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1 Introduction
Folkerts, Launert and Thom have recently announced a very interesting dis-
covery about Jost Bürgi (1552–1632) [3].1 Bürgi is well known as a (very)
skillful mechanician, clockmaker and instrument maker, and also as an in-
ventor of a table of progressions which could be used for the same purpose as
logarithms. His table can even be considered a table of logarithms, although
we do not consider him as the inventor of logarithms, because there is much
more to logarithms than tables [12].

It was also long known that Bürgi had computed a table of sines, but
little was known about his methods. His table of sines at intervals of 2′′
does not seem to have survived, and how accurate the table was remains a
mystery. In 1588, Ursus gave a rather cryptic hint about Bürgi’s method [17]
and it seemed to be related to differences. In an earlier article [12], we
had theorized that Bürgi had perhaps anticipated later work where pivot
values were computed, then differenced, and then the differences used to
compute intermediate values in a manner similar to that used in the Tables
du Cadastre [13].

Bürgi’s newly discovered manuscript on trigonometry gives a number of
answers to four centuries of questions. But it also raises new questions.
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1We thank Fritz Staudacher for having informed us of that recent discovery on October
23, 2015.
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2 Bürgi’s algorithm

2.1 Dividing the quadrant in nine parts

Folkerts et al. [3] give the following table adapted from Bürgi’s manuscript
dated from the 1580s. Bürgi used instead sexagesimal values, but we can
safely convert them to base 10.

c5 c4 c3 c2 c1
0 0 0 0 0 02,235,060 67,912 2,064 6310 2,235,060 67,912 2,064 63 22,167,148 67,848 2,001 6120 4,402,208 133,760 4,065 124 42,033,388 61,783 1,877 5730 6,435,596 195,543 5,942 181 61,837,845 55,841 1,696 5140 8,273,441 251,384 7,638 232 71,586,461 48,203 1,464 4450 9,859,902 299,587 9,102 276 81,286,874 39,101 1,188 3660 11,146,776 338,688 10,290 312 9948,186 28,811 876 2770 12,094,962 367,499 11,166 339 10580,687 17,645 537 1780 12,675,649 385,144 11,703 356 11195,543 5,942 181 690 12,871,192 391,086 11,884 362 12

The purpose of this table is to compute the values of sin 10◦, sin 20◦,
. . . , sin 90◦, to any desired accuracy. Bürgi’s algorithm is deceptively simple.
There is no bisection, no roots, only two basic operations: many additions,
and a few divisions by 2. The computations can be done with integers, or
with sexagesimal values, or in any other base.

In order to compute the sines, Bürgi starts with an arbitrary list of values,
which can be considered as first approximations of the sines, but need not
be. These values are given in column c1. In all these columns, c1 to c5, the
last value is always the sinus totus. That is, the first approximation starts
with sin 90◦ = 12. This gives in modern terms for sin 60◦ the value 9

12
= 0.75,

an approximation of the actual sine which is 0.866 . . .. It basically matters
very little with what values one starts. Only the first value should be 0. It
is even possible to take all other initial values equal to 1, for instance, but
they can’t all be taken equal to 0.

Column c5 shows the result of that algorithm, here conducted to four
steps, but the table could have been extended at will towards the left. Now,
in column c5, there is a new value for the sinus totus, namely 12871192, and
therefore we have as a new approximation of sin 60◦ the fraction 11146776

12871192
=

0.86602515136, the exact value being
√
3
2

= 0.866025403 . . ..
Bürgi’s algorithm is an iterative procedure for computing all the values of

column ci+1 from those of column ci. The computations use an intermediate
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column whose last value is half of the previous sinus totus. In the above
example, the sinus totus in column c1 is 12, and the last value of the column
between c2 and c1 is 6. The last value of the column between c3 and c2 is
181, half of 362. If the sinus totus is odd, one might take the exact half,
but it actually does not matter, as this algorithm leads to increasingly larger
numbers, and ignoring a half integer only has marginal consequences on the
convergence.

Once the last value of an intermediate column has been obtained, all
other values of that column are obtained by adding the values in the previous
column, as if the previous column were differences. So, we have 6+ 11 = 17,
17 + 10 = 27, and so on.

When the intermediate column has been filled, the new column ci+1 is
constructed by starting with 0, and adding the values of the intermediate
column.

And that’s all!

2.2 Other subdivisions

The previous section led to the computation of the sines of 10◦, 20◦, . . . , 90◦,
without any geometric construction. This scheme can be adapted to obtain
any set of values sin(kπ

2n
), for 0 ≤ k ≤ n, but it is important to realize that

this algorithm provides all the values, and cannot provide only one sine. All
the sines are obtained in parallel, with relatively simple operations.

The value of n corresponds to the number of values in the intermediate
columns. In the above example, n = 9. If we start with n = 90, we will
obtain the sines of all degrees in the quadrant.

We can also conduct simpler examples, such as computing the sine of 45◦
by taking n = 2. If we start with the three values 0,1,2 (say), that is, with
0.5 for the approximation of sin 45◦, we obtain the intermediate values 2,1,
from which we get the new approximations 0,2,3 and hence 2

3
= 0.666 . . . for

the sine. Continuing this process, we obtain the intermediate values 3,1 (or
3.5,1.5 if we do not round), leading to the new approximations 0,3,4, and
3
4
= 0.75 for the sine. Still going on, we find the intermediate values 5,2

and the new approximations 0,5,7, hence 5
7
= 0.71428 . . . for the sine. This

procedure will converge towards the value
√
2
2

= 0.707106781 . . ..

3 Bürgi’s intuition
How did Bürgi obtain this algorithm? Folkerts et al. [3] do not answer this
question. They give a modern proof of the convergence. This proof, by An-
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dreas Thom, is quite intricate and is based on the observation that the linear
map between one set of approximations and the next one has eigenvalues
which are the sought sines.

Bürgi did not have these means, and at first we thought that Bürgi’s
algorithm must be the expression of a clever geometrical construction. After
some search, we gave up this idea.

Then, we found a very simple way to derive Bürgi’s algorithm. As men-
tioned above, Bürgi’s procedure alludes to differencing, and we know that
Bürgi did use differences to compute other sines between sin 1′ and sin 1◦.
Now, in the tables of Rheticus and Viète, trigonometrical values were given
with first differences, in order to be able to check these values.

Neither Rheticus in 1551 [7], nor Viète in 1579 [18] gave second differences.
Rheticus’s calculations for the Opus palatinum [8] may have contained second
differences, but they do not appear in the table published in 1596. Second
differences only appeared in Pitiscus’s Thesaurus mathematicus in 1613 [6].

Bürgi must have been looking with great care at Rheticus’ values, and
toyed with the computation of differences, including second differences. He
must then have noticed that the second differences of the sines mimic the
sines themselves. In other words, the second differences are approximations
to the sines, and the more one differences, the worse these approximations
are. Conversely, if there was a way to start with approximate differences and
go backwards towards the actual sines, accuracy would be obtained. But was
this feasible?

In order to make it work, or at least to see if one could go backwards,
only two things were needed:

• Bürgi had to notice (without proof) that there was almost a constant
ratio between the sines and there second differences; in the example for
the computation of sin 10◦, sin 20◦, that ratio is about 32.911 (in fact
csc2(π/36)

4
as highlighted by Thom); this ratio depended on the number

of subdivisions, but what was important was that the second differences
were close to being sines; when second differences are obtained from the
sines, there are two values less than at the beginning; the first value
could easily be supplied, it had to be 0; the last value could also be
supplied, using the known ratio between sines and second differences;

• The second important observation was to notice that the last value of
the first differences is very nearly half the value added at the end of
the second differences.

Once these two observations were made, and once they were checked
to be true whatever the subdivision, Bürgi must have been trying to go
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backwards, that is, to apply to algorithm given above. He may have started
with approximate values of the sines, and perhaps didn’t notice that the
algorithm converges even with practically random initial values.

We therefore believe that Bürgi was able to discover some properties of
finite differences by a careful observation and manipulation of actual differ-
ences, and that he tried to reverse the procedure, and must have been pleased
to see that it did in fact make it possible to compute sines with only simple
operations, and at any desired accuracy. It seems unlikely to us that Bürgi
had a proof, or that he sought one.2 It is therefore certainly a very skillful
and remarkable achievement.
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