251103		Transfert de R (b, a)
RAD	8002		2ème sommation des résultats partiels
AAD	25103		$- R' (b_1 a_3) + R_2 + R' (b_3 a_1) + R' (b_2 a_2)$
AAD	25J03		$= R_3 R_3''$
AAD	25L03,		
TRG	25103		Transfert de R ₃

RAG	25G03			
' OT	25B03			b ₂ a ₁
TRD	25,703			Transfert de R' (b2 a1)
TRG	25L03			Transfert de R (b ₂ a ₁)
RAG	25F03			
MUL	2,003			b ₁ a ₂
TRG	25P03			Transfert de R (b ₁ a ₂)
RAD	8002			3ème sommation des résultats partiels
AAD	25J03			$R'(b_1-a_2) + R'(b_2-a_1) + R(b_3-a_1) + R(b_2-a_2)$
AAD	25K03		141.4	$+ R (b_1.a_3) + R_3 = R_4 R_4'$
AAD	25M03			
AAD	25N03			
AAD	25103			
TRD	25 103	1 5		Transfert de R
TRG	25J03		4	Transfert de R
RAG	25F03			1/
MUL	25B03			bl·al
TRG	25K03			Transfert de R (b ₁ .a ₁)
RAD	8002			1ème sommation de résultats partiels
AAD	25P03			$R'(b_1.a_1) + R(b_1.a_2) + R(b_2.a_1) + R_4$
AAD	25L03			$+ R (b_1.a_1) = R_5 R_5'$
LAD	25J03			>, T - MT
ANG	25K03			1 1 1
TRG	251:03			Transfert de R ₅
TRD	25,703			Transfert de R ₅
VNN		25W03		Le résultat vaut-il zéro ?
DGC	0000			NON
TRD	25L03		Î	
DGC	0000	1	1	

Ī.		SAD	8001	1	
		ANG	25AB3		Le résultat a t'il un signe négatif ?
		AVD	25/D3	1	NON - on calcule la caractéristique X du
		VAD	25E03		résultat.
		AVD	25023	25hC3	.a. J. E
	25AB3	SVD	25A03		OUI - on calcule K
		SVD	25E03		
		SVD	25023	25AC3	
	25AC3	DAG	2222		
		SAG	8003	(4)	Test sur la caractéristique X
1	î.	SD2		25AD3	X Xim ?
		SDl	25AE3		Y' = 0 ?
		TRD	25NO3		
		RAG	25L03	25MB2	est compris entre 0 et \$ limite.
	25MB2	DAG	0008		Agencement du résultat.
		GNN	25AF3		
		RAi	25IC3		_
		AAG	25J03	25MB3	
	251B3	DAD	1111		6
		TRD	25103		2
		RAD'	25J03		10 T
		MAG	251 .13	25MB4	
	25MB4	DVD	1111		n 1
		MG	251103		
		EDI	25103	25W03	
	25AF3	RAD	25103		1.00
	- 0	AAG	25J03	25MB5	
	25NB5	DAD	3333		
1		TRD	25103		

	RAD	25J03		
	1.1.G	25.03	25MB6	
25MB6	DAD	3333		
	AAG	251103		
	EDI	25103	25W03	
25W03	TÒI	8888	25X03	
25X03	TRD	8888	25Y03	
25Y03	TRG	8888	9999	
25AD3	ART	0033	9999	
25AE3	RAG	8003	25W03	
				_
25013	00	0001	0000	
66001	00	0002	0008	
66002	00	0003	0007	
66003	00	0004	0006	
66040	00	0000	8850	
66041	00	0088	3500	
66042	00	2800	6000	
			į	

La caractéristique est plus grande que 🎖 limite La caractéristique est égale à zéro.

Constantes

.../..

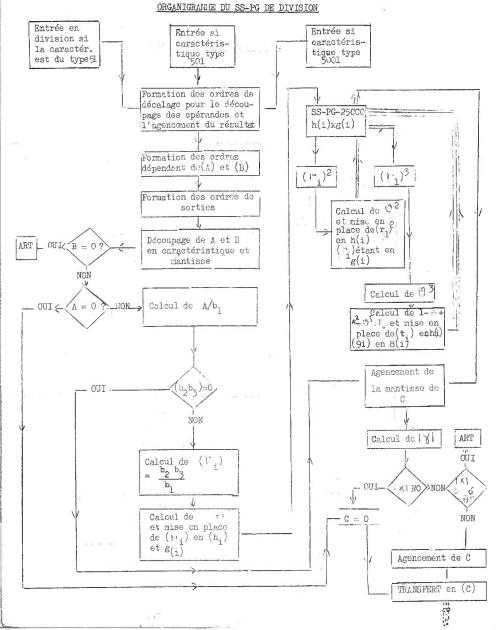
D - La division.

Ce sous-programme consiste

- 1°) à séparer caractéristique et mantisse de chaque opérande
- 2°) à effectuer la division en fixe des mantisses
- 3°) à calculer la caractéristique du résultat.

Explication sur le processus de la division en fixe : obtention de la mantisse du résultat.

L'ordinateur 650 I. B. M. permettant de diviser au mieux un nombre de 20 chiffres par un nombre de 10 chiffres, nous sommes conduits dans notre cas à utiliser le procédé suivant, qui consiste à faire un développement limité du dénominateur.


$$(C_1 C_2 C_3) = \underbrace{(a_1 a_2 a_3)}_{(b_1 b_2 b_3)} = \underbrace{(a_1 a_2 a_3)}_{b_1 (1 + 0)} = \underbrace{(a_1 a_2 a_3)}_{b_1} = \underbrace{(1 - 0 + 0)^2}_{b_1} + \underbrace{0^3 + 2 \cdot 0^4}_{0}.$$

Avec $\frac{b_2}{b_3}$ a une puissance de 10 $\frac{b_3}{b_1}$. Cette puissance de 10

se traduisant par un positionnement convenable dans le calcul de ...

Nous effectuerons donc la suite d'opérations ci-dessous :

- 1°) calcul de $(q_1 q_2 q_3) = \frac{(a_1 a_2 a_3)}{b_1}$
- 2°) calcul de $(r_1 r_2 r_3) = (b_2 b_3)$, qui convenablement positionné par rapport à 1 donne ra
- 3°) calcul de $((\cdot, \cdot)^2$ et $(\cdot, \cdot)^3$, qui après cadrage donnera $(\cdot, \cdot)^3$. $(\cdot, \cdot)^3$ somme $(\cdot, \cdot)^3$, les termes d'ordres supérieurs
- 4°) somme 1 $9 + 4^2 9^3$, les termes d'ordres supérieurs n'altérant pas le résultat.
- 5°) produit $(q_i)(1-9+9^2-6^3)=(Q_i)=(G_i)$, qui sera alors la mantisse du quotient cherché.

	X										
	SOUS	S-PROGRAM	THE DE DIVISION (PASØ)			SBF 25MA4	11				
			The growing state of			EDI 2511AS		1			
	PRA: 0340	1999		,		SBF 25NA5	5	Al.	į.		
	PEN 25004	0000				EDI 25NA6					
	PEH 25044	0001				SBF 25MA6		5			
25	PEN 25444	0002	a rufi		l	EDI 25MD3	j				
			Entrée dans le sous-programme			SBF 25MB3					
2500/	TDI 257.04		Si la caractéristique choisie est du type 51			EDI 25MB4					
	TRD 25LA1					SBF 25MB4				1	
e de le	EDI 66050	0	4]	EDI 25MA7					
ace.	TDI 25051		8.7			SBF 25MA7					
	RAD 66001	25LB1				SAD 25001					
2504	TDI 25A04		Si la caractéristique choisie est du type 501			EDI 25MA8				9) II	
	TRD 25LA1					SBF 25MA8				Į.	
	EDI 66051		21518			EDI 25MA9				fi o	
-	TDI 25051					SBF 25MA9				2	
	RAD 66002		8			EDI 25MB1					
25444	1 TDI 25A04		Si la caractéristique choisie est du type 5001			SBF 25MB1					
	TRD 25LA1		III/N= X			DAG 0004					
	EDI 66052					EDI 25MB2					
	TDI 25051	1				SBF 251/B2					
	RAD 66003	25LB1				RAD 25LA1	25LC1				
			Formation des ordres de décalage					Formation de	a audman di		
261.6	L EDI 25MA1		Ces ordres de décalage sont fonctions du	1	251.01	EDI 25B04		adresses des nombre		pendant des	3
المتارع ا	SEF 25MA1		choix du type de caractéristique ; ils servent			SbF 25504		adresses des nombre	s marnes		
	EDI 25MA2		- d'une part, lors du découpage des opérandes			AAD 25001					
	SBF 25MA2	1	en caractéristique et mantisse			EDI 25004					
	EDI 25MA3		- d'autre part, lors de la mise en forme du		201	SBF 25004					
		1	résultat de l'opération, mise en forme	2		ALD 25001					
	SBF 25MA3		précédant le transfert de celui-ci.			MIN. SOURT	1				
'	EDI 2511/4	İ	precedent le transfert de celui-ci.								
				Į					/		

.../

(1	EDI	25D04	1 į	1					
1	SBF	25D04	1						
1	DAG	0004	1						
Ì	EDI	25E04					d s		
15	SBF	25E04	+						
1	AAD	25001		8					
Ī	EDI	25F04							
5	SBF	25F04							
1	AAD	25001					000		
E	EDI	25G04		*					
5	SBF	25G04							
F	RAD	25104					1000		
		ĺ				D 44.	1	ordres de	
F	דתי	25J04		transfert	du m		n des	orares de	
		25J04	1	transier	uu I	esurcat —			
1	Į.	25J04							
	- 1	25001							
	- 1	25104							
	1	25104	1						
	1	25001							
1		25H04							
	İ		25E04						
						,			
25EC4 R	AD	8888	25/A1		Do	écoupage de	es opé	randes — —	
25MAL D									
T	RC	25TA1		B.		en 25TAl			
1	- 1	8002							
			OARTI	Test : le	divi	seur est-	il nul	?	
25MA2 D.	1					OARTI,			
						n séquence			
					-				
							,		
							/	• •	

25F04	AAD	9999	25MA3	
25MA3	DAG	1111		
	TRG	25TA2		b ₁ > 2
	RAG	8002	25MA4	_
25MA4	DAD	1111	25G04	
25G04	AAD	9999	25MA5	
25MA5	DAG	1111	SER F.	150
	TRG	25TA3	11.54	b ₂ 2!
	TRD	25TA4	25B04	b ₃ 2
25B04	RAD	9999	25MA6	
25MA6	DAG	1111		, g = 1
	TRG	25TA5		× -> 2!
	RAG	8002		
	GNN	25M17	OART2	Test : le dividende
251 LA7	DAD	1111	25004	on va en séquence.
25004	AAD	9999	25MA8	zéro et le program
25MA8	DAG	2222		
	TRG	25TA6		a 1 — 7 2
	RAG	8002	25MA9	
25MA9	DVD	2222	25D04	
25D04	AAD	9999	25MB1	
25MB1	DAG	2222		
	TRD	25TA7		a ₃ > 255
				Exécution
	R/LD	8003		de l'opération (a
	L. G	25TA6		_
	DIV	25TA2		8
	TRD	25TB1		q ₁ > 2'
	RAG	8003		
0.0				

25TA2 25TA3 25TA4 25TA5 de est-il nul ? Si non Si oui le résultat est mme continue en OART2. 25TA6 5TA7 (a₂ conservé en 8002) sion de la première partie (q_1, q_2, q_3) 25TB1

	AAD	25TA7	1	
	DIV	25TA2		
-	TRD	25TB2		q ₂ > en 25TB2
	RAG	8003		2
	DIV	25TA2	į	
	TRA	25TB3		q ₃ — > en 25TB3
	RAG	25TA3		Test sur $(b_2 b_3) : (b_2 b_3) = 0$
	AAD	25TA4		Si oui la mantisse du résultat est (q q q3),
	ANN		25FA5	on continue alors en 25FA5.
	DAD	0001		Si non on continue en séquence, on procède
	DIV	25TA2		alors au calcul de $(b_2 b_3) = (1 1 2 2)$
	TRD	25TC1		b ₁
	TDI	25TD1		et au transfert de r ₁ , r ₂ , r ₃ pour le calcul
	RAG	8003		$de (r_1 r_2 r_3)^2$
	DIV	25TA2		C, en 25TCl et 25TDl
	TRD	25TC2		
	TDI.	25TD2		't, → en 25TC2 et 25TD2
	RAG	8003	44	~
	DIV	25TA2		
	TRD	25103		
	TDI	25TD3		73 en 25TC3 et 25TD3
				Cadrage et mise en place de 🦸
	RAD	25TC1		
	DAG	0001		
	TRG	1RES1	1	
	RAG	25TC1		
Н	AAD	25TC2		
	DAG	0001		

e du sous-
able de
ans cette
met en
ite

				Calcul de 1 - θ + θ^2 - θ^3 et
SUIT2	RSG	1RES1		mise en place pour le calcul de Q
	SAD	LRES2		
	ANN	OUIII	NONNN	40
OUIII	AAG	CTE55		1
	AAG	8701		5
	AAD	2RES1		
	TRG	25CT1		
	RAG	8002		
	AAD	2RES2		1
	SAD	1RES3		
	SAD	3RES1		
V.	TRG	25TC2		* .
- 1 - 1 -	TRD	25TC3	CDOAl	
NONNN	RAG	CTE55		
	SAD	1RES3		2
	TRD	25TC3		
	RAD	8003		
	AAG	CTE55		
	SAD	C8001		
	AAG	8001		
	TRD	25TC2		
,	TRG	25TC1	CDOAl	
CDOA1	EDI	25TB1		Mise en place de (q ₁ q ₂ q ₃) pour le calcul
	TDI	25TD1		$de Q = (Q_1 Q_2 Q_3)$
	EDI	25TB2		
	TDI	25TD2		e
	EDI	25TB3		
	TDI	25TD3	,	
	EDI	SORT3		
	TDI	OOMOO	25000	
SORT	3 00	0000	CALQT	
25FA9	EDI	25TB1		b ₂ b ₃) = 0
161	TDI	1RMA3		Seule la partie b_1 de la mantisse du diviseur étant significative $\theta = \theta^2 = \theta^3 = 0$.
	EDI	25TB2		étant significative $\mathcal{O} = \mathcal{O}^* = \mathcal{O}^* = 0$.
	TDI	1RMA2		On procède alors au calcul de la caractéristique
	EDI	25TB3		du résultat et à l'agencement de celui-ci.
	TDI	1RMA1	CALQT	
				/

25000	RAG	25TD3	
	HUL	25TC3	
	TRG	251101	
	RAG	25TD3	
	MUL	25TC2	
	TRG	25M03	
	TRD	25M02	
	RAG	25TD3	_
, ŭ	MUL	25TC1	
id.	TRG	25M05	
	TRD	25M04	
	RAG	25TD2	
	MUL	25TC3	
	TRG	25/107	
	TRD	25/106	
	RAG	25 T D2	
	MUL	25TC2	
	TRG	251109	
	TRD	25M08	
	RAG	25TD2	
	MUL	25TC1	
	TRG	251111	
	TRD	25M10	
	R/LG	25TD1	
	MUL	25TC3	
	TRG	25M13	
	TRD	25M12	
	RAG	25TD1	
Ц	MUL	25TC2	

Sous-Programme 25000 \bigcirc Ce sous-programme 25000 permet le calcul de $(9^2, 6^3, 0.3)$

Ce sous-programme calcule en virgule fixe le produit de 2 nombres contenus dans 3 mémoires chacun.

- lère opération = calcul des produits partiels

	TRG	25M15				
	TRD	25M14		ŝ		
	RAG	25TD1				
	MUL	25TC1				
	TRG	25M17	6		1 2 1 1	
	TRD	25M16			4	
	RAD	25M01			- 2ème opération : calcul des sommes partielles	
	AAD	251102			permettant d'avoir :	
	AAD	25M06			1º) les reports dus aux produits	
	RAD	8003			partiels d'ordre inférieur.	
i	AAD	25M03			2°) le produit cherché, dont la	
	MD	25M04			longueur est de 3 mots.	
	AAD	251107				
	AAD	25M08		j		
	AAD	25M12				
	RAD	8003				
	AAD	25M05				
	MD	25M09				
	MD	25M10				
	A.D	251:13				
	MD	251114				
	TRD	1RMA1				
	RAD	8003				
	A/.D	251111				
	AAD	25M15				
	AAD	25M16				
	MAG	25M17				
	TRD	1RMA2				
	TRG	1RMA3	0011	00	FIR de 25000	_

CALQT	RAG	1RMA3	i	
	AAD	1RMA2	ja l	
	DGC	0000	,	į.
	TRG	1RMA3		l
	DAG	8000		ļ
	RSV	8002		
	DAD	ccca		
	TRD	25FA1		
	DAG	0004		
	EDI	25FA2		
	SBF	25FA2		
	RAG	1RMA2		
	AAD	1RMA1	25FA2	
25FA2	DAG	6656		
	TRG	1RMA2	- 1	
	TRD	1RFA1	of to	
	RAV	25TA5		
	AVD	25051		
	SVD	25TA1		
	ALD	25FA1		
	ANG	25FA3	25MB2	
25MB2	DAG	3333		
	GNN	25F/14		
	TRD	25FA1		
	RAG	1RMA2		
	LAD	1RMA1	25MB3	
25/IB3	DA.D	1111		
	TRD	1RMA1		
	RAG	1RMA3	1	

Agencement de la mantisse de C, afin de tenir compte des reports essentiels.

Calcul de | X |

Si l'accumulateur est négatif C 7, 0.

Si X > X limite on va en 25FM4, Dépassement de Capacité

		12.5			
		AAD	1RMA2	25MB4	i
	25MB4	DAD	1111		
		ANG	25XX1		C < 0 ? Si non on va en séquence et
		AAG	25FA1	25YY1	X = 1 X Si oui on va en 25XX1
	25YY1	EDI	LRMAL	25H04	
	25FA4	ART	0444	9999	Il y a dépassement de capacité : X est trop
	25FA3	SAD	8002		Le résultat est équivalent à zéro.
1		EDI	8002	25404	8
Ì	25H04	TDI	9999	25104	Transfert en (C) du résultat A/B
1	25104	TRD	9999	25J04	111
	25J04	TRG	9999	9999	A TOTAL TOTA
1	25XX1	SAG	25FA1	25YY1	C étant $\langle 0 \rangle = - \langle \gamma \rangle$
	OART1	ART	0443	9999	Arrêt, le diviseur étant nul, C = 0.
1					
	CTE55	50	0000	0000	CONSTANTES -
1	25001	00	0001	0000	E (**)
-	66050	00	0000	0051	
	66051	00	0000	0501	
İ	66052	00	0000	5001	
1	56001	00	0002	0008	
	66002	00	0003	0007	
1	66003	00	0004	0006	
					Σ.

2ème PARTIE

ENSEMBLE de SOUS-PROGRAMMES MATRICIELS ADAPTES au CODE de PROGRAMMATION de Mme Marion CREHANGE

ENSEMBLE DE SOUS-PROGRAMMES MATRICIELS ADAPTES AU

CODE DE PROGRAMMATION

Introduction

RANGE OF STREET STREET, STREET

Afin de permettre une utilisation aussi large que possible du C.D.P., et profiter pleinement de ses facilités de programmation, il est apparu utile de constituer un ensemble de sous-programmes spécifiques au calcul matriciel. Ces sous-programmes ont été élaborés en tenant compte de tout ce qui était utilisé par le C.D.P.: constantes et sous-programmes. Ainsi dans les opérations de multiplication, inversion, addition de matrices, avons-nous utilisé les sous-programmes arithmétiques virgule flottante, ce qui permettait d'en réduire au minimum l'encombrement. Ces sous-programmes présent és en 5 mots par carte translatables : les cartes commandant l'exécution de tous ces sous-programmes sont de la forme

PP'(N) iA. jB. kC .

Les Codes (PP') étant laissés au choix de l'opérateur. Pour certains d'entre eux, cependant, l'ordre à 2 mémoires étant insuffisant, nous avons du nous résoudre à utiliser en plus la mémoire 1885. C'est le cas notamment de l'addition, de la soustraction, et de la multiplication de matrices.

A CS ON F. THERE

Caractéristiques du sous-programme d'inversion.

Ce sous-programme nécessite une séquence de mémoires de travail fonction des caractéristiques de A et B. Si n est l'ordre de la matrice et p le nombre de vecteurs second membre, la zone de travail comprendra 2 n + p mémoires.

Ordre "C.D.P." commandant l'inversion

Il est de la forme PP'(N). i(A). j(b). k (C)

A = adresse du ler élément de la matrice

b = adresse de la lère mémoire de la zone de travail

C = caract éristiques de (A, B)

$$C = (n) \cdot (n + p)$$

XX · XX

Caractéristiques du sous-programme de calcul d'un déterminant.

C'est sensiblement le même que le sous-programme d'inversion et de résolution des systèmes linéaires. Il comporte un certain nombre d'ordres supplémentaires, dont la fonction est de stocker les pivots successifs et d'en faire le produit en fin de calcul ; ce produit étant la valeur absolue de \triangle . Le signe est déterminé en fonction des modificatifs de ces pivots . La forme de l'ordre est la même.

Pour ces deux sous-programmes, une fois le calcul effectué, nous trouvons

en
$$\begin{bmatrix} A, B \end{bmatrix}$$
 $\begin{bmatrix} A^{-1}, X \end{bmatrix}$

et pour le dernier en b, la valeur de 🛆 (A).

.../...

SOUS-PROGRAMME de TRANSPOSITION de MATRICES,

Définition

On appelle transposée d'une matrice \boxed{A} la matrice \boxed{A} ' obtenue en permutant lignes et colonnes de même indice; l'écriture symbolique de cette opération sera donc $\boxed{a_{ij}}$ ' = $\boxed{a_{ji}}$.

Exemple:

$$\begin{bmatrix}
A \\
A
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix} = \begin{bmatrix}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{bmatrix}$$

Généralités sur le sous-programme.

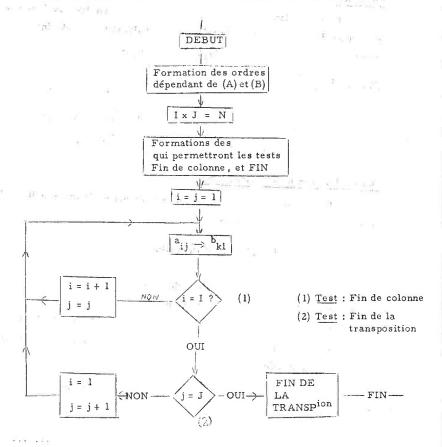
 $L^{i}ordre\ du\ code\ de\ programmation\ déclenchant\ la\ transposition\ d'une$ matrice $|\widetilde{A}|$ sera de la forme

: nombre de lignes de la matrice | A à transposer

J : " de colonnes de cette matrice

A: adresse de la mémoire contenant le premier élément de \widehat{A}

B : adresse de la mémoire contenant le premier élément de la matrice transposée $|\widehat{A}|$ '


La structure du sous-programme de transposition impose que A soit différent de B.

. . . /. . .

ORGANIGRAMME

TRANSPOSEE D'UNE MATRICE

... / ...

SOUS-PROGRAMME DE TRANSPOSITION D'UNE MATRICE (PASØ)

	PRA	0044	1999	Ŋ.	
	PRG	W1990	1993		
TRAN	TDI	W0001			
	DAG	0002			
	RAG	8002			
	AAD	M000J			. 8
	EDI	1967			
	SBI	MOOOT		I	En WOOOl il y a l'ordre de sortie
	EDI	61B02			
	SBF	61802]]	En 61B02 il y a 24. (B). 61C02
	RAD	8003		-	
	DAG	0002		(ii)	
	EDI	.61A02		1	
	SBF	61A02			En 61A02 il y a 69. (B). 8002
	SAG	8003		11	
	TDI	W0002		1125	I est stocké provisoirement en W0002
61AC	2 EDI	9999	8002		
61B0	2 TDI	9999	61002		
	DAG	0002			
	SAI	8002			
	DAC				
	1	W0003		1	J est mis en réserve en W0003
		W0002			$J \times I = N$ (nombre d'éléments de la matrice)
		61V05			
		W0002	!	[En W0002 69.(A + Ij). 8002; cet ordre
		W0003	1		permettant de faire le test final.
		W0004	ì		En W0004 69.(A + (I-1).J). 8002, ordre
d	RAC	d 61A02		1	qui permettra le test "fin de colonne".

1	1 .	61B02	8003	Exécution du transfert d'un élément a
61002	SAG	W0004		d .
	GNN		61102	Test : Une colonne a t'elle été transposée ?
ĺ	AAG	8001		- Non: $i \rightarrow j + l$; $j = j$: on va vers
	AAG	W0003		les ordres d'exécution du transfert de
	AAD	1689	8003	a(+ 1, j)
61102	AAG	W0004		- Oui : une colonne a été transposée
	AAG	1689		on passe alors au test final.
	SAG	W0005		ή
	GNN		W0001	la transposition est-elle faite ? oui on va
	AAG	8001		à l'ordre de sortie contenu en W0001.
	SAG	8003		N_{OR} ; $i=1$, $j=j+1$
	TDI	W0004		2
	AAG	61A02		
	AAG	1689		1.0
	AAD	8001		
	TRG	61A02	8003	On va vers les ordres de transfert de ai,j.
		1		u = u

SOUS-PROGRAMME D'ADDITION et de SOUSTRACTION de MATRICES.

Définition

L'Addition (ou la soustraction) de deux matrices A et B consiste à effectuer l'addition (ou la soustraction) des éléments de mêmes indices de chacune d'elles. Ces opérations ne sont donc possible que sur des matrices de même ordre.

$$|\widehat{A}| + |\widehat{B}| = |\widehat{C}|$$
 avec $C_{ij} = a_{ij} + b_{ij}$.

Exemple:

$$\begin{bmatrix}
A \\
A
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix} + \begin{bmatrix}
B \\
B
\end{bmatrix} = \begin{bmatrix}
7 & 8 \\
9 & O \\
1 & 2
\end{bmatrix} = \begin{bmatrix}
C
\end{bmatrix} = \begin{bmatrix}
8 & 10 \\
12 & 4 \\
6 & 8
\end{bmatrix}$$

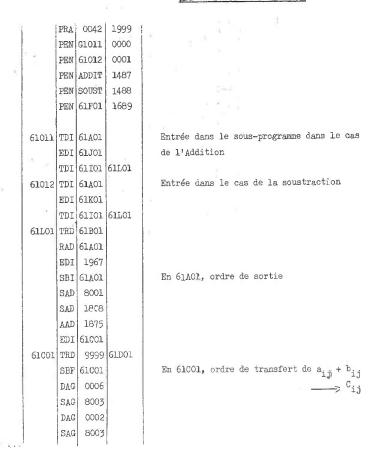
Généralités sur le sous-programme :

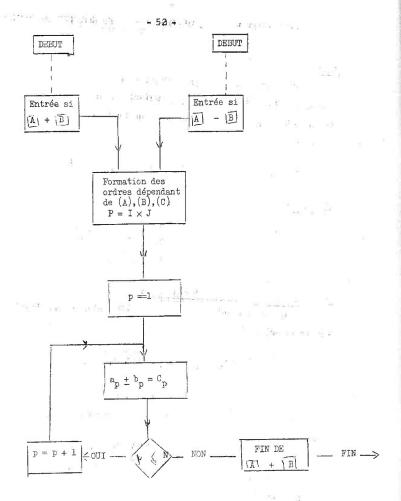
L'ordre du code de programmation commandant l'addition (ou la soustraction) de deux matrices |A| et |B| sera de la forme

En outre les caractéristiques communes à |A| et |B|, c'est-à-dire le nombre de lignes et de colonnes de ces matrices, devront être chargées en 1885 sous la forme

I : nombre de lignes de A et B

J : nombre de colonnes


A : adresse du ler élément de A B : " de B


C : " de C

C pouvant être A ou B.

. . . / . . .

ADD et SOUST de 2 MATRICES

ADDITION et SOUSTRACTION de 2 MATRICES

ORGANIGRAMME

إذراعه	TDI	61E01	Ē.
	DAG	0006	
	MUL	61E01	
	AAD	61001	
	TRD	61E01	61H01
61H01	RAD	61B01	61101
61D01	RAG	61001	
	AAG	61F01	
	SAG	6 1 E01	
	GNN		61,001
	AAG	8001	
	AAD	61B0 <u>1</u>	
	AAD	6 1 G01	-
	TRG	61001	
	TRD	61B01	61H01
61G01	00	0001	0001

I stocké en 61E01

 $I \times J = P$

En 61H01, il y a TRD. (C + N). 61D01 constante permettant le test final.

Entrée dans le sous-programme d'Add ou de Soust, suivant le cas, qui fera $a_{i,j} + b_{i,j} = C_{i,j}$

L'opération est-elle terminée? Si oui, on va à l'ordre de sortie. C'est la fin du calcul. Si non on prépare les ordres qui permettront d'effectuer le calcul de l'élément suivant de la matrice $\{\overline{0}\}$.

.../...

SOUS-PROGRAMME de MULTIPLICATION de MATRICES.

Définition

Soient la matrice A, ayant I lignes et J colonnes et la matrice B ayant J lignes et K colonnes.

Le produit de la multiplication $A \times B$ est une matrice C. dont l'élément C_{ik} est obtenu en faisant la somme des produits suivants :

ler élément de la ligne i de \boxed{B} par le ler élément de la colonne k de \boxed{B} , 2ème élément de la ligne i de \boxed{A} par le 2ème élément de la colonne k de \boxed{B} etc.....

En résumé:

$$C_{ik} = \sum_{j=1}^{\infty} a_{ij} b_{jk}$$

Généralités sur le sous-programme.

L'ordre du code de programmation commandant la multiplication de deu matrices $|\widehat{A}|$ et $|\widehat{B}|$ sera de la forme

En outre en 1885, il faudra charger les *caractéristiques I, J, K de A et B

I : nombre de lignes de A

j : nombre de colonnes de A et de lignes de B

K: nombre de colonnes de B sous la forme OO.OOI, J. K.

A et B sont les adresses des mémoires contenant respectivement les lers éléments de A et de B.

C est l'adresse de la mémoire contenant le premier élément de la matrice produit,

C doit être différent de A et B.

	1.047	All Aures	and the second second	7				
			DEBUT					
	** E di	3.8	26 14 15 7	191 . 4		8.		
	.3		Formation des ordres dépendant de A. B. C	a II				
X		Ĺ		to total				
	g 5 900	Г	· Y					
12.85	2011	Ĺ	Formation des ord dép de I, J, K.	ires				
			V		9,270			
			i = 1 j = 1;1 =1 k = 1					
		1						
			RAZ de C					
_ =:B	- 4 10 2 1		>	A1177 - 12	4	di-		
	0.00		a _{ij} × b _{jk} ->T	ra ra ra na				
			*	**				
			$T + C \rightarrow C_{\widehat{I}}$					
			Ψ					
			j + 1 = j	R+I = R	- 2	<u> </u>		7
		NON	-J-J=0?	$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$		K = 0 3 -0	OUL i + l = i	i
								1
						NON	₩	
	30.377	Ш			m n See	£20		
		-			s esse M	NON	1 - I = 0	>
		i "indi", n				6 n - ? -		
				$\mathbf{p} = \mathbf{p} \cdot \mathbf{p}$			OUI	
	*** * *	¥(FIN	
							1	

MULTIPLICATION DE MATRICES

- 1	PRA	i	1999	
	PEN	ADDIT	1487	
	PEN	MULTI	1450	
	PEN	CTEUN	1764	
	PEN	CTE01	1689	
			7.6	
DEBUT	TDI	NON33		Formation des ordres et constantes
	TRD	CIMAB		dépendant de A, B, C.
	TDI	CTEAB		
	RAD	NON33		
	SAD	1808		
	EDI	1967		
	SBI	NON33		
	DAG	0002	l	
	AAG	1885		v v
	DAD	0006		D.
	AAG	CTMAB		
	EDI	CTMCT	1	
	SBI	CTMCT		
	DAG	0002		
	SAG	8003		
	TDI	CTEII		I TRF en CTEII
	DAG	0002	:	•
	SAG	8003		
	TDI	CTEJJ		J TRF en CTEJJ
	EDI	SORT2		
	SBF	SORT2		
a vid	EDI	RAZRO		
	SBF	RAZRO		

All Inc.	n Sub Said			+:	- 5	8 -
	io de la	1				"
		DAG		***************************************	1	
		RAD	8003			
		TDI	CTEKK		İ	K TRF en CTEKK
		EDI	CTEO1			
	1	SBI	CTELK			F 55
		TRG	CTRII			RAZ des compteurs i, j, k
	065	TDI	CTRJJ			
	* II	TDI	CTRKK	SUIT4		
	SUIT4		CTMAB	RAZRO		Exécution de $C_{ik} = \mathcal{E}_{i} a_{ij} \times b_{jk}$
	SUIT3	EDI	SORT1	MULTI		j -0 02
v	SORTI	TRD	TRAVA	SUITI		
	SUITI	RAD	CTMCT		-	
		1 1	SORT2	ADDIT	1 2	
}	SORT2			SUIT2		
	SUIT2	RAG (CTRJJ			H 8
		AAG	CTEUN			1 .
		SAG	CTEJJ			1 11.
		ì		NON11	i	Test 1 : A t'on exécuté toutes les opérations
	OUILL					qui doivent avoir pour résultat Cit? Si non, on va en OUIII, le calcul se poursuit
	ĺ	TRG	TRJJ		- 11	j étant augmenté d'une unité on procède
		RAD				à la multiplication des éléments muivants de (A) et (B) pour une ligne de (A)
		VVD C	TEIK			et une colonne de B données.
		-		SUIT3		
İ	NON11	- 1	- 1			On vient d'obtenir un Cik*
	240	AAG	TRKK			179
	1	AAG C	TEUN			
	ļ	SAG C		1		
		ANG O	UI22	NON22		Test 2: A t'on obtenu tous les Cik pour
						une valeur de <u>i donnée</u> ?

.../...

au (4

ı							
		OUI22	AAG	CTEKK	1	1 2	Non, on poursuit les calculs, k étant
į			TRG	CTRKK		e vi	augmenté d'une unité, c'est-à-dire que l'on
	0. AM 11.	-	AAG	CTEAB		TATOMINANE STOR	passe à la multiplication d'une ligne donnée
			TRC	CTMAB	SUIT5		de A par la colonne de B suivant cell
i		SUIT5	RAG	RAZRO	1		que l'on vient d'exploiter.
		42	AAD	SORT2	-	1,00	
			AAG	CTEOL			Law St.
-		6	AAD	8001	S		
			TRG	RAZRO			
İ			SAD	8002			
	िक पुरु किस्सुम स्थ्		TDI	SORT2			15 15
	Bertham to the	. 194	11-0	CTMCT			- 1
	CHINA NO.		AAD			-	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mas N	TRD	CTMCT	SUIT4 .	7.5	2007 HVFT H H ² - Y - 68
İ		Non22	TRG	CTRKK	2.5	1.5	Oui, tous les C _{ik} pour un i donné ont
	- 251		AAG	CTRII			été calculés.
	- 10° K = F		AAG	CTEUN	186	**	
			SAG	CTEII			
			ANG	OU133	NON33		Test 3 : tous les éléments de (C ont-ils
	202,000	OUI33			λ!		été calculés ?
			TRG	CTRII			Si oui, on va à l'ordre de sortie.
			RAG	CTEJJ			Si non, on augmente i d'une unité (on passe
	9550		DAĞ	0004			ainsi aux calculs portant sur la ligne
i			AAG	CTEAB	e + 6		suivante).
			TRG	CTEAB			et on recommence les calculs.
			SAG	Tiel Like			To our results of the control of the
1					SUIT5		- 5 g
		CTMCT		TRAVA	0000		
	+ ×	RAZRO	21	6.3	SUIT3		
	200	CTEUN	00	400 20	0001	luolari	îste v
į		CTEO1	00				
1		21101	~~	COOL	5000		

INVERSION DE MATRICES

RESOLUTION DES SYSTEMES LINEAIRES

Généralités :

Le but d'un tel programme est de permettre la résolution de systèmes linéaires, l'inversion de matrices non singulières, et le calcul des déterminants,

La méthode utilisée est la méthode de Gauss-Jordan qui est une méthode directe.

L'élaboration du programme a été conduite de façon à réduire au minimum le nombre de mémoires utilisées. En outre pour éliminer le cas des points nuls et pour diminuer autant que possible la propagation des erreurs de chute, nous avons utilisé la méthode du pivot maximum; pour simplifier la présentation du problème, nous commencerons par établir le processus dans le cas où les pivots choisis sont sur la diagonale principale des matrices successives.

Principe de la Méthode :

Soit à résoudre le système linéaire symbolisé par l'écriture

$$\boxed{A} \setminus x$$
 = $\{B\}$

où \widehat{A} est la matrice carrée des coefficients du système , matrice d'ordre $m \times m$ si le nombre d'équations est m

{x} est la matrice m x n des inconnues
et {B} la matrice M x n des seconds membres.

Dans la mesure ou $\{B\}$ sera la matrice unité, la résolution du système $|A| \times |B| = |B|$ donnera la matrice inverse $|A|^{-1}$.

La résolution de ces deux problèmes, inversion de matrices et résolution des systèmes linéaires effectuée par une succession de produits de matrices

$$D = \begin{bmatrix} A, B \end{bmatrix} = I \begin{bmatrix} A, B \end{bmatrix} = V^{(o)} W^{(o)}$$

$$= V^{(1)} W^{(1)}$$

$$= V^{(2)} W^{(2)}$$

$$= \dots$$

$$= V^{(n)} W^{(n)} = A \begin{bmatrix} I, X \end{bmatrix}$$

D = A, B signifie que les matrices A et B accolées doivent être comme une seule matrice.

une seule matrice.

Chaque produit $V^{(k)} W^{(k)} = 0$ égal à la matrice des données (coefficients et seconds membres).

- Les V^(k) représentent une suite de matrices carrées, initialement, la matrice unité, finalement la matrice A.
- Les W(k) représentent une suite de matrices rectangulaires.

A chaque pas du calcul, le passage de $V^{(k-1)}$ à $V^{(k)}$ se fait en remplaçant dans $V^{(k-1)}$ un vecteur unité par un vecteur de A. C'est uniquement sur la matrice $W^{(k)}$ que l'on travaillera . A la dernière étape, B sera remplacé par les solutions cherchées X. Dans le cas de l'inversion de matrice B=I, I matrice unité et au dernier pas du calcul nous aurons A^{-1} au lieu de X.

Formules du calcul.

Le passage de $W_{(k)}^{(k)}$ à $W^{(k-1)}$ se fait au moyen de la méthode du pivot.

.../...

Au pas k-1, nous avons

(1)
$$D = [A, B] = V^{(k-1)} W^{(k-1)} \text{ avec } W^{(k-1)} = [A_1, A_2, \dots, A_{k-1}, \dots, A_k]$$

$$I_k \text{ étant la } k^{i \text{ème}} \text{ colonne de la matrice unité.}$$

D'après (1) chaque colonne de D s'écrit

$$(2) D_{j} = N_{1j} A_{1} + W_{2j} A_{2} + \dots + N_{k-1,j} A_{k-1} + N_{k,j} I_{k} + \dots + M_{k-1,j} A_{k-1} + N_{k,j} I_{k} + \dots$$

où les W_{ij} pour $i=1,2,\ldots,m$ sont les éléments de la colonne j de $W^{(k-1)}$. En particulier $A_k=D_k$.

(3)
$$A_k = W_{1k} A_1 + W_{2k} A_2 + \dots + W_{k-1,k-k-1} + W_{k,k} I_k + \dots + W_{m,k} I_m$$
Nous supposerons alors que $W_{kk} \neq 0$.

La substitution de I tiré de (3) dans (2) donne alors

(4)
$$D_{j} = \left(W_{1j} - W_{kj} - \frac{W_{1k}}{W_{kk}}\right)^{A_{1}} + \left(W_{2j} - W_{kj} - \frac{W_{2k}}{W_{kk}}\right) A_{2} + \dots$$

$$+\frac{w_{kj}}{w_{kk}} \stackrel{A_1}{\longrightarrow} + \cdots + (w_{nj} - w_{kj} \frac{w_{mk}}{w_{kk}} I_m.$$

Les quantités à calculer en cours de programme sont alors mises en lumière ; ce sont

....

A-Vh: of

.../..

$$W'_{i,j} = \left(W_{i,j} - N_{k,j} - \frac{W_{i,k}}{W}\right)$$
 pour tout i sauf i = k e

$$W_{kj}^{l} = \frac{W_{kj}}{W_{kl}}$$
 pour tout j.

Les Wij devenant les éléments de W(k)

Posons
$$C_i = \frac{W_{ik}}{W_{kk}}$$

Nous voyons que le passage de $W^{(k)}$ à $W^{(k-1)}$ peut se symboliser $W^{(k)} = C^{(k)} - W^{(k-1)}$

avec
$$C^{(k)}$$

$$\begin{array}{c|cccc}
 & 1 & -C_1 & 0 \\
 & 1 & -C_2 & \\
 & 1 & \vdots & \\
 & & 1/W_{kk} & \\
 & 0 & -C_m & 1
\end{array}$$

Que ce soit dans l'inversion d'une matrice ou la résolution d'un système linéaire, seules seront stockées les éléments intéressant par exemple pour $C^{(k)}$ nous gárderons uniquement la colonne k.

Inversion de Matrice et Produit de Matrices

D'après ce qui précède, nous pouvons écrire

$$W^{(1)} = C^{(1)} W^{(0)} = C^{(1)} A$$

$$W^{(k)} = C^{(k)} W^{(k-1)} = C^{(k)} C^{(k-1)} \dots C^{(2)} C^{(1)} A$$

$$I = W^{m} = C^{(m)} C^{(m-1)} \dots C^{(i)} \dots C^{(2)} C^{(1)} A$$

$$D^{(i)} A^{-1} = C^{(1)} C^{(2)} \dots C^{(i)} \dots C^{(m)}$$

Les matrices $C^{(i)}$ ne diffèrent d'une matrice unité que par la colonne (i), aussi la mise en réserve de $C^{(1)}$ ne nécessitera t'elle que m mémoires. L'inversion de matrice se ramène donc à un produit de m matrices particulières.

Pour la résolution d'un système linéaire, il en sera de même

$$x = A^{-1} b = C^{(1)} C^{(2)} \dots C^{(n)} b$$

Si nous posons $b = x^{(0)}$ nous voyons que

$$x^{(1)} = C^{(1)} x^{(0)}$$

$$x^{(2)} = C^{(2)} x^{(1)}$$

$$x^k = C^{(k)} x^{(k-1)}$$

avec k = 1.2.....

donne finalement $x^{m} = x = C^{m} x^{(m-1)}$.

En conclusion, le principe à dégager de ce qui précède est que résolution des systèmes linéaires et inversion des matrices seront obtenues en mettant en évidence à chaque étape du calcul les matrices $C^{(i)}$ et en effectuant les produits $C^{(i)}$ $M^{(-1)}$ avec $M^{\circ} = II$ dans le cas de l'inversion et $M^{(o)} = B$ dans le cas de la résolution des systèmes linéaires.

.../..

Calcul du déterminant.

Il est nécessaire, lors de l'inversion d'une matrice ou de la résolution d'un système linéaire sur lesquels on a peu de renseignements quant à l'instabilité, cette instabilité étant due au mauvais conditionnement du système, de calculer la valeur du déterminant \bigwedge^A de A.

On a
$$D = V^{(k)} W^{(k)} = V^{(k)} C^{(k)} W^{(k-1)} = V^{(k-1)} W^{(k-1)}$$

$$V^{(k)} C^{(k)} = V^{(k-1)}$$
or $\int C^{(k)} = 1/W_{kk}$

$$D^{(k)} = V^{(k-1)}$$

$$\nabla V^{(k)} = W_{kk} = \int V^{(k-1)} W_{kk} = \int V^{(k-1)} W_{kk} = \int V^{(k-1)} W_{kk} = \int V^{(k-1)} W_{kk} = \int V^{(k-1)} W_{kk} = \int V^{(k)} W_{kk$$

Le déterminant de la matrice A est donc égal au produit des pivots successifs.

Méthode du pivot maximum :

Comme nous l'avons dit précédemment, afin d'éviter la possibilité d'avoir $W_{kk} = 0$ et de plus pour limiter la propagation des erreurs de chute, nous sommes amenés à compliquer la méthode du point de vue opérations logiques afin de pouvoir choisir non plus le pivot sur la diagonale principale, mais le pivot maximum,

k = k + 1

Soit W_{pk} le plus grand des W_{ik} . La substitution de A_k à la place de I_p dans $V^{(k)}$ conduit pour obtenir $W^{(k)}$ aux formules de calcul suivantes :

$$C_i = \frac{W_{ik}}{W_p^k}$$
 pour tout i excepté i = p

 $W_{ij}^{!} = W_{ij}^{!} - W_{pj}^{!} C_{i}$ pour tout i excepté i = p et pour tout j,

$$W_{pj}^{i} = \frac{W_{pj}}{W_{pk}}$$
 pour tout j.

L'usage de ces formules entraîne que les coefficients de A_k dans la relation (4) apparaissent dans la ligne \emptyset et non plus dans la ligne k de $W^{(k)}$.

Nous permuterons alors à chaque étape du calcul les lignes \emptyset et k.

.../..

2 . 2 . . .

Talm field, jak

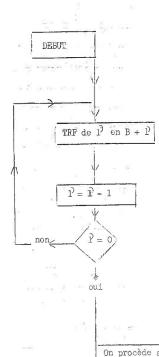
ORGANIGRAMME GENERAL

Initialisation
Formation des ordres
dépendant de m, p

Recherche du pivot à l'étape k

Opération sur la colonne k.

Opération sur les autres colonnes.


Permutation des

k = n non

FIN

200,000

MISE EN PLACE DES CONSTANTES DE REPERAGE DES PIVOTS

On procède alors à la recherche du plus gra nd pivot.

RAZ Accumulateur Japanie Classila i i RAV du pivot maxi 94 W 10 H A 1965 9838 TRANSFERT de a_{ij} en "PIVOT" Nº du pivot en mémoire ... Beggg CTR = CTR + 1 amajásyna ro SUITE # 1 6 V 1

RESUME SUR LA MISE EN OEUVRE DES SOUS-PROGRAMMES

MATRICIELS

1 - TRANSPOSEE D'UNE MATRICE.

Forme de l'ordre

PP'(N) i(A) j(B) k(C).

A : lère adresse de la matrice à transposer

Alterbridge

B: " " transposéc

C: i. j, caractéristiques de A

Début du sous-programme

En∆ + 0000, si ∆ est le facteur de translation.

Exemple:

L'ordre

PP' (N) 0 (0000). 0 (1000). 0 (11.21)

ordonne la transposition ou la matrice (11 x 21) qui est rangée ligne par ligne à partir de 0000 ; la matrice transposée (21 x 11) sera rangée ligne par ligne à partir de 1000

Encombrement: le sous-programme occupe 44 mémoires.

2 - ADDITION DE DEUX MATRICES

Forme de l'ordre:

PP' (N) i (A), j(B), k(C)

A :lère adresse de la matrice

B :lère adresse de la matrice

C : lère adresse de \C\ = A + B

.../...

en 1885 de l'être chargé 00.0000. i, j i : nombre de lignes de Λ et B

i c " de colonnes de A et B

C peut être A, ou B.

All passer guides as the edition of the H Mile And English William Parks the "go first thread

A REPORT OF THE PROPERTY OF THE PROPERTY OF

A CANADA MARKA MAR

grand or distinct Enterior with the

20 Sep 3 About 19 19 19 19 20

grants taketur with 3 Mig. 1 of 100.

g Bo I may be not I will a di-Alabama and the Control of the Control

. J. J. B. Av. P. Are. A. Roberte-State State

St. Communication of a discountry of a discountry of a discountry of the discountry

.

DEBUT DU SOUS-PROGRAMME : En \(\sum_{1} + 0000\), si \(\sum_{2}\) est le facteur de translation.

Exemple: L'ordre PP' (N) 0 (0000) 0 (0100) 0 (0200)
avec en 1885: 00 0000 0909

commandera l'addition de la matrice \boxed{A} d'ordre 9×9 rangée ligne par ligne à partir de 0000 et de la matrice \boxed{B} de même ordre, rangée elle aussi ligne par ligne, à partir de 0100. La matrice résultat $\boxed{C} = \boxed{A} + \boxed{B}$ sera rangée à partir de 0200.

Encombrement : le sous-programme occupe 45 mémoires

3) SOUSTRACTION de DEUX MATRICES.

Le programme de soustraction étant le même que le programme d'addition, tout ce que nous avons dit pour l'addition est valable pour la soustraction; seul, le début du sous-programme est différent; si \triangle est le facteur de translation, le sous-programme de soustraction commence en $/ \setminus$ +0001.

4) MULTIPLICATION DE DEUX MATRICES.

Forme de l'ordre :

PP'(N) i (A) j (B) k (C).

A : lère adresse de la matrice A

B : lère adresse de la matrice B

C: lère adresse de la matrice produit $|C| = |A| \times |B|$

En 1885, doit être rangé 00.00i. j. k.

i : nombre de lignes de A

j : nombre de colonnes de A et de lignes de B

k : nombre de colonnes de B

.../...

C ne peut être ni A, ni B.

Début du sous-programme : En $\[\triangle \]$ + 0000, si $\[\triangle \]$ est le facteur de translation

Exemple L'ordre PP' (N) i (0000) j (0100) k (0200)

avec en 1885 00 0006 05 06

commandera la multiplication de la matrice B d'ordre 5 x 6 rangée à partir de 0100 par la matrice A d'ordre 6 x 5, rangée à partir de 0000 et le résultat sera rangé à partir de 0200.

A, B, C étant rangés ligne par ligne en séquence,

Encombrement : le sous-programme occupe 94 mémoires.

5) INVERSION et RESOLUTION des SYSTEMES LINEAIRES.

Forme de l'ordre,

PP' (N) i (A) j (B) k (C)

A : lère adresse de la matrice des coefficients et des seconds membres.

B : lère adresse de la zone de travail.

C:(n n+p)

n : ordre de la matrice des coefficients

p : nombre de seconds membres.

Début du sous-programme : en △+0000, si △ est le facteur de translation.

Exemple: L'ordre PP'(N) i (0000). j (0100) k (0709) ordonnera la résolution du système linéaire d'ordre 7 ayant 2 seconds membres. La matrice inverse de la matrice des coefficients sera à la place de cette dernière, et les seconds membres seront remplacés par les solutions cherchées. La zone de travail comportera 16 mémoires en séquence, à partir de 100.

Encombrement : Le sous-programme occupe 234 mémoires.

our tar share. N/19811 issue k

6) INVERSION, RESOLUTION DES SYSTÈMES LINEATRES, ET GALCUL DE DETERMINANT.

C'est le même que précédemment ; complété par des ordres permettant le calcul de \bigwedge .

Tout ce que nous avons dit ci-dessus demeure; mais en plus, la valeur de \triangle se trouve en B, en fin de calcul.

CALL THE STATE OF

Apolatinam allegan og gant at a d

If I must be measure or region in a ...

Encombrement : le sous-programme occupe 255 mémoires.

gm/8ths . grandimorpia fig

144

and Waldely, 1822 Surface merenning granters on a figure of

EXEMPLE

Soit le système linéaire

$$4 \times - 3 \times = 1$$

Calculer

- | 1°) la matrice inverse
 - 2°) le vecteur solution
 - 3°) le déterminant du système.

Les caractéristiques sont n = 2, p = 1.

Supposons que nous ayons choisi (PP') = 45, le programme s'écrira par exemple :

Entrée en C.D.P.		1 0102	010]	69	0100
		0 0103	0000	00	0101
		4 1800	188/	24	0102
Initialisation		0 0105	0000	- 02	0103
00060 00203 Calcul	00060	00001	107	.15	0105
	00060	00001	109	49	0107
00001 00006 PFØ de A ⁻¹ et :	00001	00003	111	49	0109
ARRET.		00 1800	0000	- 01	0111

.

[A. B] est rangé ligne par ligne, en séquence, à partir de 0001 T commence à 00060 et nécessite 21 + p = 5 mémoires

Avant exécution

1 4	2 - 3	3
4 - 7	5	6
	A	В

Après exécution

1	1		3	2	*	1	3		60 - 17
7	4		4	5		I	6		Δ
l		A-1			- 0	В		1	

3ème PARTIE

- 1°) SOUS-PROGRAMME DE CALCUL des MOMENTS CENTRES JUSQU'A L'ORDRE 4.
- 2°) ESSAIS D'ESTIMATION de DISTRIBUTIONS EXPERIMENTALES PAR LES COURBES de PEARSON;

1.1/11.

CALCUL DES MOMENTS CENTRES D'ORDRE 2, 3 et 4

D'UNE DISTRIBUTION

Définitions préliminaires

Moments par rapport à l'origine.

Soient Y_1, Y_2, \ldots, Y_n les contenus des classes d'abcisses respectives X_1, X_2, \ldots, X_n . Nous appellerons moments d'ordre p par rapport à l'origine, la quantité.

$$m_{p} = \frac{1}{N} \left(x_{1}^{p} Y_{1} + X_{2}^{p} Y_{2} + \dots + X_{i}^{p} Y_{i} + \dots + X_{n}^{p} Y_{n} \right)$$

N étant le cont enu de la collection.

De façon plus générale

$$m_{p} = \frac{1}{N} \quad \underbrace{\stackrel{n}{\underset{i=1}{\longleftarrow}}}_{i} \quad \underset{i}{\overset{p}{\underset{i}}} \quad Y_{i}$$

Nous aurons ainsi en particulier

$$m_{0} = \frac{1}{N} \left[x_{1} + x_{2} + \dots + x_{i} + \dots + x_{p} \right] = 1$$

$$m_{1} = \frac{1}{N} \left[x_{1} + x_{2} + \dots + x_{i} + \dots + x_{p} \right] = m$$

Moments par rapport à la moyenne : Moments centrés

Nous appellerons moments par rapport à la moyenne d'ordre p

::/...

au moment centré d'ordre p la quantité.

$$P = \frac{1}{N} \sum_{i}^{p} (x_{i} - m)^{p} Y_{i} = m_{p} + (-1)^{1} pn m_{p-1} + p \frac{(p-1)(-1)^{2}}{2!} n^{2} m_{p-2}$$

$$\dots + \dots + (-1)^{i} C_{p}^{i} m^{i} m_{p-i} + (-1) p m^{p}.$$

Ainsi $\mu_1 = m - m = 0$

$$= m_2 - 2m^2 + m^2 = m_2 - m^2 = 0^2$$

Méthode de Calcul:

Nous commencerons par transformer la suite des abcisses des classes X_1, \ldots, X_n en une suite d'entiers successifs, le premier terme de cette suite étant $X_1 = 1$.

Calculons les sommes successives

*
$$S_0^1 = Y_n$$
; $S_0^2 = Y_n + Y_{n-1}$; $S_0^3 = S_0^2 + Y_{n-2}$; $S_0^n = Y_n + Y_{n-1} + ... + Y_i + ... + Y_1 = N$

*
$$S_1^1 = S_0^1 = Y_n^1$$
; $S_1^2 = S_0^2 + S_1^1 = 2Y_n + Y_{n-1}$; $S_1^n = S_1^{n-1} + S_0^n$

*
$$S_2^1 = S_1^1 = Y_n$$
; $S_2^2 = S_1^2 + S_2^1 =$; $S_2^n = S_2^{n-1} + S_1^n$

dont la loi de formation est, sauf pour les S.

$$S_k^p = S_k^{p-1} + S_{k-1}^p$$

.../..

Calculons les sommes successives

*
$$S_o^1 = Y_n$$
; $S_o^2 = Y_n + Y_{n-1}$; $S_o^3 = S_o^2 + Y_{n-2}$; $S_o^n = Y_n + Y_{n-1} + ... + \bar{Y}_i + ... + Y_1 = N$

*
$$S_1^1 = S_0^1 = Y_n$$
; $S_1^2 = S_0^2 + S_1^1 = 2 Y_n + Y_{n-1}$; $S_1^n = S_1^{n-1} + S_0^n$

*
$$S_2^1 = S_1^1 = Y_n$$
; $S_2^2 = S_1^2 + S_2^1 = \dots$; $S_2^n = S_2^{n-1} + S_1^n$

dont la loi de formation est, sauf pour les S. .

$$S_k^p = S_k^{p-1} + S_{k-1}^p$$

ce qui donne

$$S = N$$

$$S_{1}^{n} = nY_{n} + (n-1) Y_{n-1} + \dots + kY_{k} + \dots + 2Y_{2} + Y_{1} = \underbrace{\leq}^{t} X_{i} Y_{i}$$

$$= m_{1} N$$

$$S_{2}^{n} = (nY_{n} + \dots + Y_{1}) + \underbrace{\left[(n-1) Y_{n} + (n-2) Y_{n-1} + \dots + Y_{2} \right] + \dots}_{+ \underbrace{\left[Y_{n} \right]}}$$

$$S_{2}^{n} = Y_{n} \underbrace{\leq}^{n} i + Y_{n-1} \underbrace{\leq}^{n-1} i + \dots + Y_{1} = \underbrace{\leq}^{n} Y_{p} p p \underbrace{\left(p+1 \right)}_{2}$$

$$D^{t}où \qquad S_{2}^{n} = \underbrace{\frac{1}{2} \sum_{i} Y_{p}}_{2} p^{2} + \underbrace{\frac{1}{2} \sum_{i} p p Y_{p}}_{2} = \underbrace{\frac{1}{2} m_{2} N + \frac{1}{2} m N}$$

En poursuivant le calcul des sommes S_{i}^{n} , nous arrivons à la formule de récurrence

$$S_{i}^{n} = \sum_{i,j} \frac{r(r+1) \dots (r+i-1)}{i!} Y_{i} \frac{m_{i}N}{i!} + \frac{n_{i-1}N}{2(i-2)!} + \dots$$

Nous aurons le système d'équations suivant :

$$S_{0}^{n} = N = m_{0}$$

$$S_{1}^{n} = m_{1} N$$

$$S_{2}^{n} = \frac{1}{2} m_{2} N + \frac{1}{2} m N$$

$$S_{3}^{n} = \frac{m_{3} N}{6} + \frac{m_{2} N}{2} = \frac{m N}{3}$$

$$S_{4}^{n} = \frac{m_{4} N}{24} + \frac{m_{3} N + 11 m_{2} N + m_{1} N}{4}$$

 D^{l} où l^{l} expression des moments par rapport à l^{l} origine exprimés en fonction des S_{l}^{n}

$$m_{0} = N = S_{0}^{n}$$

$$m_{1} = m = S_{1}^{n} / S_{0}^{n}$$

$$m_{2} = 2 S_{2}^{n} - m_{1}$$

$$m_{3} = \frac{c_{0} S_{3}^{n}}{S_{0}^{n}} - 5 m_{2} - 2 m_{4}$$

$$m_{4} = \frac{c_{3} S_{4}^{n}}{S_{0}^{n}} = 6 m_{3} - 11 m_{2} - 6 m_{1}$$

Part ant de ces résultats, la formule $p = \frac{1}{N} = \frac{1}{N} \left(x_i - m \right)^p Y_i$ donne alors la valeur des moments centrés.

$$\mu_{3} = \frac{2 s_{2}^{n} - m (m+1)}{s_{0}^{n}}$$

$$\mu_{3} = \frac{6 s_{3}^{n} - 3 (m+1) \mu_{2} - m (m+1) (m+2)}{s_{0}^{n}}$$

$$\mu_{4} = \frac{24 s_{4}^{n} - 2 (2m+3) \mu_{3} - (6m^{2} + 18 m + 11) \mu_{2}^{n} - m (m+1)}{s_{0}^{n}}$$

$$(m+2) (m+3)$$

Variante de la méthode :

 $L'emploi de la méthode décrite ci-dessus peut amener à des valeurs \\ de s_i^n très grandes, aussi dans le but d'éviter cet inconvénient, il est indiqué de modifier le processus de calcul de la façon suivante.$

Par une translation de l'origine, conduisant à choisir comme nouvelle origine une des valeurs centrales de la distribution (la plus grande est évidemment la plus intéressante), nous faisons correspondre les suites

- abcisses des classes de la distribution
- (2) contenus des classes

Calculons alors les sommes

*
$$s_2^1 = Y_n$$
; $s_2^2 = s_2^1 + s_2^2$;; $s_2^{k-1} = s_1^{k-1} + s_2^{k-2}$
 $t_2^1 = Y_1$; $t_2^2 = t_2^1 + t_2^2$;; $t_2^{n-k} = t_1^{n-k} + t_2^{n-k-1}$

Dont les lois de formation sont

$$S_{i}^{j} = S_{i-1}^{j} + S_{i}^{j-1}$$

j variant de làk et pour i ≠ 0

$$t_i^j = t_{i-1}^j + t_i^{j-1}$$

pour j variant de l a n - k et pour $i \neq 0$.

Ces sommes partielles donnent alors :

$$s_0^{n-k} + Y_k + t_0^{k-1} = N$$
 $t_1^{n-k} - t_1^{k-1} = m N$

Caropae to

.../...

$$t_{2}^{n-k} + s_{2}^{k-1} = \underline{m_{2} N} + \frac{1}{2} (t_{1}^{n-k} - s_{1}^{k-1})$$

$$t_{3}^{n-k} - s_{3}^{k-1} = \underline{m_{3} N + 1} (t_{2}^{n-k} - s_{2}^{k-1}) - \frac{1}{6} (t_{1}^{n-k} - s_{1}^{k-1})$$

$$t_{4}^{n-k} + s_{4}^{k-1} = \underline{m_{4} N} + \frac{3}{2} (t_{3}^{n-k} + s_{3}^{k-1}) - \frac{7}{12} (t_{2}^{n-k} + s_{2}^{k-1})$$

$$+ \frac{1}{12} (t_{1}^{n-k} + s_{1}^{k-1})$$

Posons $S_{i} = t_{i}^{n-k} + s_{i}^{k-1}$ et $D_{i} = t_{i}^{n-k} - s_{i}^{k-1}$

Nous obtenons le système

$$N = S_{0} + Y_{k}$$

$$m N = D_{1}$$

$$m_{2}N = 2 S_{2} - S_{1}$$

$$m_{3}N = 6 D_{3} - 6 D_{2} + D_{1}$$

$$m_{4}N = 24 S_{4} - 36 S_{3} + 14 S_{2} - S_{1}$$

qui permet le calcul des moments par rapport à l'origine \mathbf{x}_{k} . Les moments centrés seront alors donnés par le système ci-dessous

$$\mu_{2} = \frac{2 S_{2} - S_{1}}{N} - m^{2}$$

$$= \frac{6 D_{3} - 6 D_{2} + D_{1} - 3 m \mu_{2} - m^{3}}{N}$$

$$= \frac{24 S_{4} - 36 S_{3} + 14 S_{2} - S_{1} - 4 m \mu_{3} - 6 m^{2} \mu_{2} - m^{4}}{N}$$

. . . / . . .

Ces moments étant relatifs à des largeurs de classe unitaire, il conviendra pour obtenir la valeur de ceux-ci, attachés à la distribution donnée, dont la largeur des classes est h, de multiplier $\mu_{\rm p}$ par h,

Soit μ_{p} le moment cherché, nous aurons la formule de conversion

$$\mu_p = \mu_p \times \mu_p$$

Exemple Numérique:

Distribution des résultats de l'essai d'emboutissage sur des tôles, de même classe d'épaisseur.

Nous avons choisi comme nouvelle origine, l'abcisse 11,3 correspondant à la fréquence maximale.

.../...

A TABLEAU de CALCUI

x _i mm	x!	¥į					
10.1	-12	1	1	,	1	100	
10,1				1		1	1
10,2	#11	2	3. 7	4	5	6	7
10,3	-10	4	7	11	16	22	29
10,4	- 9	3.	8	19	35	57	86
10,5	- 8	. 3	11	30	65	122	208
10,6	- 7	9	20	50	115	237	445
10,7	- 6	4	24	74	189	426	871
10,8	- 5	9	33	107	296	722	1593
10,9	- 4	18	51	158	454	1176	2769
11	- 3	13	64	222	676	1852	4621
11,1	- 2	24	88	310	986	2838	7459
11,2	- 1	33	121	431	1417	4255	11714
11,3	0	52					
11,4	1	48	153	391	865	1713	3112
11,5	2	44	105	238	474	848	1399
11,6	3	16	61	133	236	374	551
11,7	4	22	45	72	103	138	177
11,8	5	19	23	27	31	35	39
11,9	6	4	4	4	4	4	4

B Valeurs des S_i et D_i

$$N = 52 + 121 + 153 = 326$$

$$S_1 = 431 + 391 = 823$$

$$S_2 = 1417 + 865 = 2282$$

$$S_3 = 4255 + 1715 = 5968$$

$$S_4 = 11714 + 3112 = 14826$$

.../...

.

$$D_1 = 391 - 431 = -040$$
 $D_2 = 865 - 1417 = -552$
 $D_3 = 1713 - 4255 = -2542$

C Calcul des moments par rapport à l'origine.

$$N = S_0 + Y_k = 326$$

$$m = \frac{D_1}{N} = -\frac{40}{326} = \frac{-0.122699}{326}$$

$$m_2 = \frac{2S_2 - S_1}{N} = \frac{4564 - 822}{326} = \frac{11.478528}{326}$$

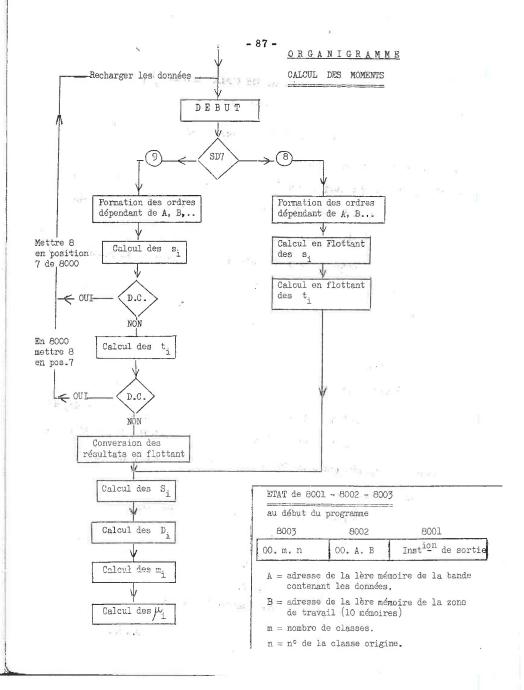
$$m_3 = \frac{6D_3 - 6D_2 + D_1}{N} = \frac{11930}{326} = \frac{-36.748466}{326}$$

$$m_4 = \frac{24S_4 - 36S_3 + 14S_2 - S_1}{N} = \frac{172.102}{326} = \frac{527.920.245}{326}$$

(D) Calcul des moments centrés μ_i :

$$\mu_2 = m_2 - m^2 = 11,463472$$

$$\mu_3 = m_3 - 3m \mu_2 - m^3 = -32,526936$$


$$\mu_4 = m_4 - 4m \mu_3 - 6m^2 \mu_2 - m^4 = 510,920361$$

(E) Calcul des moments centrés vrais μ_i et de la moyenne.

MOYENNE
$$m = 11,3 - 0,123 = 11,177$$
 vm.

Ici l'intervalle de classe vrai vaut 1/10 de mm : h = 1/10, d'où

$$\mu_2^{\dagger} = 0.115$$
; $\mu_3^{\dagger} = -0.033$; $\mu_4^{\dagger} = 0.0511$

SOUS-PROGRAMME DE CALCUL DES

But du sous-programme : Le but de ce sous-programme est de permettre le le calcul de la moyenne et des moment s centrés μ_2 ; μ_3 et μ_4 d'une distribution statistique; il suppose les fréquences réparties en classe de largeur unitaire, cas auquel il est toujours possible de se ramener (cf l'exemple développé ci-dessus).

Structure du sous-programme : Elle découle de la méthode de calcul exposée plus haut et se compose de 4 parties.

- 1°) Calcul des si et ti
- 2°) Calcul des Si et Di
- 3°) Calcul des m;
- 4°) Calcul des Mi
- * La première partie peut être exécutée soit en virgule fixe, soit en virgule flottante au cas ou l'exécution en virgule fixe donnerait lieu à des dépassements de capacité par suite d'un trop grand nombre de classes ou de trop grandes fréquences.
- * Les 3 autres parties sont exécutées en virgule flottante.

Entrée dans le sous-programme :

Il faut mettre en 8003 00. m. n.

8002 00. A. B.

8001 une instruction de sortie.

m = nombre de classes de la distribution

n = n° de la classe choisie comme origine

A = adresse de la lère mémoire de la bande dans laquelle sont rangées
les valeurs des fréquences.

B = adresse de la lère mémoire de la zone de travail; dimension de cette

zone étant de 10 mémoires.

Mise en oeuvre du sous-programme.

La présence d'un 9 en position 7 du registre programme provoque le calcul des s_i et t_i en virgule fixe. Si ce calcul ne trouve lieu à aucun dépassement de capacité, le programme se poursuit jusqu' à son terme : les résultats cherchés sont alors dans la zone B, exprimés en virgule flottante.

$$\begin{array}{cccc}
 & m & & \text{en} & B \\
 & \mu_2 & & \text{en} & B+1 \\
 & \mu_3 & & \text{en} & B+2 \\
 & \mu_4 & & \text{en} & B+4
\end{array}$$

Si, au contraire, il y a dépassement de capacité, l'ordinateur s'arrête par l'ordre 01.9999.9999. Il convient alors de recharger les données, de mettre un 8 en position 7, et de repartir au début. Rien n'est changé pour ce qui est des résultats....

Présentation des Données.

Valeur des fréquences exprimées en virgule fixe. Les valeurs des fréquences sont chargées dans une bande de mémoires en séquence.

Présentation des Résultats.

Les valeurs de m, μ_2 , μ_3 , μ_4 sont exprinées en virgule flottante. Conversion des Résultats.

Si x est la valeur de l'abcisse choisie comme origine et h la largeur vraie de chaque classe, les résultats vrais seront :

$$m' = \widetilde{x} + h m.$$

$$\mu'_{2} = h^{2} \mu_{2}$$

$$\mu'_{3} = h^{3} \mu_{3}$$

$$\mu'_{4} = h^{4} \mu_{4}$$

Exemple: Nous reprenons celui qui a été exposé plus haut.

Nous choisissons A = 800 m = 19
B = 727 n = 13 (
$$x_0$$
 = 11, 3 mm).

D'où le programme d'entrée et de sortie.

.../..

Données

Les données sont chargées de la facon suivante

en 800 0000000001 801 0000000002 803 0000000004 ... 00000000019 818 0000000004

Résultats :

Les résultats obtenus sont :

m = -0.12269938 avec $\overline{x} = 11.3$ $\mu_2 = 11.463471$ $h = 10^{-11}$ $\mu_3 = -32.526935$ $\mu_4 = 510.92036$

d'où les valeurs exactes cherchées

m' = 11,2877 (30062) $\mu'_2 = 0,1146 (3471)$ $\mu'_3 = -0,0325 (26935)$ $\mu'_4 = 0,0510 (92036)$

ES'TIMATION D'UNE DISTRIBUTION EXPERIMENTALE

COURBES de K. PEARSON

X. PEARSON, généralisant la méthode utilisée dans le cas des lois binomiale: et hyppergéométrique, a recherché de façon systématique les distributions continues dont la deusité de répartition Y = f(x) satisfait à l'équation différentielle

$$\frac{\mathbf{x}^{1}}{\mathbf{Y}} = \frac{\mathbf{x} \cdot \mathbf{a}}{\mathbf{b}_{0} + \mathbf{b}_{1} \mathbf{x} + \mathbf{b}_{2} \mathbf{x}^{2}}$$

Intégration de cette équation.

La forme des courbes intégrales dépend de la valeur des racines du

dénominateur
$$D = b_0 + b_1 x + b_2 x^2$$

Ler cas $b_1^2 - 4b_0 b_2 < O$

La solution est $Y = Y_0 \left(1 + \frac{x^2}{a^2}\right)^{-k} e^{-k} \frac{v \operatorname{Arctg}(\frac{x}{a})}{a}$

2ème cas $b_1^2 - 4b_0 b_2 = O$

La solution est $Y = Y_0 \left(1 - \frac{x}{a}\right)^{-k} = 0$

3ème cas $b_1^2 - 4b_0 b_2 > 0$

Dans ce cas si a et a sont les racines de D, la solution peut prendre 4 formes différentes

$$Y = Y_{o} \left(\frac{x}{a_{1}} - 1\right) \frac{\partial a_{1}}{\partial a_{2}} \left(\frac{x}{a_{2}} - 1\right) \frac{\partial a_{2}}{\partial a_{2}}$$

$$Y = Y_{o} \left(1 - \frac{x}{a_{1}}\right) \frac{\partial a_{1}}{\partial a_{2}} \left(\frac{x}{a_{2}} - 1\right) \frac{\partial a_{2}}{\partial a_{2}}$$

 $Y = Y_0 \left(1 - \frac{x}{a_1}\right)^{- \mathcal{D} a_1} \qquad \left(1 - \frac{x}{a_2}\right)^{\mathcal{D} a_2}$

$$Y = Y_{o} \left(\frac{x}{a_{1}} - 1\right)^{-y_{a_{1}}} \left(1 \cdot \frac{x}{a_{2}}\right)^{y_{a_{2}}}$$

Dans les 3 cas possible, il convient de souligner les solutions dues à des valeurs particulières des paramètres b_i ; ainsi dans le cas 1 b, nul fournira la solution $Y = Y_0 \left(1 + \frac{x^2}{a^2}\right)^{-k}$

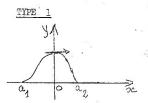
dans le cas ou $b_1 = b_2 = 0$ (racines infinies) la solution sera la courbe en cloche $Y = Y_0 = \frac{x^2}{2 \le 2}$.

Les paramètres b_0 , b_1 , b_2 dépendant des valeurs des moments centrés des distributions, il est donc possible d'établir une classification des courbes T = f(x) en fonction des valeurs des μ_i ou de combinaisons de celles-ci.

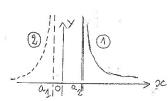
Classification des courbes de Pearson.

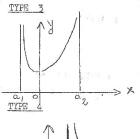
Les paramètres choisis pour établir la classification peuvent être (CF. RISSER et TRAYNARD : les principes de la statistique mathématique).

$$\beta_{1} = \frac{\mu_{3}^{2}}{\mu_{3}^{3}} \qquad S = \frac{6 \left(\beta_{2} \cdot \beta_{1} - 1\right)}{3 \beta_{1} - 2 \beta_{2} + 6}$$

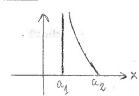

$$\beta_{2} = \frac{\mu_{4}}{\mu_{3}^{2}} \qquad p = \frac{4 S^{2} (S + 1)}{\beta_{1}(S + 2)^{2} + 16 (S + 1)}$$

$$m_{1} = \frac{a_{1} + a_{2}}{1}$$

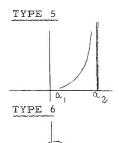

- 94 -TABLEAU DES COURBES DE PEARSON

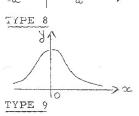

S	P	1 - S + P	Types de courbe
> 2	> 0	> 0	$Y = Y_0 \left(1 - \frac{x}{a_1}\right)^{-\frac{a_1}{a_2}} \left(1 - \frac{x}{a_2}\right)^{\frac{a_2}{a_2}}$
< 0	< 0	> 0	$2^{Y = Y_0 \left(1 - \frac{x}{a_1}\right)^{-Da_1} \left(\frac{x}{a_2} - 1\right)^{Da_2}}$
0 < < 2	> 0	> 0	$Y = Y_0 \left(1 - \frac{x}{a_1}\right)^{-\nu_{a_1}} \left(1 - \frac{x}{a_2}\right)^{\nu_{a_2}}$
> 2	>0	< 0	$Y = Y_0 \left(\frac{x}{a_1} - 1\right)^{-\sqrt{2}a_1} \left(1 - \frac{x}{a_2}\right)^{\sqrt{2}a_2}$
0 < 2	> 0	< 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
<- 1	< 0	< 0	$Y = Y_0 \left(1 - \frac{x}{a_1}\right)^{-1} \left(1 - \frac{x}{a_2}\right)^{-1} \left(1 - \frac{x}{a_2}\right)^{-1} \left(1 - \frac{x}{a_2}\right)^{-1}$
<- 1	>0	>0	$\mathbb{Y} = \mathbb{Y}_0 \left(1 + \frac{x^2}{a_2} \right) = 0 \text{a}$
β_1	β_3		
0	>3	,	$Y = Y_0 \left(1 \div \frac{x^2}{a^2}\right)^{-k}$
0	1< <3		
			$Y = T_0 \left(1 + \frac{x}{a}\right)^{3} e^{-yx}$
β ₁ (s+2	2) ² + 16 (S+1		$\mathbb{T} = \mathbb{Y}_{0} \left(1 - \frac{\mathbb{X}}{a} \right)^{-1} e^{\left(-\frac{\mathbf{y}_{a}}{1 - \underline{\mathbf{x}}} \right)}$
$\beta_1 = 0$	$\beta_2 = 3$		$\frac{-x^2}{2}$

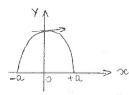
CARACTERISTIQUES DE CES COURBES



 $a_1 \le 0 \le a_2$ $a_1 \le x \le a_2$ $x = a_1$, y = 0 et $x = a_2$, y = 0 sont 2 points d'arrêts maximum pour x = 0.

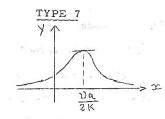


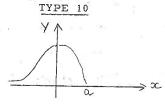

 $a_1 < 0 < a_2$;)<0 $a_1 < x < a_2$ $x = a_1$, y = 0 et $x = a_2$, y = 0 sont 2 asymptotes x = 0 donne un minimum



 $0 < a_1 < a_2$ > 0 $a_1 < x < a_2$ $x = a_1$ est une asymptote $x = a_2$; y = 0 est un point d'arrêt.

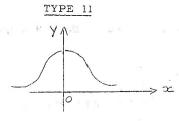
 $0 < a_1 < a_2$ $\mathcal{V} < 0$ $a_1 < x < a_2$ $x = a_2$ est une asymptote $x = a_1$, y = 0 est un point d'arrêt.


 $0 < a_1 < a_2$ 0 < 0 $x < a_1$ x = 0 est un maximum y = 0 est une asymptote $x = a_1$, y = 0 est un point d'arrêt.


a > 0; D>0 x > -a
x = 0 donne un maximum
y = 0 est une asymptote
x = -a, y = 0 est un point d'arrêt

x = 0 est un maximum la courbe est symétrique par rapport à Oy illimitée à droite et à gauche.

 $x=\frac{1}{2}$ a, y=0 sont des points d'arrêt. x=0 donne un maximum La courbe est symétrique.


.../...

Courbe dissymétrique illimitée; maximum pour $x = \frac{y_0}{\sqrt[3]{k}}$ L'axe des x est une asymptote.

On se raménera toujours au cas a > 0; y > 0 x < a; x = 0 est un maximum x = a; y = 0 est un point $d^{1}arr$ êt y = 0 est une asymptote.

Courbe en cloche.

Utilisation Pratique des Résultats

En présence d'une distribution expérimentale, on commencera par déterminer les coefficients de Pearson β_1 et β_2 ; la valeur de ceux-ci indiquant le type de courbe susceptible de lui être ajustée. Pour faciliter cette recherche, nous avons été conduit à tracer le diagramme de Pearson, diagramme représent é dans la plan des β_1 , β_2 sur lequel il suffit de reporter le point de coordonnées (β_1 , β_2) pour connaître le type de courbe. Une fois le type de courbe reconnu, on détermine les paramètres de l'équation tels que les premiers moments des deux distributions (observée et ajustée) soient les mêmes.

Cette détermination se ramène à la résolution d'un cert ain nombre d'équations spécifiques du type de courbe.

Il reste alors à déterminer le paramètre Y_0 et à tester la validité de l'estimation.

A - TRACE DU DIAGRAMME DE PEARSON.

Il suffit de traduire les égalités ou inégalités caractéristiques des différents cas par des graphiques rapportés à deux axes rectangulaires dont on ne conserve que le quadrant positif.

V leurs caractéristiques des paramétres. Courbes correspondantes

S =
$$0^{\circ}$$
 3 $\beta_1 - 2 \beta_2 + 6 = 0$ Courbe 1
S = 2 0 6 $\beta_1 - 5 \beta_2 + 9 = 0$ Courbe 2
S = 0 $\beta_1 - \beta_2 + 1 = 0$ Courbe 3
S = -1 3 $\beta_1 - 4 \beta_2 = 0$ Courbe 4

.../..

$$\beta_{1}(\beta_{2} + 3)^{2}(9\beta_{1} - 8\beta_{2} + 12) - 4(3\beta_{1} - 4\beta_{2})(6\beta_{1} - 5\beta_{2})$$

$$+ 9)^{2} = 0 \quad \text{courbe 5}$$

$$P \implies \infty$$
 $4\beta_1 (\beta_2 + 3)^2 - 16(3\beta_1 - 4\beta_2)(3\beta_1 - 2\beta_2 + 6) = 0$ courbe 6

Les 4 premières courbes sont des droites, la 5ème est une quartique.

La 6ème une cubique.

Les dimensions du diagramme sont :

en
$$\beta_1$$
 de 0 à 15 en β_2 de 0 à 15.

(1) RECHERCHE DES RACINES DES COURBES 5 et 6.

Cas de la cubique

(1)
$$4\beta_1 (\beta_2 + 3)^2 - 16(3\beta_1 - 4\beta_2)(3\beta_1 - 2\beta_2 + 6) = 0$$

(1) ordonnée en
$$\beta_2$$
 s'écrit $(32 - \beta_1) \beta_2^2 - (78 \beta_1 + 96) \beta_2 + \beta_1$
 $(36 \beta_1 + 63) = 0$

Nous résolvons le trinôme en β_2 en faisant varier β_1 , pris comme paramétre, de 0,5 en 0,5 à partir de -5 et jusqu'à 15.

L'équation en β_2 est un trinôme dont les racines sont données en (A_1)

La courbe est représentée sur le diagramme (1)

La courbe est limitée en haut à gauche au point (-4, - 3) qui est un point de rebroussement.

Cas de la quartique.

(2)
$$\beta_1 \left(\beta_2 + 3 \right)^2 \left(9 \beta_1 - 8 \beta_2 + 12 \right) - 4 \left(3 \beta_1 - 4 \beta_2 \right) \left(6 \beta_1 - 5 \beta_2 + 9 \right)^2 = 0$$

(2) ordonnée en β_2 s'écrit $\beta_2^3 (400 - 8 \beta_1) + \beta_2^2 (9 \beta_1^2 - 1296 \beta_1 - 1440) + \beta_2^3 (1350 \beta_1^2 + 2808 \beta_1 + 1296) - \beta_1^3 (432 \beta_1^2 + 1215 \beta_1 + 864) = 0$

Nous résolvons cette équation en prenant β_1 comme paramétre et en le faisant varier de -5,5 à +15 de 0,5 en 0,5.

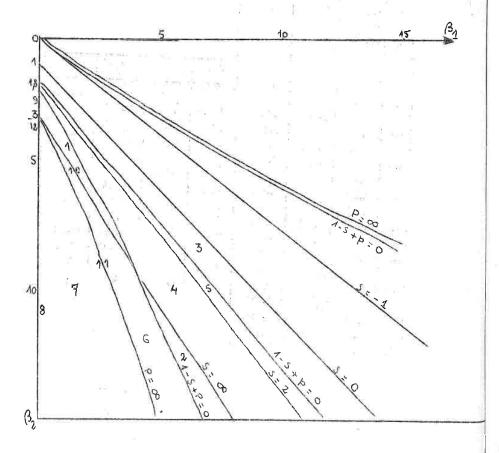
.../ ...

Les racines du polynome du 3ème degré en β_2 sont données en A_2 . Le point (0; 1, 8) est un point double : tangente verticale.

(31	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	B22
-1,5	0	0
-4	-3	-3
-3,5	-2,433	-2,553
-3	-1,800	-2,143
-2,5	-1,115	-1,754
-2	-0,383	-1,381
-1,5	0,394	-1,021
-1	1,217	-0,672
-0,5	2,086	-0,332
0	3	0
0,5	3,961	0,325
1	4,970	0,643
1,5	6,029	0,954
2	7,139	1,261
2,5	8,303	1,562
3	9,521	1,858
3,5	10,798	2,150
4	12,134	2,437
4,5	13,534	2,720
5	15	3
5,5	16,535	3,276
6	18,144	3,549
6,5	19,829	3,818
7	21,596	4,084
7,5	23,449	4,347
8	25,392	4,608
8,5	27,433	4,865
9	29,575	5,120

Bı	β_2^1	(3 ² ₂
9,5	31,827	5,373
10	34,195	5,623
10,5	36,688	5,870
11	39,313	6,116
11,5	42,080	6,359
12	45	6,6
12,5	48,084	6,839
13	51,345	7,076
13,5	54,797	7,311
14	58,456	7,544
14,5	62,339	7,775
15	66,466	8,005

-	Q	U	A	R	T	I	Q	Ţ
-	Q	U	A	R	1	Ι	Q	Į


Н			· · · · · · · · · · · · · · · · · · ·	
Ì	- 5,5	-4,646	0	0
	- 5	-4,091	0	0
	-4,5	-3,540	0 31	:-0.
	-4	-3,005	0	0
	-3,5	-2,561	0	0
	-3	-2,155	0	0
	-2,5	-1,768	0	0
	-2	-1,395	0	0
	-1,5	-1,033	0	0
	-1	-0,681	0	0
	-0,5	-0,337	0	0
	0	0	1,8	1,8
	0,5	0,330	2,698	2,239
	1	0,654	3,526	2,777
	1,5	0,973	4,371	3,326
	2	1,129	5,240	3,879
	2,5	1,160	6,137	4,436
	3	1,900	-7,061	4,993
	3,5	2,200	8,015	5,552
	4	2,497	9	6,112
	4,5	2,790	10,016	6,672
	5	3,079	11,064	7,232
	5,5	3,365	12,145	7,793
	6	3,648	13,259	8,354
	6,5	3,928	14,409	8,915
	7	4,205	15,595	9,477
	7,5	4,479	16,818	10,038
	8	4,750	18,079	10,600
	8,5	5,019	19,379	11,161
				0

(3₂(2)

	7	V	
β_1	$\beta_2^{(1)}$	β ₂ (2)	B ₂ (3)
9	5,286	20,720	11,723
9,5	5,550	22,103	12,285
10	5,812	23,529	12,847
10,5	6,071	25	13,409
11	6,329	26,518	13,971
11,5	.6,584	28,084	14,533
12	6,837	29,700	15,095
12,5	7,089	31,367	15,657
13	7,339	33,088	16,219
13,5	7,586	734,865	16,781
14	7,832	36,700	17,343
14,5	8,076	38,595	17,905
15	8,318	4,0,553	18,468

.../...

DIAGRAMME DE PEARSON

2) Interprétation du diagramme.

Les seules régions intéressantes sont les régions numérotées : le numéro de la région correspondant au numéro de la courbe cherchée.

Exemple: Ainsi pour $\beta_{I} = 6$ le point figuratif conduit

a choisi une courbe du type 4: $Y = Y_0 \left(\frac{x}{a_1} - 1\right)^{-\frac{1}{2}} a_1 \left(1 - \frac{x}{a_2}\right)^{\frac{1}{2}} a_2$

Cas limite:

Courbe type (8) : partie de l'axe β_2 pour $\beta_2 > 3$

Courbe type 9: partie de l'axe β_2 pour $1 < \beta_2 < 3$

Courbe type 10 : frontière entre les régions 1 et 6

Courbe type (11): frontière entre les régions (6) et (7)

Courbe type (12): point défini par $\beta_1 = 0$; $\beta_2 = 3$.

Détermination des Paramétres :

Les formules permettant la détermination des paramétres sont différents suivant le type de courbes.

Cas des courbes là6:

Posons $S = p_1 \text{ et } p_2$

 $p = p_1 \text{ et } p_2$

Les formules à utiliser sont

formules à utiliser sont
$$(a_2 - a_1)^2 = \frac{\mu_2 S^2 (S+1)}{p} ; \quad \mathcal{D} = \frac{S-2}{a_2 - a_1}$$

$$p_1 = 1 - y_{a_1}$$
 : $p_2 = 1 + y_{a_1}$

Cas de la courbe 7 :

$$k = 1 - \frac{S}{2}$$
; $p = \frac{S^2 + \mathcal{D}^2}{4}$; $a^2 = \frac{-S^2 (S+1) \mu_2}{S^2 + \mathcal{D}^2}$

Cas de la courbe 8

$$p = \frac{52}{4}$$
 ; $k = 1 - \frac{S}{2}$; $a^2 = -(S+1)\mu_2$

Cas de la courbe 9:

$$p = \frac{S2}{h}$$
; $p_1 = p_2$; $k = \frac{S}{2} - 1$; $a^2 = \frac{h}{2} (S + 1)$

Cas de la courbe 10 :

$$\mathcal{D} = \frac{2\mu_2}{\mu_3} \quad ; \qquad a \mathcal{D} = \frac{A - (3_1)}{(3_1)^2}$$

Cas de la courbe 11:

$$aD = 2 - S$$
 ; $a^2 = -\frac{\mu z}{(S - 2)^2}$

Cas de la courbe 12:

Détermination du paramétre Yo

Le paramétre Y sera obtenu en égalant l'are de la courbe au contenu de la collection

$$\int_{a_{1}}^{a_{2}} Y d\chi = N \longrightarrow Y_{0}$$

Connaissant en outre la valeur des moyennes de la distribution expérimentale d'une part, de la distribution estimée d'autre part, il est alors facile de faire coincider les deux distributions. Il reste alors pour terminer l'estimation à tester la validité des résultats obtenus par un test, test du X par exemple, entre les fréquences expérimentales et les fréquences

ESTIMATION D'UNE DISTRIBUTION

Exemple 1

Données: Résultats d'essais d'emboutissage sur tôles plates:

x, mesure la profondeur de pénétration d'un poinçon avant

rupture. L'origine choisie -> à x_i = 11,2

9,8	1
9,9	2
10	1
10,1	3
10,2	1
10,3	6
10,4	5
10,5	10
10,6	. 11
10,7	24
10,8	33
10,9	40
11	102
11,1	104
11,2	113
11,5	101
11,4	40
11,5	24
11,6	ℓ_c
11,7	1
11,8	0
11,9	1
X _i mm	fi

سيه زراة

Paramétres statistiques calculés

$$m = -1,155$$

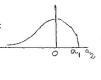
$$\mu_2 = 7,356$$

$$\mu_3 = -23,885$$

$$\mu_4 = 313,054$$

Coefficients de Pearson.

$$\beta_1 = 1,434$$


$$\beta_2 = 5,786$$

Coefficients secondaires:

$$s = -15,821$$
 $p = -404,389$

Conclusions: =========

La forme de la courbe est equation $Y = Y_0 \left(1 - \frac{x}{a}\right)^{b}$ $\left(1 - \frac{x}{a^{b}}\right)^{-b^{b}}$

avec
$$0 < a < a^t$$

et b, $b^t > 0$

CALCUL DES PARAMETRES

Courbe type 6 relative à la classe d'épaisseur

Les conditions à remplir sont

$$0 < a_1 < a_2 \qquad \qquad \mathcal{V}$$

$$p^2 - s P + p = 0$$
 $s = -15,821$ $p = -404,389$

$$\Delta = 1867,860$$

$$\sqrt{\Delta} = 43,219$$

$$(P_{1,2}) = -\frac{15,821 \pm 43,219}{2}$$

$$p_{1,2} = (12,700; -30,520)$$

* Calcul de

$$(a_2 - a_1)^2 = \mu_2 \frac{s^2 (s+1)}{p} = 67,5$$

$$a_2 - a_1 = 8,21$$

$$\nabla = \frac{s-2}{a_2-a_1} = -2,1680$$

* Calcul de a_l et a₂

$$\begin{vmatrix} a_1 &= 1 - p_1 &= 5,85 \\ \hline D_1 & \\ a_2 &= \frac{p_2 - 1}{D} &= 14,06 \end{vmatrix}$$

d'où l'équation de la courbe

$$Y = Y_0 \left(1 - \frac{x}{5,85}\right)^{12,70} \left(1 - \frac{x}{14,06}\right)^{-30,52}$$

CALCUL DE Yo

Courbe type = 8

$$Y = Y_0 (1 - \frac{x}{a})^b (1 - \frac{x}{a})^{-b}$$

avec 0 < a < a' et h, b' > 0

Caractéristiques de la courbe

Y = 0 est une asymptote

x = a est un point d'arrêt

x = 0, $y = y_0$ est un maximum.

.../.

$$\frac{\text{Calcul de } \mathring{\mathbf{I}}}{\text{Calcul de } \mathring{\mathbf{I}}} = \int_{-\infty}^{a} \frac{Y}{Y_0} dx$$

ler changement de variable.

$$x = a' \left(1 - \frac{1}{t} \right)$$

$$Y = \left(\frac{1}{t} \right)^{-b'} \left(1 - \frac{a'}{a} \left(1 - \frac{1}{t} \right) \right)^{b}$$

$$dx = \frac{a' dt}{t^{2}}$$

$$I = \begin{cases} a' - a \\ a' \end{cases} \qquad a' \qquad t \qquad \left[\frac{a - a'}{a} + \frac{a'}{a} - \frac{1}{t} \right]^{b} dt$$

2ème changement de variable.

$$t = \frac{a'}{a'-a} u$$

$$dt = \frac{a'}{a'-a} du \qquad t^{b-2} = \left(\frac{a'}{a'-a}\right)^{b'-2} \qquad u^{b'-2}$$

$$\left[\frac{a-a'}{a} + \frac{a'}{a} \cdot \frac{1}{t}\right] = \frac{a'-a}{a} \qquad \left[\frac{1-u}{u}\right]$$

$$I = \int_{0}^{1} \left(\frac{a' - a}{a}\right)^{b} \left(\frac{a'}{a' - a}\right)^{b} \frac{a'^{2}}{a' - a} \frac{a'^{2}}{a' - a} u^{b' - 2} - \frac{b}{u} (1 - u)^{b} du$$

$$I = \left(\frac{a^1 - a}{a}\right)^b \qquad \binom{a^1}{a^1 - a}^{b^1} \qquad (a^1 - a) \qquad B \quad (b^1 - b - 1; b + 1).$$

D'où
$$Y_0 = \frac{N}{I}$$

Applications Numériques

$$a = 5.85$$
 $b = 12.70$ $N = 627$ $a' = 14.06$ $b' = 30.52$

$$I = \left(\frac{821}{585}\right)^{12,70} \times \left(\frac{1.406}{821}\right)^{30,52} \times 8,21 \times B \left[16,82; 13,70\right]$$

$$D'oh Y_0 = \frac{627}{6,03} = 104$$

Superposition des distributions :

 $m^{\dagger} = -1,155$ moyenne expérimentale

moyenne estimée m = 1,258

Une translation de 0,103 vers la droite conduira alors à la supersposition des 2 courbes.

Nouvelle écriture de l'équation de la courbe estimée

$$Y = 104$$
 $\left(1 - \frac{x}{5,70}\right)^{12,70}$ $\left(1 - \frac{x}{14,04}\right)^{-30,52}$

Valeurs des fréquences de la distribution estimée.

	-	14	(9,8)	0
	-	13		1
	-	12		1
		11		2
	-	10		3
1	-	9		5
1	~	8		7
-	-	7		12
1	-	6		18
	-	5		28
	_	4		42
1	-	3		61
	-	2		81
	-	1		99
		0((11,2)	- 104
		1		86
		2	1.0	47
	<u></u>			l

3	12
4 5 (11,7)	1 0

(Voir le graphique pour la comparaison de 2 distributions).

Validité de l'estimation

La validité de l'estimation est testée au moyen d'un χ^2 a 14 degrés de liberté (19 fréquences, 4 paramétres estimés).

La valeur trouvée est

\(\frac{2}{2} = 47.5 \), valeur qui conduit à rejeter

l'estimation.

Le seuil a 5% correspond à un χ^2 de 23,68 ; en conséquence l'estimation trouvée doit être rejetée.

A				
-		- 115 -		
-	g H	F 240 B		
-			7 M D T D 1	
		E A I	EMPLE 1	
/ ==		Dist	ribution expérime	entale _
र्व 		Distr	ribution estimée	
	E 04 69	A 100		
The state of the s		1 1 11 100		TT
	1 1 4 2			
(n	- W W W	3		
	Ring.			
				
		<u> </u>		
			_	
		man your ten takes that take		
0			arte I	
		ATT 101 EAS		
		===		
-				
ى ا	3 /			
	- 124 5, 10			
			1,0	
17				
	S	~		

QUELQUES EXEMPLES TRAITES.

1º) Distributions Données

(concernant l'emboutissage de tôles de classe d'épaisseur différente).

Profondeur en mm	1	2	3	1 4	5	6	7	8
			1	+-	+	-	+-	-
9,8			1			1		
9,9			1	1		O	1	
10	1				1	2	1	
10,1	0	1	2	2	1	0	0	
10,2	2	2	6	2	1	3	0	1 1
10,3	1	4	10	4	2	2	0	1500
10,4	5	1	10	11	3	3	2	- 1
10,5	4	3	15	10	6	4.	3	
10,6	7	9	12	17	2	13	3	-
10,7	4	4	15	8	11	16	5	-
10,8	19	9	-22	18	- 8	21	- 8	
10,9	18	18	19	13	4	27	8	
11	26	13	33	20	12	26	10	-50 00
11,1	54	24	26	17	9	18	6	
11,2	76	33	43	22	10	14	10	
11,3	80	52	66	65	17	26-	-22	
11,4	66	48	110	145	39	44	14	^
11,5	46	44	152	236	84	91	34	
11,6	22	16	78	163	100	153	46	
11,7	12	22	28	58	59	171	83	
11,8		19	8	21	34	127	56	. 1
11,9		4	3	4	18	75	44	- 1
12			1	3	10	36	20	
12,1			1	1	4	5	3	
12,2		1				3	2	
12,3						2	1	

.../...

VALEURS DES MOMENTS CENTRES

Nº de l'échantillon	1 2	μ3	μ_4	
1	7,468 - 21,782		272,753	
2	11,463	- 32,527	510,920	
3	12,844	- 55,277	650,477	
e 4	9,644	- 51,761	564,956	
5	11,940	- 63,061	817,597	
6	13,593	- 70,264	928,814	
7	12,971	- 68,345	934,732	

VALEURS DES PARAMETRES & 1 et &

Nº de l'échantillon	(3 ₁	(3 ₂	Nº de la courbe	
1	1,139	4,891	6	
2	0,702	3,888	1	
3	1,442	3,943	4	
4	2,988	6,075	4	
5	2,335	5,735	4	
6	1,966	5,027	4.	
7	2,141	5,556	1	
	(

Le diagramme de PEARSON permet donc, arrivé à cet endroit des calculs, de dire que les échantillons n° 3, 4, 5, 6 ne peuvent être estimés par une courbe de PEARSON; les courbes type 4 admettant une asymptote verticale.

Cas de l'échantillon n° 1 :

Equation de la courbe trouvée = $Y = 79 \left(1 - \frac{x}{4,967}\right)^{4,055}$ $\left(1 - \frac{x}{56,714}\right)^{-51,455}$

Un test de χ^2 rejette ici encore l'estimation trouvée.

Les échantillons n° 2 et 7 donnent lieu aux mêmes conclusions.

CONCLUSION

De façon générale, il semble exceptionnel dans les exemples pratiques, de pouvoir ajuster une courbe de Pearson à une distribution donnée, en se limitant aux méthodes théoriques indiquées. Le point déterminé par le couple des valeurs des paramétres β_1 et β_2 sur le diagramme de Pearson permet de répondre.

* Il est impossible d'ajuster une courbe de Pearson à la distribution donnée si ce point tombe en dénors des régions utiles du diagramme ou si la forme de la courbe théorique lui correspondant est sans parenté avec l'histogramme expérimental. Au cas où la réponse est favorable, il convient alors de tester la validité de l'estimation.

Le série statistique expérimentale observée ne représentant qu'imparfaitement l'ensemble dont elle est issue, le domaine d'existence probable du point (β_1 , β_2) ne se réduit pas à un point, mais à une surface : La connaissance de cette surface pouvant faciliter les calculs.

Annual entrodictors of Amount of the education and indicated. All the displaying the state of the education

the offer three three three extended and pyrous a presenting of the present of the confidence of the

VU et APPROUVE

NANCY le 8 JUIN 1961

Le Doyen de la Faculté des Sciences :

M. ROUBAULT

VU et PERMIS D'IMPRIMER NANCY le 10 Juin 1961 Le Rectour

Président du Conseil de l'Université de NANCY

P. IMBS