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1 Introduction
Folkerts, Launert and Thom have recently announced a very interesting dis-
covery about Jost Bürgi (1552–1632) [5, 6]. Bürgi was a remarkable me-
chanician, clockmaker and instrument maker, and also the author of a table
of progressions which can be viewed as a table of logarithms. In this note, we
focus on some specific points concerning Bürgi’s newly discovered algorithm.1

2 Bürgi’s algorithm
In his Fundamentum Astronomiæ [6], Bürgi provided an interesting and new
way to compute a table of sines. Bürgi’s algorithm comprises several parts,
one of which allows for the simultaneous computation of the values of sin

(
iπ
2n

)
for 0 ≤ i ≤ n, and cos

(
(2i+1)π

4n

)
for 0 ≤ i < n, to any desired accuracy.

However, this was only one part of Bürgi’s algorithm, as Bürgi made use of
other techniques to reconstruct values of sines by accumulating differences.

In this section, we briefly summarize the most original part of Bürgi’s
algorithm, drawing from our earlier note [10], with some improvements.

∗Denis Roegel, LORIA, BP 239, 54506 Vandœuvre-lès-Nancy cedex, France,
roegel@loria.fr

1For more on Bürgi’s work on logarithms, we refer the reader to our critical analysis of
Bürgi’s work on progressions [9]. A translation of Bürgi’s introduction to the tables was
recently published by Kathleen Clark [3].
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2.1 Dividing the quadrant in nine parts

Folkerts et al. [5] give the following table adapted from Bürgi’s manuscript
dated from the 1580s. Bürgi used instead sexagesimal values, but we can
safely convert them to base 10.

c5 c4 c3 c2 c1
0 0 0 0 0 02,235,060 67,912 2,064 6310 2,235,060 67,912 2,064 63 22,167,148 67,848 2,001 6120 4,402,208 133,760 4,065 124 42,033,388 61,783 1,877 5730 6,435,596 195,543 5,942 181 61,837,845 55,841 1,696 5140 8,273,441 251,384 7,638 232 71,586,461 48,203 1,464 4450 9,859,902 299,587 9,102 276 81,286,874 39,101 1,188 3660 11,146,776 338,688 10,290 312 9948,186 28,811 876 2770 12,094,962 367,499 11,166 339 10580,687 17,645 537 1780 12,675,649 385,144 11,703 356 11195,543 5,942 181 690 12,871,192 391,086 11,884 362 12

The purpose of this table is to compute the values of sin 10◦, sin 20◦,
. . . , sin 90◦, to any desired accuracy. Bürgi’s algorithm is deceptively simple.
There is no bisection, no roots, only two basic operations: many additions,
and a few divisions by 2. The computations can be done with integers, or
with sexagesimal values, or in any other base.

In order to compute the sines, Bürgi starts with an arbitrary list of values,
which can be considered as first approximations of the sines, but need not be.
These values are given in column c1. In all these columns, c1 to c5, the last
value is always the sinus totus . That is, the first approximation starts with
sin 90◦ = 12. This gives in modern terms for sin 60◦ the value 9

12
= 0.75, an

approximation of the actual sine which is 0.866 . . .. It basically matters very
little with what values one starts. It is even possible to take all initial values
equal to 1, for instance, or in decreasing order, or at random, but they can’t
all be taken equal to 0, except if the last one is equal to 2 (when working
with integers). If real values are used, it would work even if all values are
equal to 0, and the last one is equal to 1. Negative values do also work, but
some distributions will fail, for instance with values that cancel each other,
such as −1, followed by 1.

Column c5 shows the result of that algorithm, here conducted to four
steps, but the table could have been extended at will towards the left. Now,
in column c5, there is a new value for the sinus totus , namely 12871192, and
therefore we have as a new approximation of sin 60◦ the fraction 11146776

12871192
=

0.86602515136, the exact value being
√
3
2

= 0.866025403 . . ..
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Bürgi’s algorithm is an iterative procedure for computing all the values of
column ci+1 from those of column ci. The computations use an intermediate
column whose last value is half of the previous sinus totus . This intermediate
column actually provides the values of the cosines, but for intermediate an-
gles, here 5◦, 15◦, . . . , 85◦. In the above example, the sinus totus in column
c1 is 12, and the last value of the column between c2 and c1 is 6. The last
value of the column between c3 and c2 is 181, half of 362. If the sinus totus
is odd, one might take the exact half, but it actually does not matter, as this
algorithm leads to increasingly larger numbers, and ignoring a half integer
only has marginal consequences on the convergence.

Once the last value of an intermediate column has been obtained, all
other values of that column are obtained by adding the values in the previous
column, as if the previous column were differences. So, we have 6+ 11 = 17,
17 + 10 = 27, and so on.

When the intermediate column has been filled, the new column ci+1 is
constructed by starting with 0, and adding the values of the intermediate
column.

And that’s all!

2.2 Bürgi’s path to his algorithm

Bürgi did not explain how he obtained his algorithm, but in a recent article,
we suggested a very simple way [10]. Recently, other constructions have
been provided. In particular, one was announced by Peter Ullrich and will
be disclosed in March 2016, and a geometric version of Thom’s proof was
recently given by Christian Riedweg [7].

3 The accuracy of Bürgi’s algorithm
Bürgi seems to have computed a sine table for every 2′′ with 8 places.
Whether these 8 places were decimal or sexagesimal, we do not know. We
also do not know how accurate this table was, since it is no longer extant.
A number of large tables of logarithms have a number of erroneous figures,
so that it would be a hastily drawn conclusion to state that Bürgi really had
computed a table of sines accurate to 8 places.

Moreover, it seems accepted that Bürgi only used the above algorithm for
a number of pivot values, so that eventually smaller gaps could be bridged
by adding differences.

It is however interesting to examine the behavior of Bürgi’s main algo-
rithm and to somehow measure how it does improve the accuracy of sines.
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In their article, Folkerts, Launert and Thom stated that for the division
of the quadrant in nine parts, the sines were correct to 6 or 7 places, and
that an accuracy of 8 (decimal) places can be obtained by adding three more
columns [5]. The more general question, which was not answered by Folkerts,
Launert and Thom, is how far one has to go to achieve a certain accuracy.

In order to obtain a partial answer to this question, we considered a
special case. First, we assume that the quadrant is divided in n parts, so
that the purpose is to compute the values of sin

(
iπ
2n

)
for 0 ≤ i ≤ n. In the

above, we have named the columns c1, c2, etc., but now we also name the
intermediate (auxiliary) columns a1, a2, etc. Within ci, the values from top
to bottom are ci,0, ci,1, ci,2, . . . , ci,n, and within ai, the values are ai,0, ai,1,
ai,2, . . . , ai,n−1. We have therefore

ai,n−1 = bci,n/2c (1)
ai,j = ai,j+1 + ci,j+1 for 0 ≤ j < n− 1 (2)
ci,0 = 0 (3)
ci,j = ci,j−1 + ai−1,j−2 for 0 < j ≤ n (4)

For a given i, ci,j/ci,n is an approximation of sin
(
jπ
2n

)
. But how good is

this approximation? In order to answer this question, we have made some
experiments, first with the initial values:

c0,j = j for 0 ≤ j ≤ n (5)

that is, with a linear approximation of the sines, but then also with a number
of other distributions, including

c0,j = 1 for 0 ≤ j ≤ n, (6)

c0,j = 0 for 0 ≤ j < n and c0,n = 2 (7)

and
c0,j = n− j for 0 ≤ j ≤ n (8)

Now, given such a distribution and the above algorithm, we can define
the error on the j-th value for a given i:

en(i, j) =

∣∣∣∣sin(jπ2n
)
− ci,j
ci,n

∣∣∣∣ (9)

as well as the maximal error in a column:
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En(i) = max {en(i, j)|0 ≤ j ≤ n} (10)

Moreover, we can define the position of the greatest error:

Gn(i) = min {j|en(i, j) = En(i)} (11)

We have only taken the minimum value in order to ensure that there is only
one integer value.

These two definitions lead us to the following conjectures:

Conjecture 1 The greatest error occurs close to arcsin(1/
√
3), so that we

conjecture that

lim
i→∞

Gn(i)

n
=

2

π
arcsin

(
1√
3

)
+ ν(n)

where limn→∞ ν(n) = 0.

Conjecture 2

lim
i→∞

En(i+ 1)

En(i)
=

1

9
+ ξ(n)

where limn→∞ ξ(n) = 0.

Assuming that these conjectures are true,2 we can now estimate the num-
ber of steps needed to achieve a certain accuracy p, namely p/ log 9 ≈ 1.05p.
Without too much error, we can even assume that the maximal error is di-
vided by 10 for every step, so that each column practically gives a new place
of accuracy, or nearly so.

4 The complexity of Bürgi’s algorithm
Another question which was not tackled by Folkerts, Launert and Thom is
that of the complexity of Bürgi’s main algorithm. In other words, how much
effort does it take to reach a certain accuracy? From the previous section, we
now know that each new step gives a little less than a new place of accuracy.
But does this represent a lot of work, or not? In their article, Folkerts,
Launert and Thom state that continuing the computations for n = 9 up
to column 8 is still “a reasonable computational effort.” But what if we do
divide the right angle in 90 parts? Or 5400 parts? Or more?

2(Note added 27 march 2016) With only minor exceptions, these conjectures appear to
follow from the analysis of Bürgi’s iteration as a power iteration scheme, as demonstrated
recently by Jörg Waldvogel [11].
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Even though Bürgi did not ambition to use his main algorithm to compute
his entire sine table, it is theoretically possible. Can we estimate how much
time it would have taken? Let us try.

Our aim is to obtain a gross estimate of the complexity of filling the
table of section 2.1. The rightmost column c1 is assumed to be filled, but
a1, c2, a2, c3, etc., need to be computed. We can estimate the number of
one-digit additions as being approximately the number of digits in all these
columns. Consider for instance column c5. The values are approximately
k sin

(
jπ
18

)
with k ≈ µ4 × 12, where µ = csc2(π/(4n))

4
. In general, in our setting,

k ≈ µ4 × n, because c1,n = n. ai,j can also be approximated using the
fact that the first differences of the sines are close to the cosines and that
ci+1,1 = ai,0. We obtain:

ci,j ≈ µi−1 × n× sin

(
jπ

2n

)
(12)

ai,j ≈ µi × n× cos

(
jπ

2n

)
× sin

( π
2n

)
(13)

We stress that these are gross approximations, but they are sufficient for our
purpose.

Now, the number of digits of ci,j is approximated by log(ci,j) and since
we want to count all these digits, we need to compute

dc(i) =

j=n∑
j=0

log(ci,j) (14)

which is approximated by an integral:

dc(i) ≈

∫ π/2

0

log(k sinx)dx

π

2n

(15)

Using the fact that ∫ π/2

0

ln(sinx)dx = −π
2
ln 2 (16)

we arrive at

dc(i) ≈ n log

(
µi−1 × n

2

)
(17)
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Taking for instance i = 5, n = 9 and µ = 32.9 . . ., we find dc(5) ≈ 60,
which is close to the actual number of digits in column c5.

Using a similar reasoning, we obtain the number of digits da of the inter-
mediate columns:

da(i) ≈ n log

(
µi × n× sin (π/2n)

2

)
(18)

Adding all these terms and keeping only the largest factors, we obtain an
approximation for the total number of digits D(p, n) in columns a1, c2, a3,
. . . , cp:

D(p, n) = 2p2n log n (19)

where log n is the base 10 logarithm.
For instance, in the above example, with p = 5 and n = 9, we obtain

D(5, 9) ≈ 429. The actual value is about 340, but, as we said, D(p, n) is only
a gross approximation.

Now, if we take for instance n = 90 and p = 8, we obtain about 22500
digits, and about that many one-digit additions. With n = 5400 and p = 8,
we obtain about 2.6 million digits. And for a 2′′ sine table to 8 places of
accuracy, we have about 100 million digits. Assuming that about 10 one-
digit additions can be done per minute, even n = 5400 seems out of reach for
one person, and n = 90 may take perhaps 40 hours to one calculator. This
shows, in our opinion, that although Bürgi’s algorithm is very simple, it has
to be adapted or used in conjunction with other methods. Bürgi had certainly
found out about the limitations of his main algorithm, and his genius in fact
lies in the clever combination of several algorithms.

5 Accelerating the convergence
The main problem with Bürgi’s algorithm is that the values of the table
quickly become very large. On the other hand, if one’s purpose is only to
obtain the sines to a certain accuracy, it is in fact not necessary to manipulate
the actual large numbers. This was noticed, we believe, by the author of the
manuscript page reproduced by Launert [6, p. 57], who in the last steps of
the computation, truncated the large values he was manipulating.3

3Incidentally, Launert suggests that the author of this page inserted in the Leiden copy
of Ursus’s Fundamentum Astronomicum may be John Bainbridge, and tries therefore (with
the help of an annotation that vaguely looks like “H. Briggs”) to establish a connection, or
an independent discovery of Bürgi’s algorithm by Briggs. This connection is also made in
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Therefore, if we intend to find the sines to 8 places, we could merely
truncate all the values of the sinus totus to at most 9 figures. In that case,
however, the conjectures given above are no longer valid, since they assume
that the computations are done on integers and with no truncation.

Here too, we can obtain a gross estimate of the computational complexity
of the calculation. Assuming that we want to obtain the sines with p figures,
we simplify the calculations by using numbers in the same ranges in all
columns. That is, we start for instance with a linear distribution

c1,i =
i× 10p+1

n
(20)

and we compute p new pairs of columns. This will give the sines to p places
with a good accuracy.4

Now, if we have computed the column ci, the last value of column ci+1

will approximately be µ× 10p+1 (it could be up to ten times more, but this
is an estimate). The first value of column ai will be about

√
µ× 10p+1. Now,

from these maximal values, we can derive estimates for the number of digits,
merely adapting the expressions given above:

dc(i) = dc ≈ n log

(
µ× 10p+1

2

)
(21)

da(i) = da ≈ n log

(√
µ× 10p+1

2

)
(22)

and the overall complexity will grossly be

the second version, dated February 2, 2016, of Folkerts, Launert and Thom’s article [5].
We believe that such an interpretation is very far-fetched, and that is is unlikely that two
persons would come up independently with such an algorithm. Instead, we believe that
the annotation which may look like “H. Briggs” actually directly refers to Bürgi, and that
the author of the page wanted to stress clearly that Bürgi is the author of the algorithm.
Of course, we do not know who really wrote this page, and how he came to know about
this algorithm, but it seems to us the most plausible explanation. Launert also seems to
allude to a possible reuse of Bürgi’s methods by Briggs when the latter computed the sines
later used in his Trigonometria Britannica (1633) [1]. We do not exclude the possibility
that Briggs knew of Bürgi’s algorithm, but since he does not mention it, nor uses any
iterative algorithm for the computation of a set of sines, such a reuse seems doubtful.

4One should be aware, however, that the truncations will introduce fluctuations in the
accuracy, and that the values of the sines can sometimes become more accurate from one
column to the next, and sometimes less accurate. Depending on how the truncation is
performed, and where exactly one stops, the results will vary. The ratios obtained are in
general not the best ratios approximating the set of sines, but merely a set of ratios with
a bounded error.
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D(p, n) ≈ p× (dc + da) (23)

≈ pn log

(
µ
√
µ× 102p+2

4

)
(24)

≈ 3pn log n (25)

This is now somewhat more interesting than the exact computation with
large integers. Taking again the previous examples, for n = 90 and p = 8,
we obtain about 4000 digits. For n = 5400 and p = 8, we obtain about
500000 digits, and for a 2′′ sine table to 8 places of accuracy, we have about
20 million digits. n = 90 may take perhaps 8 hours to one calculator, and
n = 5400 may take about 800 hours. It is still basically untractable, but less
so than in the initial version of the algorithm. We stress again that these
are all estimates based on various approximations, but they should give a
general idea of the improvement in the performance of the algorithm.

6 Conclusion
In this note, we have examined a number of important aspects of Bürgi’s
algorithm for the computation of sines. We have shed some light on how
fast a certain accuracy can be obtained and the necessity to adapt Bürgi’s
algorithm and to use it in conjunction with other methods. But whether
Bürgi did in fact compute a table to 8 (decimal) places of accuracy is still
not known. . .

References
[1] Henry Briggs and Henry Gellibrand. Trigonometria Britannica.

Gouda: Pieter Rammazeyn, 1633. [The tables were reconstructed by
D. Roegel in 2010 [8].].

[2] Jost Bürgi. Arithmetische und Geometrische Progress Tabulen, sambt
gründlichem Unterricht, wie solche nützlich in allerley Rechnungen
zugebrauchen, und verstanden werden sol. Prague, 1620. [These tables
were recomputed in 2010 by D. Roegel [9]].

[3] Kathleen Clark. Jost Bürgi’s Aritmetische und Geometrische Progreß
Tabulen (1620). New York: Springer, 2015.

9



[4] Menso Folkerts. Eine bisher unbekannte Schrift von Jost Bürgi zur
Trigonometrie. In Rainer Gebhardt, editor, Arithmetik, Geometrie und
Algebra in der frühen Neuzeit, pages 107–114. Annaberg-Buchholz:
Adam-Ries-Bund, 2014. [not seen].

[5] Menso Folkerts, Dieter Launert, and Andreas Thom. Jost Bürgi’s
method for calculating sines, 2015. [uploaded on arXiv on 12 October
2015, id 1510.03180v1; a preprint dated 19 September 2015 is also
available online; a second version was put on arXiv on 2 February
2016].

[6] Dieter Launert. Nova Kepleriana : Bürgis Kunstweg im Fundamentum
Astronomiae — Entschlüsselung seines Rätsels. München: Bayerische
Akademie der Wissenschaften, 2015.

[7] Christian Riedweg. Bürgi’s “Kunstweg” — geometric approach, 2016.
[uploaded on arXiv on 25 February 2016].

[8] Denis Roegel. A reconstruction of the tables of Briggs and Gellibrand’s
Trigonometria Britannica (1633). Technical report, LORIA, Nancy,
2010. [This is a recalculation of the tables of [1].].

[9] Denis Roegel. Bürgi’s Progress Tabulen (1620): logarithmic tables
without logarithms. Technical report, LORIA, Nancy, 2010. [This is a
recalculation of the tables of [2].].

[10] Denis Roegel. Jost Bürgi’s skillful computation of sines. Technical
report, LORIA, Nancy, 2015.

[11] Jörg Waldvogel. Jost Bürgi’s Artificium of 1586 in modern view, an
ingenious algorithm for calculating tables of the sine function, 2016.

10


